
Finite Dimensional Spectral Theory

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

1 Spectral Theorem

We assume that the reader knows the basics about real and complex (finite dimensional)
inner product spaces: definition, Cauchy-Schwartz inequality, Riesz representation theorem,
existence of an orthogonal complement of a (closed) subspace and that of an orthonormal
basis, adjoint A∗ of an operator A etc. In the sequel we let E denote a real (resp. complex)
(finite dimensional) vector space equipped with a real (resp. complex) inner product 〈, 〉. We

let the norm of an element x ∈ E be defined by ‖x‖ := 〈x, x〉1/2.

A linear map (or an operator) A : E → E is automatically continuous. (See Ex. 11.) An
operator A on E is said to be self adjoint or hermitian if the following identity holds:

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ E.

In case E is real, then such an A is usually called symmetric. It is easy to see that A is
self-adjoint iff 〈Aei, ej〉 = 〈ei, Aej〉 for any orthonormal basis {ei} of E. Since the (ij)-th
entry of the matrix representation of A with respect to an orthonormal basis {ei} is given by
aji := 〈Aei, ej〉, A is hermitian iff the matrix (aji) is so. It should, however, be noted that to
define hermitian-ness or symmetry of operators we need an inner product. (See Ex. 14.)

We have a natural norm on the space of operators on E:

‖T ‖ := sup
{x∈E:‖x‖=1}

‖Tx‖ .

It is easy to see that T 7→ ‖T ‖ is a norm on BL(E), the vector space of (bounded) linear
operators on E and that ‖ST ‖ ≤ ‖S‖ ‖T ‖ for all S, T ∈ BL(E).

To understand the basic ideas of the proof of results concerning self-adjoint (hermitian,
symmetric) operators we suggest that the reader assumes that the space under question is
real and the operator is symmetric.

We say a complex number λ is in the spectrum of an operator A : E → E iff (A − λI)−1

does not exist. Since our spaces are finite dimensional this is equivalent to saying that there
exists a non-zero vector v ∈ E such that Av = λv. In this case we say that λ is an eigen value
and v an eigen vector of A.
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Lemma 1. The eigen values of a self-adjoint operator are real.

Proof. Let v be a non-zero eigen vector of A with eigen value λ. We may assume that ‖v‖ = 1.
Then λ = λ 〈v, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ 〈v, v〉 = λ.

Lemma 2. For a self-adjoint operator A the eigen vectors vi with eigen values λi for λ1 6= λ2
are orthogonal to each other.

Proof. λ1 〈v1, v2〉 = 〈Av1, v2〉 = 〈v1, Av2〉 = λ2 〈v1, v2〉.

If E is finite dimensional vector space over C, the existence of eigen-values follows from
the fundamental theorem of algebra: For, the polynomial function t 7→ det(tI −A) on C has
a zero, say, λ in C. But then it follows from elementary linear algebra that there exists a
nontrivial linear relation among the rows (or columns) of the determinant det(λI − A). The
coefficients of the linear relation gives us the required eigen vector. We however prefer to
give the following analytical proof of the first version of the spectral theorem for self-adjoint
operators on E.

Theorem 3 (First Version). Let E be a finite dimensional complex vector space with a complex
inner product. Let A be a self-adjoint operator on E. Then A has an eigen-value.

Proof. We first prove the result in the case when E is real and A is symmetric. The reason
for this is that in this case our proof has a simple geometric interpretation. What we are
going to do is to look for the minor axis of the “ellipse” {〈Ax, x〉 = 1}. (See Ex. 36.) Later
we indicate how the same proof yields the general case.

Let S := {x ∈ E : ‖x‖ = 1} be the unit sphere in E. Since E is finite dimensional, S is
compact as S is closed and bounded. (See Ex. 10.)

We consider the function f(x) := 〈Ax, x〉 on S. Then since A is continuous and the inner
product is continuous, f is a real valued continuous function on the compact set S. Hence it
assumes a minimum, say, λ on S, at x0 ∈ S.

Claim 1: λ is an eigen value and x0 is an eigen vector.

This follows from

Claim 2: 〈Ax0, y〉 = 0 for all y ∈ E with y ⊥ x0.

Claim 2 ⇒ Claim 1: Claim 2 means that Ax0 must lie in the one dimensional space
spanned by x0, i.e., Ax0 = µx0 for some scalar µ. But this scalar µ must be λ: µ =
〈Ax0, x0〉 = λ. Hence Ax0 = λx0. Thus Claim 1 and hence the theorem is proved.

We now prove Claim 2: The idea of the proof is simple. We consider a curve g : R → S
such that g(0) = x0 and consider the one variable function t 7→ f(g(t)). Since this function
attains a minimum at t = 0, it derivative must be 0 at that point. Computing the derivative
gives the result.

Now to get to work, let y ∈ E be such that 〈x0, y〉 = 0. Let x(t) := x0 + ty. Then
‖x(t)‖2 = 1 + t2 ‖y‖2. Let u(t) := (1 + t2 ‖y‖2)−1/2(x0 + ty). Then clearly u(t) ∈ S for all
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t ∈ R. Consider the function h : t 7→ 〈Au(t), u(t)〉. By our assumption on x0, this function
attains a minimum at t = 0 and hence h′(0) = 0. We compute the derivative of h:

h′(t) |t=0 =
d

dt
〈Au(t), u(t)〉 |t=0

=
d

dt
((1 + t2 ‖y‖2)−1 〈A(x0 + ty), x0 + ty〉) |t=0

=
d

dt
((1 + t2 ‖y‖2)−1) |t=0 (〈A(x0 + ty), x0 + ty〉) |t=0

+(1 + t2 ‖y‖2)−1 |t=0
d

dt
(〈A(x0 + ty), x0 + ty〉) |t=0

= (−(1 + t2 ‖y‖2)−22t ‖y‖2) |t=0 λ

+
d

dt
(〈Ax0, x0〉+ t 〈Ax0, y〉+ t 〈Ay, x0〉+ t2 〈Ay, y〉) |t=0

= 0 + 〈Ax0, y〉+ 〈Ay, x0〉 .

Since A is symmetric, the last term on the right side is 2 〈Ax0, y〉. Hence h′(0) = 0 iff
2 〈Ax0, y〉 = 0. This completes the proof of Claim 2.

We may also consider another curve (in place of x(t) above) which arises more geomet-
rically as follows: Let x0 ∈ S be as above. Let y ∈ S with x ⊥ y. Then, x0 and y span
a 2-dimensional vector subspace (a plane through the origin) which intersects the sphere S
along a great circle. This curve on S is nothing other than the unit circle on the plane
Rx0 + Ry. Since ‖x0‖ = 1 = ‖y‖ and 〈x0, y〉 = 0, this curve is given by

c(t) = cos tx0 + sin ty.

(We invite the reader to check that c(t) ∈ S.) Proceeding as earlier, we again get the result
〈Ax0, y〉 = 0.

Now how far does the above proof go in the case of a complex inner product space? The
first thing to notice is that the function h is real valued, since A is self-adjoint:

〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉.

If you now go through the proof carefully, you will see up to the above computation of h′(0)
we are fine. Only finishing touches need to be done with a little finesse:

h′(0) = 〈Ax0, y〉+ 〈Ay, x0〉
= 〈Ax0, y〉+ 〈Ax0, y〉

so that h′(0) = 0 iff Re 〈Ax0, y〉 = 0. To show that Im 〈Ax0, y〉 = 0, we replace y with iy and
proceed. We get

h′(0) = 〈Ax0, iy〉+ 〈A(iy), x0〉
= −i(〈Ax0, y〉 − 〈Ax0, y〉)
= −2iIm 〈Ax0, y〉 .

Hence we get 〈Ax0, y〉 = 0 for all y ⊥ x0.
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I could have spared you the agony of these computations as below: We keep the above
notation, but now allow t ∈ C. We have

〈A(x0 + ty), x0 + ty〉 ≥ λ 〈x0 + ty, x0 + ty〉 .

This implies

〈Ax0, x0〉+ t 〈Ax0, y〉+ t 〈Ay, x0〉+ |t|2 〈Ay, y〉 ≥ λ(1 + |t|2 ‖y‖2).

Hence we get
t 〈Ax0, y〉+ t 〈Ax0, y〉 ≥ |t|2(λ 〈y, y〉 − 〈Ay, y〉)

whence
2Re(t 〈Ax0, y〉) ≥ |t|2(η)

where η ≤ 0 for all t ∈ C. The above inequality can hold for all t ∈ C iff 〈Ax0, y〉 = 0. (Justify
this!) Hence Claim 2 is proved.

We indicate another proof of the above theorem.

Proof. We now use the operator norm introduced above. Let λ := ‖A‖ := supx∈S ‖Ax‖.
Let xk ∈ S be such that ‖Axk ‖ → λ. Since S is compact there exists a subsequence of xk
which we again denote by xk, converging to some point x0 ∈ S. Since the norm function is
continuous (see Ex. 9), ‖Ax0‖ = λ. We claim that

∥∥A2
∥∥ ≥ ‖A‖2 = λ2:

λ2 = ‖Ax0‖2 = 〈Ax0, Ax0〉 =
〈
A2x0, x0

〉
≤
∥∥A2x0

∥∥ ‖x0‖ ≤ ∥∥A2
∥∥ ‖x0‖ ‖x0‖ =

∥∥A2
∥∥ .

Since ‖AB‖ ≤ ‖A‖ ‖B‖ always, the equality holds everywhere. In particular,
〈
A2x0, x0

〉
=∥∥A2x0

∥∥ ‖x0‖. But the equality part of the Cauchy-Schwartz inequality says that this can
happen iff A2x0 = µx0 for some µ ∈ C. Clearly, µ = λ2:

λ2 =
〈
A2x0, x0

〉
= 〈µx0, x0〉 = µ.

Hence we see that (A2 − λ2)x0 = 0. Hence either (A − λ)x0 = 0 in which case λ is an eigen
value with x0 as an eigen vector or (A+ λ)v = 0 where v := (A− λ)x0 6= 0 in which case −λ
is an eigen value.

Theorem 4 (Second Version). Let the notation be as in Thm. 3. Then there exist eigen
values λ1 ≤ λ2 ≤ · · · ≤ λn of A and eigen subspaces Vj := {x ∈ E : Ax = λjx} such that
E = ⊕n

j=1Vj is a direct sum of eigen subspaces of A. (Here n = dimE.)

Proof. Since A is self-adjoint, by the previous theorem, there exists an eigen value λ1 and an
eigen vector v1. We let V1 := Cv1. We let W := V ⊥1 , the orthogonal complement of V1 in E.
Then A maps W to itself, i.e., A leaves W invariant, since A is self-adjoint:

〈Aw, v〉 = 〈w,Av〉 = 〈w, λ1v〉 = 0, for v ∈ V1, w ∈W.

Hence E = V1 ⊕ W . It is easy to see that A : W → W is self-adjoint so that induction
establishes the result.
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Theorem 5 (Third Version). Let A : E→ E be self-adjoint. Then there exists an orthonor-
mal basis consisting of eigen vectors of A.

Let T be the transition matrix which takes the given orthonormal basis ei of E to vi:
Tei = vi. Then T is orthogonal:

〈T ∗Tei, ej〉 = 〈Tei, T ej〉 = 〈vi, vj〉 = δij .

We then have
T−1AT (ei) = T−1Avi = T−1λivi = λiT

−1vi = λiei.

We have thus proved the fourth version of the spectral theorem:

Theorem 6 (Fourth Version). Given a self-adjoint matrix A on E with respect to an orthog-
onal basis, there exists an orthogonal matrix T such that T−1AT is diagonal.

What we now do is to group all equal eigen values together and prove a “natural” spectral
decomposition of the operator A.

Theorem 7 (Fifth Version). Let A be a self-adjoint operator on E. Then there exist distinct
eigen values a1 < a2 · · · < ak of A and eigen subspaces Wj := {x ∈ E : Ax = ajx}. Let Ej

denote the (orthogonal) projection of E onto the subspace Wj. Then the following hold:
1) E is an orthogonal direct sum of Wj: E := ⊕k

j=1Wj and Wj ⊥Wk for j 6= k.

2) EjEl = δjlEj and I =
∑k

j=1Ej.

3) A =
∑k

j=1 ajEj.

Proof. Since E =
∑
Wj is an orthogonal direct sum, it is clear that EjEl = δjlEj . The rest

of the claims are obvious.

Question: In what sense the above decomposition is more natural than the one given in
Thm. 4? Hint: If dimWj > 1, then there is no natural way of writing it as an orthogonal
direct sum of one dimensional eigen subspaces.

The above data {(aj ,Wj , Ej)} satisfying the conditions 1)–3) of the theorem is called the
spectral decomposition of A and

∑
j Ej = I is called the resolution of the identity.

An important question arises now. Is the spectral decomposition unique? It is unique but
for a re-indexing. This can be directly and easily seen and we leave it as an exercise. However
we address ourselves with a different question, viz., whether it is possible to get hold of the
projections from the knowledge of the spectrum.

First of all, we note that we have An =
∑

j a
n
jEj for any n ≥ 1. Thus given any polyno-

mial p(z) :=
∑m

i=0 ciz
i of 1-variable we can associate an operator p(A) :=

∑m
i=0 ci

∑
j a

i
jEj =∑

j p(aj)Ej . There are some very important polynomials that allow us to recover the projec-
tions Ej . Recall that if {λj : 1 ≤ j ≤ k} is set of k distinct complex numbers then the i-th
Lagrange polynomial pi is given by

pi(z) :=

∏k
j=1&j 6=i(z − λj)∏

j 6=i(λi − λj)
.
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pi have the property that pi(λj) = δij . Let pj be the j-th Lagrange polynomial associated
with the distinct eigen values aj of A. We then have pj(A) = Ej for 1 ≤ j ≤ k. We shall use
this observation below.

We say T ∈ BL(E) is normal if TT ∗ = T ∗T . If T ∈ BL(E) is any operator which admits
a spectral resolution then T must be normal. This can be seen as follows: By Ex. 19, λ
is an eigen value of T iff λ is an eigen value of T ∗. Hence, if T =

∑
j αjEj is a spectral

decomposition of T then T ∗ =
∑

j αjEj , since Ej are self-adjoint. Hence we have

TT ∗ =
∑
j,l

αjαlEjEl =
∑
j

|αj |2Ej = T ∗T,

since Ej are “orthogonal” to each other. Our final version of the spectral theorem says that
for any normal operator T we have a spectral decomposition:

Theorem 8 (General Version). Let T ∈ BL(E) be normal. Then there exists a spectral
resolution of T .

Proof. Let T = A+ iB where A := (T +T ∗)/2 and B := (T −T ∗)/2i. Then A and B are self-
adjoint. Since T is normal, A and B commute. (Verify!) Let A =

∑
j αjEj and B =

∑
k βkPk

be the spectral resolutions. Here Pk denotes orthogonal projection onto eigen subspaces of
B. Since A and B commute and since Ej (resp. Pk) is a polynomial in A (resp. B), we see
that Ej and Pk commute for all j and k. Hence by Ex. 25, Rjk := EjPk is an orthogonal
projection onto the subspace Ej(E) ∩ Pk(E). Thus we have the spectral decomposition:

T = A+ iB =
∑
j

αjEj + i
∑
k

βkPk

= (
∑
j

αjEj)(
∑
k

Pk) + i(
∑
k

βkPk)(
∑
j

Ej)

=
∑
j,k

ajRjk + i
∑
j,k

βkRjk

=
∑
j,k

(αj + iβk)Rjk.

It is easy to check that for v ∈ Ej(E)∩Pk(E) we have Rjkv = (A+ iB)v = (αj + iβk)v. (Note
however that Rjk = 0 possibly for many (j, k).)

Let Λ := {λ1, . . . , λk} be the set of distinct eigen values of T ∈ BL(E), E a complex
finite dimensional inner product space. For any f : Λ→ C we define f(T ) be setting f(T ) :=∑

j f(λj)Ej . Note that this coincides with our earlier definition if f is a polynomial function
on C restricted to Λ. Let F denote the set of operators obtained this way and P obtained
by means of polynomials. Then we claim that F = P. For, let f be any function on Λ. Let
aj := f(λj). Consider the polynomial p(z) :=

∑
j ajpj where pj is the Lagrange polynomial

of Λ. Then we have p(T ) =
∑

j ajpj(T ) =
∑

j f(λj)Ej = f(T ). Question: What do we get
for the function f(z) = z̄? (See Ex. 35.)
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2 Spectral Decomposition for Orthogonal Operators

Let E be a real inner product space, T : E→ E an orthogonal operator. The following steps
will lead to the spectral theorem for T .

1) Let A := T + T−1 = T + T ∗. Then A is symmetric and let E :=
∑

i Vi be the spectral
decomposition of A into distinct eigen spaces as in Thm. 8. Then T leaves each Vi invariant,
as AT = TA. We concentrate on one such eigen space V with eigen value λ. Then we have
T 2v − λTv + Iv = 0.

2) If λ = ±2, then T acts as ±I on V .

3) If λ 6= ±2, then W := Rv + R(Tv) is a two-dimensional subspace and V = W ⊕W⊥.
Also, TW ⊂W , TW⊥ ⊂W⊥.

4) On any two dimensional space, an orthogonal operator has a matrix representation

with respect to an orthonormal basis: k( θ) :=

(
cos θ sin θ
− sin θ cos θ

)
for some θ ∈ R.

5) Putting all these things together, we see that there exists an orthonormal basis with
respect to which T can be represented as follows:(

±1, · · · ,±1, k(θ1), · · · , k(θr)
)
.

3 Exercises

3.1 Problem Set I

Ex. 9. The norm function on any normed linear space is continuous.

Ex. 10. Show that in a finite dimensional normed linear space the unit ball B := {x ∈ E :
‖x‖ ≤ 1} is compact.

Ex. 11. Any linear operator between finite dimensional normed linear spaces is continuous.

Ex. 12. Let M(n,R) be the n2-dimensional vector space over R consisting of all n × n
matrices with real entries. Show that tr (A) :=

∑n
i=1 〈Aei, ei〉 where ei is an orthonormal

basis. Show that the trace functional A 7→ tr (A) is independent of the orthonormal basis.
Prove that i) tr (A) = tr (A∗), ii) tr (AB) = tr (BA), iii) tr (ATA−1) = tr (T ). Show that
〈A,B〉 := tr (AB∗) defines an inner product on M(n,R).

Ex. 13. Let T ∈ BL(E). Using Riesz, show that there exists a unique T ∗ ∈ BL(E) such
that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ E. Show that i) ‖T ∗‖ = ‖T ‖, ii) ‖TT ∗‖ = ‖T ‖2, iii)
(aA+ bB)∗ = aA∗+ bB∗ for A,B ∈ BL(E) and scalars a, b, iv) (AB)∗ = B∗A∗, v) (T ∗)∗ = T ,
vi) R(T )⊥ = N(T ∗) and N(T )⊥ = R(T ∗), where N(A) and R(A) denote the null and range
spaces of A. vii) If V is a vector subspace of E such that TV ⊂ V , then T ∗(V ⊥) ⊂ V ⊥.

Ex. 14. Show that the linear map A from R2 to R2 given by e1 7→ 2e1+3e2 and e2 7→ 3e1+e2

has matrix representation

(
2 3
3 1

)
with respect to the natural basis e1 := (1, 0) and e2 :=
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(0, 1). However with respect to the basis v1 := e1 + e2 and v2 := 2e1 − e2 it is represented by

the matrix

(
13/3 11/3
1/3 −4/3

)
. Moral: To define symmetric maps we need an extra structure on

the vector space, viz., that of an inner product.

Ex. 15. A linear map A : E→ E is symmetric (self-adjoint) iff 〈Aei, ej〉 = 〈ei, Aej〉 for any
orthonormal basis {ei} of E.

Ex. 16. Two self-adjoint operators A and B are such that AB is self-adjoint iff AB = BA.

Ex. 17. Let E be a complex inner product space. A ∈ BL(E) is 0 iff 〈Ax, x〉 = 0 for all
x ∈ E. The analogous result is false for real inner product spaces.

Ex. 18. Let E be a complex inner product space. Then A ∈ BL(E) is self-adjoint iff
〈Ax, x〉 ∈ R.

Ex. 19. i) Show that the eigen values of a self-adjoint operator are real.
ii) Show that the eigen values of a skew-hermitian operator (i.e., A∗ = −A) are purely
imaginary.
iii) Let T ∈ BL(E) be invertible. If λ is an eigen-value of T iff λ−1 is an eigen value of T−1.
iv) λ is an eigen value of T iff λ is an eigen value of T ∗.
v) A,B : E → E be linear. Show that AB and BA have the same set of eigen values.

3.2 Problem Set–II

Ex. 20. Let E := Rn with the euclidean inner product. Find the characteristic equation of

A :=


0 1 0 . . . 0
0 0 1 . . . 0
...

. . . 0 1
0 0 . . . 0 0

. Find the eigen values and eigen vectors.

Ex. 21. Do the same for


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.

Ex. 22. What are the eigen values of an orthogonal projection?

Ex. 23. Let E := V ⊕W be a direct sum of vector subspaces. We can then define projections
PV and PW in an obvious manner: PV (x) = y if x := y + z with y ∈ V and z ∈ W . Note
that P 2

V = PV etc. Show that in an inner product space E a projection P is self-adjoint iff P
is an orthogonal projection. (You need to explain the meaning of the phrase in boldface.)

Ex. 24. Let P be an orthogonal projection of E onto a closed subspace V . Then T ∈ BL(E)
leaves V invariant, i.e., TV ⊂ V , iff PTP = TP .

Ex. 25. Let Pi be orthogonal projections onto closed linear subspaces Vi of E. Then i)
V1 ⊥ V2 ⇐⇒ P1P2 = 0 ⇐⇒ P2P1 = 0, ii) P1P2 is an orthogonal projection iff P1P2 = P2P1.
In this case P := P1P2 is the orthogonal projection onto the subspace V1 ∩ V2.
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Ex. 26. Let Ei be nonzero orthogonal projections with E1E2 = 0. Then ‖E1 + E2‖ <
‖E1‖+ ‖E2‖.

Ex. 27. Let E be an inner product space. For any two self adjoint operators A and B we
write A ≤ B (or B ≥ A) if 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ E. (Why does this make sense?)
Prove that if A ≤ B and T is any self-adjoint operator, then A + T ≤ B + T and also that
λA ≤ λB for any real number λ ≥ 0. Is it true that A ≤ B and B ≤ A implies A = B?

Ex. 28. A self-adjoint operator A is said to be positive iff 〈Ax, x〉 ≥ 0 for all x ∈ E, i.e., iff
0 ≤ A. (See Ex. 27.) Prove the following:
i) If E is a complex inner product space the requirement that A is self-adjoint is superfluous
(see Ex. 18) whereas in the case of real inner product spaces it is essential. (See Ex. 17.)
ii) A self-adjoint operator is positive iff all its eigen values are non-negative.
iii) A positive operator T has a unique positive square root, i.e., there exists a positive operator
A such that A2 = T .
iv) What can you say about an operator which is both positive and unitary?

Ex. 29. Let A ≥ 0, B ≥ 0 and A+B = 0. Then A = 0 = B.

Ex. 30. Let A ≥ 0, B ≥ 0 and AB ≥ 0. Then AB = BA. (This is trivial; for its nontrivial
converse, see Ex. 43.

3.3 Problem Set–III

Ex. 31. Let A be a symmetric positive operator on a real finite dimensional inner product
space. If A is strictly positive, show that detA > 0. Hint: Think of a curve joining A and
I points on which are all positive and use the continuity of det. Or, think of some relation
between the determinant and eigen values.

Ex. 32. Let E be a real (resp. complex) inner product space. A ∈ BL(E) is said to be
orthogonal (resp. unitary) iff 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ E.
i) Show that A is orthogonal (resp. unitary) iff ‖Ax‖ = ‖x‖ for all x ∈ E iff AA∗ = A∗A = I.
ii) A is orthogonal (unitary) iff A takes one orthonormal basis to another.
iii) In any matrix representation of an orthogonal operator with respect to an orthonormal
basis the rows (columns) are mutually “orthonormal”. Analogous result is true for unitary
operators.
iv) Show that the eigen values of an orthogonal (resp. unitary) operator are of unit modulus.
v) An orthogonal projection is orthogonal iff · · · . Complete it and prove it.

Ex. 33. Let E be a real (resp. complex) finite dimensional inner product space. Let O(E)
(resp. U(E)) be the set of all orthogonal (resp. unitary) operators on E. Show that it is a
compact subset of BL(E) and that it is a group with respect to composition.

Ex. 34. Let A, a self-adjoint operator be such that An = I for some n ≥ 1. Then show that
A2 = I.

Ex. 35. Show that A is normal iff A∗ is a polynomial in A.

Ex. 36. Let E = R2 be with the euclidean inner product. Let A :=

(
a 0
0 c

)
. Then the locus

of the points {〈Ax, x〉 = 1} can be considered as a conic section. It is an ellipse if a > 0 and
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c > 0 and it is a hyperbola if a > 0 and c < 0, for example. In the case of an ellipse, the eigen
values of A are got by the minor and major axes of the ellipse. This may help you understand
the proof of Thm. 3.

Ex. 37. Diagonalize the following operators on the real euclidean plane R2:

i)

(
1 2
2 −2

)
. ii)

(
5 1
1 −1

)
iii)

(
1 4
4 −1

)
. iv)

(
1 2
2 1

)
.

Ex. 38. Let T be self-adjoint on E. Let v ∈ E be such that for some r ≥ 1 T rv = 0. Is it
true that Tv = 0?

Ex. 39. Let A,B ∈ BL(E). Assume AB = BA. Show that there exists a normal operator
T such that A and B are polynomials in T . Hint: Go through the proof of Th. 8.

Ex. 40. A is normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ E. (E may be real or complex.)

Ex. 41. For any A ∈ BL(E), we have ‖AA∗‖ = ‖A‖2.

Ex. 42. For any A ≥ 0. Show that there exists a unique positive square root B of A, i.e.,
there exists a unique B ≥ 0 such that B2 = A.

Ex. 43. If A ≥ 0, B ≥ 0 and AB = BA, then AB ≥ 0. Hint: Use the spectral resolution of A
etc. Or use the square roots of A and B. An elementary proof runs as follows: Assume A > 0,
strictly positive. Then A defines an inner product b(v, w) := 〈Av,w〉. Use the commutativity
etc. to conclude that B is a self-adjoint, positive with respect to b.

Remark. This article is a revised and expanded version of the set of notes for a course of
lectures given in a Refresher Course in Topology and Functional Analysis, December 6–8, 1990
at Ramanujan Institute, Madras. I take this opportunity to thank Professor M.S. Rangachari
for the invitation.
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