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Ex. 1. Let F be a finite dimensional vector subspace of a normed linear space X. Let
x ∈ X. Show that there exists an element v ∈ F such that d(x, F ) = d(x, v). Hint: F is
locally compact. Consider f(z) := ‖z − x‖ on F . Let v0 ∈ F be arbitrary and r := d(x, v0).
Then f attains a minimum on B[x, r] ∩ F .

Ex. 2. Consider X := C[a, b] with sup norm and Fn the subspace of polynomials of degree less
than or equal to n. Show that given f ∈ X, there exists a p ∈ Fn such that ‖f − p‖ ≤ ‖f − q‖
for all q ∈ Fn.

Theorem 3 (Dini’s Theorem). Let X be a compact metric space. Let fn, f ∈ C(X,R).
Assume that (fn) is a monotone sequence converging to f pointwise. Then fn → f uniformly,
i.e., in sup norm metric.

Proof. Without loss of generality assume that fn decrease to 0. Given ε > 0 , let

Un := {x ∈ X : |fm(x)| < ε,∀m ≥ n} = {x ∈ X : |fn(x)| < ε}.

Then Un increases to X and by compactness X = UN for some N .

Proposition 4. There is a sequence (pn) of real valued polynomials which converge uniformly
to f(x) =

√
x on [0, 1].

Proof. Define (pn) recursively as follows: p1 = 0,

pn+1(t) := pn(t) +
1

2

[
t− p2n(t)

]
,

for n ≥ 1. By induction we show that 0 ≤ pn(t) ≤
√
t for t ∈ [0, ]:

0 ≤ pn+1(t) = pn(t) +
1

2

[
t− p2n(t)

]
= pn(t) +

1

2
[t− pn(t)] [t+ pn(t)]

≤ pn(t) +
√
t− pn(t).

Now an application of Dini’s theorem to (fn) yields the result.
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Definition 5. A vector subspace A (over K = R or K = C) of C(X,K) is called a subalgebra
of C(X,K) if whenever f , g ∈ A so does fg.

A vector subspace A of C(X,K) is called a lattice of C(X,K) if whenever f , g ∈ A so do
max{f, g} and min{f, g}.

We say a collection A of functions in C(X) separates points of X if given x, y ∈ X, x 6= y,
there is an f ∈ A such that f(x) 6= f(y).

Lemma 6. If X is a compact space and A is a closed subalgebra of C(X,R) which contains
constant functions then A is a lattice.

Proof. We claim that if f ∈ A then |f | ∈ A. Let f 6= 0 and M := ‖f ‖. By the lemma there

exists a sequence (pn) of polynomials such that pn ◦ ( f2

M2 )→ |f |/M uniformly. Thus |f | ∈ A.

Now recall that min{f, g} = 1
2 (f + g − |f − g|) etc.

Lemma 7. Let A be a subalgebra of C(X,R) which contains constant functions and separates
points of X. Then for each pair of distinct points x, y of X and pair of real numbers α and
β there is a function f ∈ A such that f(x) = α and f(y) = β

Proof. Choose g ∈ A such that g(x) 6= g(y). Let

f(z) := α+ (β − α)
g(z)− g(x)

g(y)− g(x)
.

Theorem 8. Let X be a compact metric space. If A is a subalgebra of C(X,R) which contains
constant functions and separates points of X then A is dense in C(X,R) in sup norm topology.

Proof. Let ∈ C(X,R). Given any two distinct points x and y let hxy ∈ A be such that
hxy(x) = f(x) and hxy(y) = f(y) . Given ε > 0, fix x. Let Uy := {z ∈ X : hxy(z) < f(z)+ε}.
By compactness X = ∪ni=1Uyi . Let h := min{hxy1 , . . . , hxyn}. Note that hx(x) = f(x). Now
vary x and let Vx := {z ∈ X : hx(z) > f(z)− ε}. Again, by compactness, X = ∪mj=1Vxj . Let

h := max{hx1 , . . . , hxm}. Then h ∈ A and f(z)− ε < h(z) < f(z) + ε for all z ∈ X.

Corollary 9. The space of polynomials in C[a, b] is dense C([a, b], ‖ ‖∞).

Theorem 10. Let X be a compact space. If A is a subalgebra of C(X,C) which contains
constant functions, separates points of X and contains f whenever f ∈ A, then A is dense
in (C(X,C), ‖ ‖∞).

Ex. 11. Let K be a compact subset of Rn. Show that the set of polynomial functions (with
coefficients in K) on K are dense in C(X,K) with sup norm.

Ex. 12. Let f : [0, 1] → R be continuous. Assume that
∫ 1
0 f(t)tn dt = 0 for all n ∈ Z with

n ≥ 0. Then f = 0.

Ex. 13. Let X and Y be compact spaces. Consider the set A of functions h of the form
h(x, y) := f(x)g(y) for f ∈ C(X) and g ∈ C(Y ). Show that A is dense in C(X×Y ) with sup
norm .
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Ex. 14. How can you generalize the above exercise to infinite products?

Ex. 15. Let X be a compact space. Let A be a subalgebra of C(X,R). Assume that A
separates points of X. Show that the closure of A in C(X) with sup norm is either C(X) or
there exists an x ∈ X such that A = {f ∈ C(X) : f(x) = 0}.

Remark 16. As a application, we prove Tieze extension theorem for Rn.

Let us prove the result when the closed set is compact. So, we assume that f : K → R
is a continuous function on a compact subset of Rn. By Weierstrass approximation theorem,
for each k ∈ Z+, there exists a polynomial pk such that |f(x)− p(x)| < 2−k−2 for all x ∈ K.
We let q0 = p0 and qk := pk − pk−1. Then pk =

∑k
i=1 qi and

∑
qk converges uniformly to f

on K.

Let M := sup{|f(x)| : x ∈ K}. Then |p0(x)| ≤ 2−2 + M for x ∈ K. Also, |qk(x)| < 2−k

for k ≥ 1 and x ∈ K. We let

h0 := max{−2−2 −M,min{q0, 2−2 +M}},
hk := max{−2−k,min{qk, 2−k}}, for k ≥ 1.

Then hk(x) = qk(x) for x ∈ K, hk is continuous on Rn and |hk(x)| ≤ 2−k for x ∈ Rn and
for all k. Hence

∑
hk converges uniformly on Rn to a continuous function h. Then h is

continuous and h(x) = f(x) for x ∈ K.

We now extend to result if the subset K is any arbitrary closed subset. If K is bounded
the result follows from the previous paragraph. So, we assume that K is not bounded. Let
k ∈ N be such that B[0, k] ∩K is nonempty. Let fk be the restriction of f to this nonempty
compact set. Then there exists a continuous function hk on Rn which extends fk. Define

gk(x) :=

{
hk(x), if x ∈ B[0, k]

f(x), if x ∈ K ∩B[0, k + 1].

Then gk is continuous on the compact set B[0, k] ∪ (K ∩ B[0, k + 1]). There is an extension
hk+1 on Rn. Let

gk+1(x) :=

{
hk+1(x), if x ∈ B[0, k + 1]

f(x), if x ∈ K ∩B[0, k + 2].

Continuing in this way, we obtain a sequence (gm) whose domains are increasing to Rn. Define
g(x) := gm(x) if x ∈ B[0,m]. Then g is an extension of f .
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