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The aim of this article is to show that any n×m matrix A over a Euclidean domain R can
be put in a particularly simple form, called the Smith Normal Form of A. This is achieved in
the first section. This canonical form has important applications to the structure of finitely
generated modules over a Euclidean domain, especially to the structure of finitely generated
Abelian groups. In the second section we apply the result to explicate the structure of a
finitely generated abelian group given by a finite set of generators and relations.

1 Smith Normal Form

To arrive at the canonical form, we employ row-operations, column operations which can be
“reversed” or “inverted.” To be precise, the following operations are called elementary row
operations:

(1) Add any multiple of a row to another. We denote this by Ri + cRj which means to the
i-th row add c-times the j-th row, c ∈ R.

(2) Multiply a row by a unit in R. We denote this by uRj to mean that j-th row is
multiplied by a unit u ∈ D.

(3) Interchange any two rows. We denote this by Ri ↔ Rj .

Elementary column operations are defined similarly R’s replaced by C’s.

Ex. 1. Let d be the greatest common divisor (gcd) of all the entries of A. Let A′ be the
matrix obtained from A by an elementary (row/column) operation. Show that d is the gcd
of all entries of A′.

The main result of the article can now be stated.

Theorem 2 (Smith Normal Form). Let R be a Euclidean domain. Let A be an n×m matrix
with entries in R. Then by employing elementary row and column operations, we can trans-

form A to a matrix of the form

(
D 0
0 0

)
where D is a diagonal matrix D = diag (d1, . . . , dr)

with
(i) di 6= 0 for 1 ≤ i ≤ r,
(ii) di|di+1 for 1 ≤ i ≤ r − 1 and 0’s are zero matrices of appropriate sizes.
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Uniqueness: r is unique and di are unique up to associates (that is, multiplication by units in
R).

Proof. Note that in view of Ex. 1, the d1, the first entry of the canonical form must be the
gcd of the entries of A.

We shall prove that we obtain B from A by elementary operations such that b11 divides
all entries of B.

Assume that a := a11 does not divide a1j for some j > 1. The we write a1j = qa + r
where 0 < d(r) < d(a). Hence if we employ Cj − qC1, we get r as the (1j)-th entry. If we
effect C1 ↔ Cj , we obtain a new matrix whose (11)-th entry, say, b is such that d(b) < d(a).

Assume that a does not divide aj1 for some j > 1. Now using row operations, we obtain
similarly a new matrix whose (11)-th entry, say, b is such that 0 < d(b) < d(a).

Thus using these two steps, we arrive at matrix A′ such that every element of its first row
and first column are divisible by its (11)-th entry, say, a.

We now want to arrive at a matrix such that its (11)-th entry divides all the entries.
Assume that aij is not divisible by a11. Let a1j = sa11. By Cj − (s − 1)C1, we get the new
(ij)-th entry as a′ij := a1j − (x − 1)ai1. Since aij is not divisible by a11 where a1j is, we
conclude that a′ij is not divisible by a11. Hence a′ij = qa11 + r with 0 < d(r) < d(a11). By
Cj ↔ C1 followed by Ri ↔ R1, we get a new matrix whose 11-th entry has d-values less than
d(a).

Observe that in each of the above, after the indicated elementary operations, we end of
up with a new matrix whose 11-th element has d-value strictly less than the d-value o the
11-th element of the original matrix. Since d takes values in N, this process cannot go on
indefinitely. After a finite number of steps, we end up with a matrix B with a11 dividing all
other entries.

We now show that from B we obtain matrix such that b1j = 0 = bj1 for j > 1. If
a1j = sa11, then Cj−sa11 yields a new matrix whose 1j-th entry is 0. Similarly, we can make
any j1-th entry also zero,

This we have arrived at a matrix, say, B of the form B =

(
d1 0
0 C

)
where C is matrix of

size (n− 1)× (m− 1). All entries of C are divisible by d1.

We now apply induction (on what?) to transform C its canonical form with d2|d3| · · · |dr.
Note that the elementary operations do not alter the fact that d1 divides the elements of
matrix obtained from C. Hence we get d1|d2 also.

Now we wish to prove the uniqueness part. We observe that d1 must be the gcd of
all entries of the original matrix A, as observed earlier. Now the crucial observation is the
following: If we consider all the j×j principal submatrices, then the gcd of their determinants
remains the same under elementary operations. Hence at the end we obtain ‘the’ canonical
form in which the gcd of all its j × j submatrices is obviously d1 · · · dj for 1 ≤ j ≤ r. Since
none of d1, . . . , dj−1 are zero, we conclude that dj ’s are unique.

We shall now establish the crucial observation. Fix 1 ≤ j ≤ r. Let d denote the gcd of the
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determinants of all j × j submatrices of A. Let A′ be the matrix obtained row A by means
an elementary operation. and d′ denote the gcd of the determinants of all j × j submatrices
of A′. It suffices to show that d and d′ are associates. To prove this, it is enough to prove
the result for the first the row operations in view of the fact that det(X) = det(X ′) for any
square matrix X.

Among the row operations, the interchange of rows can be obtained from the other two
row operations:(

a b
c d

)
R1+R2−→

(
a+ c b+ d
c d

)
R2−R1−→

(
a+ c b+ d
−a −b

)
R1+R2−→

(
c d
−a −b

)
−R2−→

(
c d
a b

)
Hence it is enough to prove this for the operations of the addition of rows and multiplication
of a row by a unit of R.

If we multiply a row of A by a unit u, then an i× i submatrix either remains unchanged
or one of its rows is multiplied by u. In the first case, the minor, namely, its determinant, is
unchanged; in the second case, the minor is changed by a unit. Therefore, every i× i minor
of A is an associate of the corresponding i × i minor of , and so d and d′ are associates, as
claimed.

If we employ Rj + rRk, an i× i submatrix of A either does not involve Ri this row or it
does. In the first case, the corresponding minor is unchanged. In the second case, it has the
form M + rM ′ where M and M ′ are i × i minors of A. For, det is a multilinear function of
the rows of a matrix:

det(S1, . . . , Rj + rRk, . . . , Si) = det(S1, . . . , Rj , . . . , Si) + r det(S1, . . . , Rk, . . . , Si),

where S are the rows of the i× i-submatrix.

It follows that d|M and d|M ′. Hence d|d′. Since A′ can be obtained from A by reversing
the elementary transformation, it follows that d′|d. Since R is a domain, we have d and d′

are associates.

Remark 3. The ‘diagonal’ form of the matrix stated in the theorem is called the Smith
normal form (SNF) of A.

The entries dj of the SNF of A are called the invariant factors of A. They are unique up
to associates by the uniqueness part of the theorem.

If one goes through the uniqueness part of the proof, one can extract the following lemma.
First let us establish a convention and notation. Let R be a commutative ring with 1. Let
A ∈ Mm×n(R). Let 1 ≤ i ≤ min{m,n}. By an i-minor, we mean the determinant of an
i× i-submatrix of A. Let Ji(A) denote the ideal generated by all the i-minors of A. We say
that an elementary row/column operation is admissible, if it is invertible.

Lemma 4. Let A ∈Mm×n(R). Let B be obtained from an elementary row or column opera-
tion. Then Ji(B) ⊆ Ji(A). If the operation is admissible, then Ji(A) = Ji(B).

In particular, if R is a PID, and the operation is admissible, then the generators of the
ideals Ji(A) and Ji(B) are associates.
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Remark 5. The proof of the uniqueness part tells us how to “compute” the invariant factors.
Go through the example below.

Example 6. Let R = Z. Consider the matrix A :=

(
4 8 12
6 4 16

)
. The gcd of the entries of

A is 2. The determinants of the 2× 2 submatrices of A are (up to sign) {32, 80, 8} and their

gcd is 8. Hence d1d2 = 8 so that d2 must 4. Hence the SNF of A must be

(
2 0 0
0 4 0

)
. This

may be obtained by the following steps: R2 ↔ R1, R1 −R2, (C2 + 2C1, C3 + C2), R2 − 2R1,
C3 + 2C2), C2 + 2C3, C2 ↔ C3. (This is not the only way of arriving at SNF of A!) You
maybe able to arrive at it in less number of steps.

2 Finitely Generated Abelian groups

Let G be a finitely generated abelian group, say, by n-elements xi, 1 ≤ i ≤ n. Then we have
an obvious homomorphism

f : Zn → G given by f(m1, . . . ,mn) = m1x1 + · · ·+mnxn.

This is onto. If K is the kernel of f , by the first fundamental theorem of homomorphism, we
have Zn/K ' G. It is well-known that K is a also finitely generated and free over Z. If we
write the generators, say, y1, . . . , yk of K in terms of the standard basis of Zn, we get an k×n
matrix (called the relation matrix) over Z. The Smith normal from of the relation matrix
gives us a new basis of Zn and a new set of generators of K which are aligned/compatible
with each other in the sense that we can read off the quotient Zn/K easily and hence identify
G in its invariant factor decomposition. We look at some examples in this article.

To understand what follows, it is important to have a good idea of what effect the el-
ementary (column/row) operations have on the basis of Zn or on the set of generators of
K.

Let us start with a change of basis of Zn. Let us start with the standard basis {e1, . . . , en}
of Zn. Let {x1, . . . , xm} be a set of generators of K. We claim that the set {e1, . . . , ei +
αej , . . . , en} is a basis of Zn. Assume for definiteness sake, i < j. Observe

xk = xk1e1 + · · ·+ xkiei + · · ·+ xkjej + · · ·+ xknen

= xk1e1 + · · ·+ xki(ei + αej) + · · ·+ (xkj − αxki)ej + · · ·+ xknen.

That is, the change of the basic element ei 7→ ei + αej has the effect Cj 7→ Cj − αCi. To put
in a form which will be useful for us, the elementary column operation Ci + αCJ comes from
the change of basis element ej 7→ ej − αei.

One sees in a similar way, any row operation of the form Ri 7→ Ri + αRj comes from the
change of the generator xi 7→ xi + αxj .

In the tables below, the first column is about the elementary column/row operation on
the relation matrix in the 2nd column of the previous row. The third column of the table
indicates the effect of the operation on the basis of Zn and the fourth column expresses the
set of generators in the new basis of Zn.
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Example 7. Let G be an abelian group generated by two elements a and b satisfying the

relations 2a + 4b = 0 and −2a + 6b = 0. The relation matrix is

(
2 4
−2 6

)
. We now show

how to reduce it to Smith normal form and find the basis for Z3 and a set of generators of G
which are compatible so that we can identify G.

Elem.Op. Matrix Basis Generators

(
2 4
−2 6

)
a
b

2a+ 4b
−2a+ 6b

C2 − 2C1

(
2 0
−2 10

)
a+ 2b
b

2(a+ 2b)
−2(a+ 2b) + 10b

R2 +R1

(
2 0
0 10

)
a+ 2b
b

2(a+ 2b)
10b

Thus, if we take u = a + 2b and v = b, they form a basis of Z2. Relative to this basis, the
generators a and b Z-module K satisfy the relations 2u = 0 and 10b = 0. Hence the the
abelian group is (Zu+ Zv)/(Z2a+ Z10b) ' Z2 ⊕ Z10.

We shall run a check. Do the elements 2u and 10b lie in K? Note that 2u = 2a+ 4b = 0
and 10v = 10b = (2a+ 4b) + (−2a+ 6b) ∈ K. Can we write the original set of generators as
a Z-linear combination of these new ‘generators’? Observe that

2a+ 4b = 2u and − 2a+ 6b = 10v − u.

Also, we can find P and Q such that PAQ =

(
1 0
0 17

)
. The matrix Q is got from the

identity matrix by applying the column operations whereas P got from the identity matrix
by applying the row-operations. We find:

Q :

(
1 0
0 1

)
C2−2C1−→

(
1 −2
0 1

)
Similarly,

P :

(
1 0
0 1

)
R2+R1−→

(
1 1
1 1

)
.

One checks that PAQ is the Smith normal form of A :=

(
2 4
−2 6

)
.
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Example 8.

Elem.Op. Matrix Generators Relations

(
2 3
1 −7

)
a
b

2a+ 3b
a− 7b

R1 ↔ R2

(
1 −7
2

)
a
b

a− 7b
2a+ 3b

C2 + 7C1

(
1 0
2 17

)
a− 7b
b

a− 7b
2a+ 3b = 2(a− 7b) + 17b

R2 − 2R1

(
1 0
0 17

)
a− 7b
b

a− 7b
17b

Note that 2a + 3b = 2(a − 7b) + 17b and (2a + 3b) − 2(a − 7b) = 17b. Thus clearly, the
Z-submodule generated by {2a+ 3b, a− 7b} is the same as {a− 7b, 17b}.

Also, we can find P and Q such that PAQ =

(
1 0
0 17

)
. The matrix Q is got from the

identity matrix by applying the column operations whereas P got from the identity matrix
by applying the row-operations.

Q :

(
1 0
0 1

)
C2+7C1−→

(
1 7
0 1

)
Similarly,

P :

(
1 0
0 1

)
R1↔R2−→

(
0 1
1 0

)
R2−2R1−→

(
0 1
1 −2

)
.

One checks that PAQ is the Smith normal from of A, as claimed
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Example 9.

Elem.Op. Matrix Generators Relations

(
2 0
0 3

)
a
b

2a
3b

C1 − C2

(
2 0
−3 3

)
a

a+ b
2a

3b = 3(a+ b)− 3a

R1 +R2

(
−1 3
−3 3

)
−2a− 3b
a+ b

2a+ 3b
3b

C2 + 3C1

(
−1 0

3 −6

)
−2a− 3b
a+ b

2a+ 3b
−6(a+ b)

R2 − 3R1

(
−1 0

0 −6

)
−2a− 3b
a+ b

−2a− 3b
−6(a+ b)

(−1)R1

(
1 0
0 −6

)
−2a− 3b
a+ b

−2a− 3b
6(a+ b)

(−1)R2

(
1 0
0 6

)
−2a− 3b
a+ b

−2a− 3b
6(a+ b)

Thus, if we take u = −2a−3b and v = a+ b as a basis of Z2, the kernel subgroup is generated
by u and 6v. They satisfy the relations u = 0 and 6v = 0 and hence G is Z6.

Observe that −2a− 3b and 6(ab+ b) lie in K and we have

2(−2a− 3b) + (6a+ 6b) = 2a and − 3(−2a− 3b)− (6a+ 6b) = 3b.

Thus −2a− 3b and 6(a+ b) generate K.

The matrices P and Q such that PAQ is the Smith normal from of the given matrix are
given by

P =

(
−1 −1

3 2

)
and Q =

(
1 3
−1 −2

)
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Example 10.

Elem.Op. Matrix Basis Generators

(
2 4 3
−1 2 2

) a
b
c

2a+ 4b+ 3c
−a+ 2b+ 2c

R1 +R2

(
1 6 5
−1 2 2

) a
b
c

a+ 6b+ 5c
−a+ 2b+ 2c

R2 +R1

(
1 6 5
0 8 7

) a
b
c

a+ 6b+ 5c
8b+ 7c

C2 − C3

(
1 1 5
0 1 7

) a
b

b+ c

a+ b+ 5(b+ c)
b+ 7(b+ c)

C2 − C1

(
1 0 5
0 1 7

) a+ b
b

b+ c

a+ b+ 5(b+ c)
b+ 7(b+ c)

C3 − 5C1

(
1 0 0
0 1 7

) a+ b+ 5(b+ c)
b

b+ c

(a+ b+ 5(b+ c))
b+ 7(b+ c)

C3 − 7C2

(
1 0 0
0 1 0

) a+ b+ 5(b+ c)
b+ 7(b+ c)

b+ c

a+ b+ 5(b+ c)
b+ 7(b+ c)

.

The reader may run the checks and find the matrices P and Q are as given below.

P =

(
1 1
1 2

)
and Q =

1 −1 2
0 1 −7
0 −1 8


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Example 11.

Elem.Op. Matrix Basis Generators

5 9 5
2 4 2
1 1 −3

 a
b
c

5a+ 9b+ 5c
2a+ 4b+ 2c
a+ b− 3c

C2 − C1

5 5 5
2 2 2
1 0 −3

 a+ b
b
c

5(a+ b) + 4b+ 5c
2(a+ b) + 2b+ 2c

(a+ b)− 3c

R1 − 2R2

1 0 1
2 2 2
1 0 −3

 a+ b
b
c

(a+ b) + c
2(a+ b) + 2b+ 2c

(a+ b)− 3c

C3 − C1

1 0 0
2 2 0
1 0 −4

 a+ b+ c
b
c

a+ b+ c
2(a+ b+ c) + 2b
(a+ b+ c)− 4c

C2 − C1

1 0 0
2 2 0
1 1 −4

 a+ 2b+ c
b
c

(a+ 2b+ c)− b
2(a+ 2b+ c)

(a+ 2b+ c)− b− 4c

R3 −R1

1 −1 0
2 0 0
0 0 −4

 a+ 2b+ c
b
c

(a+ 2b+ c)− b
2(a+ 2b+ c)
−4c

(−1)R3

1 −1 0
2 0 0
0 0 4

 a+ 2b+ c
b
c

(a+ 2b+ c)− b
2(a+ 2b+ c)

4c

(−1)C2

1 1 0
2 0 0
0 0 4

 a+ 2b+ c
−b
c

(a+ 2b+ c) + (−b)
2(a+ 2b+ c)

4c

C1 ↔ C1

1 1 0
0 2 0
0 0 4

 −b
a+ 2b+ c

c

(a+ 2b+ c) + (−b)
2(a+ 2b+ c)

4c

C2 − C1

1 0 0
0 2 0
0 0 4

 a+ b+ c
a+ 2b+ c

c

a+ b+ c
2(a+ 2b+ c)

4c

We let u := a+b+c, v := a+2b+c and w := c. Then {u, v, w} is a basis of Z3 and {u, 2v, 4w}
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is a basis of K. Hence we arrive at

G ' (Zu⊕ Zv ⊕ Z)/(Zu⊕ Z2v ⊕ Z4w) ' Z2 ⊕ Z4.

The matrices P and Q are given below:

P =

1 −2 0
0 1 0
1 −2 −1

 and Q =

 2 −1 −1
−1 1 0

0 0 1

 .

Ex. 12. Let the relation matrix be

3 5 3
3 3 5
7 3 7

. Show that the Smith diagonal form of this

matrix is the diagonal matrix with entries 1,2, and 26. If the elements of the basis for Z3 are
by a,b and c, find the compatible bases of Z3 and K. Ans: 3a + 5b, a + 2b and c + a + 2b.
Find the matrices P , Q such that PAQ is the Smith normal form of the relation matrix.

A sequence of the elementary operations is C2−C1, C1−C2, C2−2C1, C3−3C1, R2−3R1,
R3 − 11R1,−R2, −R3, C2 − C3 and C3 − 2C2.

Relative to these operations,we have

P =

 1 0 0
3 −1 0
11 0 −1

 and Q =

 2 1 −8
−1 0 3

0 −1 3

 .

Ex. 13. For n = 5, consider the matrix

P5 :=


1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

 .

Do you observe the pattern of Pascal’s triangle? Write down P6. For each n ∈ N, we can
form Pn. If Pn is th relations matrix of a finitely generated abelian group Gn, identify each
Gn.

Ex. 14. Let the relations matrix be

 2 4 6
8 10 12
14 16 18

. Let the basis of Z3 be a, b, c. Show that

after elementary column/row operations,

C2 − 2C1, C3 − 3C1, R2 − 4R1, R3 − 7R1, R3 − 2R2, C3 − 2C2, −R2

we end up with {a + 2b + 3c, b + 2c, c} as a basis of Z3 and {2(a + 2b + 3c), 6(b + 2c)} as a
basis of K. The Smith normal form is the diagonal matrix with diagonal entries 2, 6, 0. The
group G is isomorphic to Z2⊕Z6. Compute the matrices P and Q so that PAQ is the Smith
normal form of the given matrix.

The details are worked out in the next example.
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Example 15.

Elem.Op. Matrix Basis Generators

 2 4 6
8 10 12
14 16 18

 a
b
c

2a+ 4b+ 6c
8a+ 10b+ 12c
14a+ 16b+ 18c

C2 − 2C1

 2 0 6
8 −6 12
14 −12 18

 a+ 2b
b
c

2a+ 4b+ 6c
8a+ 10b+ 12c
14a+ 16b+ 18c

C3 − 3C1

 2 0 0
8 −6 −12
14 −12 −24

 a+ 2b+ 3c
b
c

2a+ 4b+ 6c
8a+ 10b+ 12c
14a+ 16b+ 18c

R2 − 4R1

 2 0 0
0 −6 −12
14 −12 −24

 a+ 2b+ 3c
b
c

2a+ 4b+ 6c
−6b− 12c

14a+ 16b+ 18c

R3 − 7R1

2 0 0
0 −6 −12
0 −12 −24

 a+ 2b+ 3c
b
c

2a+ 4b+ 6c
−6b− 12c
−12b− 24c

R3 − 2R2

2 0 0
0 −6 −12
0 0 0

 a+ 2b+ 3c
b
c

2a+ 4b+ 6c
−6b− 12c

0

C3 − 2C2

2 0 0
0 −6 0
0 0 0

 a+ 2b+ 3c
b+ 2c
c

2(a+ 2b+ 3c)
−6(b+ 2c)

0

−R2

2 0 0
0 6 0
0 0 0

 a+ 2b+ 3c
b+ 2c
c

2(a+ 2b+ 3c)
6(b+ 2c)

0

Run the usual checks and write down P and Q.
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