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1 Introduction

A basic course on Linear Algebra is an introduction to the preliminary notions such as vector
spaces, linear dependence/independence, basis, linear maps, rank-nullity theorem, and or-
thonormal basis in an inner product spaces and orthogonal/unitary linear maps. The second
phase of linear algebra is the study of structural results such as the decomposition of the
vector space w.r.t. a linear map and investigating the possibility of representing the linear
map in simple forms. In my article “Structure Theorems of Linear Maps”, these topics were
developed as a series of exercises with copious hints so as to reach the results as directly and
as efficiently as possible. While I still prefer the original article, as it captures the central
ideas which are not smothered by too many details, there was a constant need for the detailed
treatment by a section of the students. The aim of this article is to give details of the earlier
quoted article and I hope that this article serves the needs of the students.

Many of the details were supplied by a set of excellent notes on Sections 2–9 by S. Sundar.
He was a student of B.Sc., and a participant of MTTS 2003, 2004 and 2005. He wrote the
notes for a series of lectures given by me in MTTS 2005. This article is based to a large extent
on his notes. I thank S. Sundar for the preliminary set of notes.

I also like to thank Professor M.I. Jinnah for his insightful comments on this article.

The key ideas involved in the proof of the existence theorems for canonical forms of
A : V → V are the following:

(1) Expressing V as a direct sum of invariant subspaces.

(2) A trivial observation: If A and B commute, then kerB is invariant under A.

(3) Obvious B’s that commute with A are given by p(A) where p is a polynomial.

(4) If mA is the minimal polynomial (that is, the unique monic polynomial p such that
p(A) = 0), is written as mA(X) = p1(X) · · · pk(X) where pj ’s are relatively prime, then
V = kermA(A) = ker p1(A)⊕ · · · ⊕ ker pk(A).

(5) If mA splits, say, mA(X) = (X−λ1)d1 · · · (X−λk)dk , then (A−λjI) acts nilpotently
on ker(A− λj)dj .

(6) Filippov’s proof for the existence of Jordan canonical form can be simplified for
nilpotent maps.

7/12/06

2 Warm up

We start with a warm-up. Let V and W be finite dimensional vector spaces over a field F .
Let n = dimV and m = dimW . Let A : V →W be linear.

We want to choose (ordered) bases of V and W in such a way that the matrix of A with
respect to these bases is as simple as possible. We shall consider three special cases.

Case 1. Assume that A is onto.

Let {wj : 1 ≤ j ≤ m} be a basis of W . Since A is onto, we can find vj ∈ V such that
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Avj = wj for 1 ≤ j ≤ m. We easily see that {vj : 1 ≤ j ≤ m} is linearly independent in V .

Reason: Let cj ∈ F be scalars such that
∑n
j=1 cjvj = 0. We than have

0 = A(0) = A(

n∑
j=1

cjvj)

=
∑
j

cjAvj

=
∑
j

cjwj .

Since wj are linearly independent, we conclude that cj = 0, 1 ≤ j ≤ m.

Let {uk : 1 ≤ k ≤ r} be a basis of kerA. We claim that {v1, . . . , vm, u1, . . . , ur} is a
linearly independent subset of V .

Reason: Let aj , bk ∈ F , 1 ≤ j ≤ m, 1 ≤ k ≤ r be scalars such that
∑m
j=1 ajvj +∑r

k=1 bkuk = 0. As earlier, we operate A on both sides to get

0 = A(0) =

m∑
j=1

ajA(vj) +

r∑
k=1

bkA(uk)

=

m∑
j=1

ajwj +

r∑
k=1

bk0,

since uk ∈ kerA for 1 ≤ k ≤ r. By linear independence of wj ’s we conclude that aj = 0

for 1 ≤ j ≤ m. Thus we are left with
∑r
k=1 bkuk = 0. Since by choice, uk’s form a basis

of kerA, we deduce that bk = 0, 1 ≤ k ≤ r. The claim is therefore established.

We now claim that the set {v1, . . . , vm, u1, . . . , ur} is a basis of V .

Reason: The set under consideration is linearly independent. So, it is enough to show

that the number m + r of elements is n = dimV . But this follows from Rank-Nullity

theorem, as m = dimW = dimAV = ImA and r = dim kerA.

The matrix of A with respect to the ordered bases {v1, . . . , vm, u1, . . . , ur} of V and
{w1, . . . , wm} of W is (Im×m, 0m×(n−m)) where Im×m is the identity matrix of size m×m and
0m×(n−m) is the zero matrix of size m× (n−m).

Reason: Recall the way the matrix representation is written. Let T : V → W be a linear
map and {vj : 1 ≤ j ≤ n} (respectively, {wk : 1 ≤ k ≤ m}) be an ordered basis of V
(respectively, of W ). Let Tvj =

∑m
k=1 akjwk. Then the k-th column of the matrix of T

with respect to these ordered bases is


a1j
a2j
...

amj

.

In our case, Avj = wj for 1 ≤ j ≤ m so that the first m columns are ‘basic column vectors’

of size m. Similarly, the s-th column for s > m is Aus−m = 0 so that the last r = n−m
columns are zero (column) vectors of size m.
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Case 2: A is one-one.

Let {vj : 1 ≤ j ≤ n} be a basis of V . It is easy to show that {Avj : 1 ≤ j ≤ n} is a
linearly independent subset of W .

Reason: For, if
∑n
j=1 ajAvj = 0, then we have A

(∑
j ajvj

)
= 0, that is,

∑
j ajvj ∈ kerA.

Since A is one-one, its kernel is (0) and hence we deduce that
∑
j ajvj = 0. Since vj are

linearly independent, it follows that aj = 0 for 1 ≤ j ≤ n.

Let wj = Avj , 1 ≤ j ≤ n. We extend this linearly independent subset of W to a basis
of W , say, {wk : 1 ≤ k ≤ m}. We consider the ordered bases {vj : 1 ≤ j ≤ n} of V and

{wk : 1 ≤ k ≤ m} of W . With respect to these bases, the matrix of A is

(
In×n

0(m−n)×n

)
.

Reason: Observe that Avj = wj = 0w1+· · ·+0wj−1+1.wj+0wj+1+· · ·+0wn+0wn+1+· · ·
so that the j-th column of the matrix of A is the ‘standard basic vector’ of size m:(
0, . . . , 0, 1, 0, . . . , 0

)t
, 1 at the j-th place, where 1 ≤ j ≤ n.

Case 3: A is bijective.

In this case, if we start with an ordered basis {vj : 1 ≤ j ≤ n} of V and set wj := Avj ,
1 ≤ j ≤ n, then {wj : 1 ≤ j ≤ n} is a basis of W . The matrix of A with respect to these
ordered bases is In×n. (Verify!)

Remark 1. The above results are unsatisfactory. If V = W , then in each of the cases, we
need two bases which need not be the same in order to arrive at a simple matrix representation
of A.

Our aim: Given a finite dimensional vector space V over a field F and a linear map
A : V → V . Find an ordered basis of V so that the matrix of A with respect to this basis
takes a simpler form.

3 Direct Sums, Invariant Subspaces and Block Matrices

Definition 2. Let V be a vector space over F . Let Wi, 1 ≤ i ≤ k be vector subspaces of V .
We say that V is a direct sum of Wi’s if the following holds:

1. For any v ∈ V , there exist wj ∈Wj , 1 ≤ j ≤ k such that v = w1 + · · ·+ wk,
2. If v = w1 + · · ·+ wk = w′1 + · · ·+ w′k with wj , w

′
j ∈ Wj for 1 ≤ j ≤ k, then wj = w′j for

1 ≤ j ≤ k. (Note that this is equivalent to requiring that if w1 + · · ·+wk = 0 where wi ∈Wi,
then wi = 0 for 1 ≤ i ≤ k.)

We then write V = ⊕nj=1Wj .

Example 3. Let V be a vector space and B := {vi : 1 ≤ i ≤ n} be a basis. Let B = S ∪ T
be a partition of B into nonempty subsets. Let W1 := spanS and W2 = spanT . Then it is
easy to verify that V = W1 ⊕W2.

Example 4. Let V := M(n,R) be the vector space of all square matrices of size n with entries
in R. Let Ws (respectively Wa) be the set of all symmetric (respectively skew-symmetric)
matrices in V . Then V = Ws ⊕Wa. (Verify!)
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Remark 5. If V = W1⊕ · · · ⊕Wk, and if Bi is a basis of Wi, 1 ≤ i ≤ k, then B := ∪ni=1Bi is
a basis of V . (Compare this with Example 3.)

Definition 6. Let A : V → V be linear. A vector subspace W of V is said to be A-invariant
(or invariant under A) if AW ⊂W , that is, Aw ∈W for any w ∈W .

We most often say that W is invariant in place of A-invariant, if there is no possibility of
confusion.

Example 7. Let A = cI : V → V for some c ∈ F . Then any subspace W is invariant. Is the
converse true?

Example 8. Let the notation be as in Example 4. Consider the linear map T : V → V given
by TA = A+At. Then Ws is invariant under T? Is Wa invariant under T?

Example 9. Let V = W1⊕W2. Let Pi : V →Wi be defined by Pi(v) = vi where v = v1 +v2,
i = 1, 2. Note that Pi is well-defined. One easily shows that Pi is linear and P 2

i = Pi. Also,
W1,W2 are invariant subspaces of each of Pi.

Example 10. A scalar λ ∈ F is said to be an eigenvalue of a linear map A : V → V if
there exists a nonzero vector v ∈ V such that Av = λv. For an eigenvalue λ of A, let
Vλ := {x ∈ V : Ax = λx}. Then Vλ is called the eigenspace corresponding to the eigenvalue
λ. It is easy to see that Vλ is an invariant vector subspace of A.

Elements of Vλ are called the eigenvectors of A corresponding to the eigenvalue λ.

Note that Vλ = ker(A− λI).

The key idea in finding out suitable basis of V so that the matrix of
A : V → V takes a simple form is to express V as a direct sum of invariant
subspaces.

We now explain this. Let A : V → V be a linear map. Assume that there exist invariant
subspaces U and W such that V = U ⊕W . Let {u1, . . . , ur} be an (ordered) basis of U and
{w1, . . . , ws} a basis of W . Then {u1, . . . , ur, w1, . . . , ws} is an ordered basis of V . The matrix

of A with respect to this basis is a block matrix of the form

(
B 0
0 C

)
. Here B is an r × r

matrix and C is of type s× s.

Reason: Let vi = ui for 1 ≤ i ≤ r and vr+j = wj for 1 ≤ j ≤ s. Then, for 1 ≤ i ≤
r, Avi ∈ U since U is A-invariant. Hence Avi =

∑r
i=1 bjiuj +

∑s
k=1 cr+k,kwk where

cr+k,k = 0 for 1 ≤ k ≤ s. Hence the first r columns (of the matrix of A) will look like

(b1i, . . . , bri, 0, . . . , 0)t. Similar considerations show that the last s columns will be of the

form (0, . . . , 0, cr+1,1, . . . , cr+s,s)
t.

Note that B (respectively, C) is the matrix of A |U (respectively A |W ) with respect to the
basis {ui} (respectively {wj}). 6/12/06
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How do we generate an invariant subspace? Recall that if G is a group and a ∈ G is an
element, we ask for a subgroup containing a. This is too trivial, since G 3 a! So, we refine
the question to ask for the smallest subgroup that contains a. (It exists! Why?) If H is any
subgroup of G containing a, then an ∈ H for all n ∈ Z. But we observe that by law of indices,
the subset {an : n ∈ Z} is already a subgroup. Hence the smallest subgroup containing a is
{an : n ∈ Z}. We may adopt this method to our invariant subspace problem too. If W is an
invariant subspace containing v, then Akv ∈ V for all k ∈ Z+. Thus, we are led to consider
the linear span of W := span{Akv : k ∈ Z+}. Clearly, W is the smallest invariant subspace
containing v.

Since we assume that V is finite dimensional, it follows that the set {Akv : k ∈ Z+} is
linearly dependent. Let r be the first integer such that {Akv : 0 ≤ k ≤ r − 1} is linearly
independent but not {Akv : 0 ≤ k ≤ r}. If V := span{Akv : 0 ≤ k ≤ r − 1}, so that r = n,
then we have an ordered basis vi := Ai−1v, 0 ≤ i ≤ n− 1. Assume that

∑n
k=0 akA

kv = 0 so
that an 6= 0. Diving the equation by an, we may assume that Anv = −

∑n−1
k=0 akA

kv. The
matrix of A with respect to this basis is

0 . . . 0 −a0
1 . . . 0 −a1
...

. . .
...

...
0 . . . 1 −an−1

 .

Even if r < n, we still get a matrix of A restricted to the subspace W in a similar form. If
only we could find an invariant subspace W2 such that V = W ⊕W2, we could write the
matrix of A in a simpler form!

In general, it may not be possible. For instance, look at the linear map A : C2 → C2 given
by Ae1 = 0 and Ae2 = e1. Then W1 = span{e1} is an invariant subspace (since it is V0, the
eigen subspace corresponding to the eigenvalue 0). We leave it to the reader to show that
there exists no invariant subspace W2 such that V = W1 ⊕W2.

Reason: Note that if such a subspace W2 existed, it must of dimension 1. Hence, we may

write it as Cw2 = (x, y)t. The second coordinate y 6= 0, since otherwise, w2 ∈ W1, a

contradiction. But then A(x, y)t = A(xe1 + ye2) = xAe1 + yAe2 = 0 + ye1 ∈ W1! This

shows that W2 cannot be an invariant subspace.

Definition 11. A linear map A : V → V is said to be semi-simple if for any invariant subspace
W , there exists an invariant subspace U such that V = U ⊕W .

Such a subspace U is called an invariant complement of W .

Thus semi-simple linear maps are most amenable/adapted to our strategy. We shall return
to this theme a little later.

A very useful observation is the following

Lemma 12. Let A,B : V → V be linear maps such that AB = BA. Then kerA is invariant
under B.

Proof. Let K := kerA and v ∈ K. We want to show that Bv ∈ K. This is equivalent to
showing that A(Bv) = 0. Since A and B commute, we have A(Bv) = B(Av) = B0 = 0 and
hence the result.
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In particular, under the above assumption, if Vλ is an eigen space of A, then Vλ is B-
invariant. Now, how do we find B’s that commute with A? Note that all (non-negative)
powers Ak of A commute with A and so are their linear combinations. Thus any polynomial
in A (with coefficients in F ) will commute with A. So, if p(X) is a polynomial over F , then
we set

p(A) := c0I + c1A+ · · ·+ cmA
m, where p(X) = c0 + c1X + · · ·+ cmX

m.

Ex. 13. Let p(X), q(X) ∈ F [X], then pq denotes the multiplication of p and q. It is easy to
check that

pq(A) = p(A) ◦ q(A) = q(A) ◦ p(A).

Hence in particular, ker p(A) is invariant under q(A).

Theorem 14. Let p(x) ∈ F [X]. Assume that p(X) = p1(X) · · · pk(X) where p1, . . . , pk are
relatively prime. Let A : V → V be linear.

(i) We have
ker p(A) = ker p1(A)⊕ · · · ⊕ ker pk(A).

Thus ker p(A) is a direct sum of A-invariant subspaces pi(A).
(ii) The natural projections πi : ker p(A)→ ker pi(A) is a polynomial in A.
(iii) If W ⊂ ker p(A) is an A-invariant subspace, then we have

W = ⊕ki=1 (W ∩ ker pi(A)) .

Proof. For 1 ≤ i ≤ k, let qi :=
∏
j 6=i pj = p/pi. Since each pi is a factor of p, it is clear that

ker pi(A) ⊂ ker p(A) so that
∑k

i=1 ker pi(A) ⊂ ker p(A). To prove the reverse inclusion, we
observe that qi are relatively prime, since pi are.

Reason: For if f is a common divisor of qi’s, then f must divide one of the factors, since

pi are relatively prime. Let us assume that f divides pji a factor of qi. Not all of the pji
1 ≤ i ≤ k, could be equal since each qi ‘misses’ pi. Thus f is a common divisor of two

distinct pi’s, a contradiction.

Hence there exist polynomials fi such that f1q1 + · · · + fkqk = 1. Hence we have I =
f1(A)q1(A) + · · ·+ fk(A)qk(A). For any v ∈ ker p(A), we have

v = I(v) = v1 + · · ·+ vk, where vi = fi(A)qi(A)v, 1 ≤ i ≤ k.

We claim that vi ∈ ker pi(A). For,

pi(A)vi = pi(A) ◦ fi(A) ◦ qi(A)v = fi(A)pi(A)qi(A) = fi(A)p(A)v = 0,

since v ∈ ker p(A). Thus we have shown that ker p(A) =
∑k

i=1 ker pi(A).

We now show that the sum is direct. Let v1 + · · · + vk = 0 where vi ∈ ker pi(A). Now,
qi(A)vj = 0 for j 6= i. Since pi and qi are relatively prime, there exist polynomials f, g such
that fpi + gqi = 1. Hence f(A)pi(A) + g(A)qi(A) = I and so,

vi = I(vi) = f(A)(pi(A)vi) + g(A)(qi(A)vi)

= f(A)(0) + g(A)(qi(A)(−
∑
j 6=i

vj))

= 0 + g(A)(0) = 0.
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Thus each vi = 0. We conclude that the sum is direct. This completes the proof of (i).

Proof of (ii) is culled from that of (i): πi = fi(A)qi(A). Note that we
have a resolution
of the identity:
I =

∑
i πiTo prove (iii), let w ∈ W and let w = v1 + · · · + vk as in (i). Then vi = πi(w) =

fi(A)qi(A)(w). Now w ∈ W is A-invariant and hence vi = fi(A)qi(A)w ∈ W . Thus each
vi ∈W ∩ Vi. This proves (iii).

Thus, if we could find a polynomial p such that ker p(A) = V , then we would have
expressed V as a direct sum of invariant subspaces. This is certainly possible, at least theo-
retically. For {Ak : k ∈ Z+} is an infinite set in the n2 dimensional vector space of all linear
maps from V to itself. Hence there exists a polynomial p(X) ∈ F (x) such that p(A) = 0. Let
mA(X) be the polynomial of least degree with 1 as the coefficient of the highest degree term.
(Why does this make sense?)

Definition 15. The minimal polynomial of A : V → V is the unique monic polynomial (that
is, a polynomial in which the coefficient of the highest degree nonzero term is 1) mA(X) of
least degree such that mA(A) = 0.

Since there exist polynomials p(X) ∈ F [X] such that p(A) = 0, the set {deg p : p(X) ∈
F [X], p(A) = 0} is a nonempty subset of Z+. Hence there is a least integer in it. Let
p(X) ∈ F [X] be such that p(A) = 0 and deg p is minimal. If we write p(X) =

∑k
i=0 aiX

i,
then ak 6= 0. So, we may divide p by ak and assume that the coefficient of Xk is 1. We denote
this polynomial by mA(X).

Now if q(X) ∈ F [X] is any other polynomial such that q(A) = 0, then we claim that mA

divides q.

Reason: Note that deg q ≥ degmA. By division algorithm, we write q(X) = f(X)mA(X)+
r(X) where 0 ≤ deg r < degmA. If deg r > 0, then we get a contradiction since
r(A) = q(A) − f(A)mA(A) = 0 and deg r(A) < degmA. Hence the remainder r is a
constant. It has to be zero, since otherwise,

0 = q(A) = f(A)mA(A) + r · I = r · I 6= 0,

a contradiction.

In particular, mA is unique subject to the conditions:
(1) mA(A) = 0, (ii) degmA ≤ deg p for any polynomial p with p(A) = 0 and (iii) The
coefficient of the top degree (called the leading coefficient) term is 1.

Reason: If p ∈ F [X] is any such polynomial, then p = amA(X). Since the leading

coefficient of p is 1, we deduce that a = 1.

Ex. 16. Any eigenvalue λ ∈ F of A : V → V is a root of the minimal polynomial of A.

If short of time, it is suggested that the reader may directly go
to Theorem 46 and prove it using Theorem 14.
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4 Eigenvalues and Diagonalizable operators

Before we go any further, we analyze the existence of eigen values and eigenvectors. There
are two problems with eigenvalues and eigenvectors

Example 17. There may not exist any eigenvalue. For instance, consider the rotation about
the origin by π/2 in the plane R2. Algebraically, it is given by A : R2 → R2 by setting
A(x, y) = (−y, x). Since no line through the origin is invariant, A has no eigenvector. To
prove this algebraically, we note that A2 = −I. So, if λ ∈ R is an eigenvalue, say, with a
nonzero eigenvector (x, y), we then get the two equations:

A2(x, y) = A(−y, x) = (−x,−y) = −1(x, y)

A2(x, y) = A(λ(x, y)) = λ2(x, y).

We therefore deduce λ is a real number such that λ2 = −1! We thus conclude there exists no
eigenvalue.

Example 18. There may not exist ‘enough’ eigenvectors. What we mean by this is that the
set of eigenvectors may not span the given space.

For instance, consider A : C2 → C2 defined by Ae1 = 0 and Ae2 = e1. Since A2e1 = A0 = 0
and A2e2 = Ae1 = 0, we see that A2 = 0. If λ ∈ C is an eigenvalue of A and v ∈ C2 is a
nonzero eigenvector, then 0 = A2v = λ2v and hence we conclude that λ = 0. Thus the only
eigenvalue of A is zero. Clearly, e1 is an eigenvector. If C2 is to be span of eigenvectors of A,
then there exits another eigenvector v = (x, y)t linearly independent of e1. Hence y 6= 0. But,
0 = A(x, y)t = A(xe1 + ye2) = x0 + ye1 so that y = 0, a contradiction. Thus any eigenvector
of A is a scalar multiple of e1.

We attend to each of these problems now.

Theorem 19. Let A : V → V be a linear map. Assume that F is algebraically closed, that
is, any nonconstant polynomial splits into linear factors. Then A has an eigenvalue.

Proof. As observed earlier, there exists a polynomial p(X) =
∑d

k=0 akX
k of degree d ≤ n2

such that p(A) = 0. We may also assume that ad 6= 0. Since F is algebraically closed, there
exist λ1, . . . , λd such that p(X) = (X − λ1) · · · (X − λd). Since p(A) = 0, if we fix a nonzero
v ∈ V , we have (A− λ1I) · · · (A− λdI)v = 0. Let

S := {k : 1 ≤ k ≤ d and (A− λk) · · · (A− λdI)v = 0}.

Clearly, 1 ∈ S. Let r ∈ S be the largest. Then we have

(A− λr+1I) · · · (A− λdI)v 6= 0

(A− λrI) · · · (A− λdI)v = 0.

By letting w := (A− λr+1I) · · · (A− λdI)v, we see that (A− λrI)w = 0. In other words, λr
is an eigenvalue with w as an eigenvector.

Remark 20. The above result remains true if we assume that mA has a linear factor in F .
We leave it to the reader to convince himself of this.
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Lemma 21. Let A : V → V be linear. Then nonzero eigenvectors corresponding to distinct
eigenvalues are linearly independent.

Proof. Let λi, 1 ≤ i ≤ k, be distinct eigenvalues of A. Assume that vi is a nonzero eigenvector
with eigenvalue λi for 1 ≤ i ≤ k. Let

∑k
i=1 aivi = 0. We claim that each ai = 0. If not,

consider T := (A− λ2I) · · · (A− λkI). Then Tvj = 0 for j ≥ 2. For,

Tvj = (A− λ2I) · · · (A− λj−1I)(A− λj+1I) · · · (A− λkI)(A− λjI)vj = 0.

Hence

0 = T

(
k∑
i=1

aivi

)
= T (a1v1) = a1(λ1 − λ2) · · · (λ1 − λk)v1 = 0.

Since λ1 − λj 6= 0 for j > 1 and v1 6= 0, we conclude that a1 = 0. Similarly, one shows that
ai = 0 for 1 ≤ i ≤ k.

If you like a more formal proof, we may proceed as follows. Let
∑
aivi = 0. Let, if

possible, r be the largest integer such that ar 6= 0. Thus, we have
∑r

i=1 aivi = 0. Consider
T := (A−λ1I) · · · (A−λr−1I). Then Tvi = 0 1 ≤ i ≤ r−1 and Tvr = (λr−λ1) · · · (λr−λr−1).
Applying T to both sides of the equation

∑r
i=1 aivi = 0, we get ar(λr−λ1) · · · (λr−λr−1)vr =

0. Since (λr−λi) 6= 0 for i 6= r and vr 6= 0, we conclude that ar = 0. This is a contradiction to
our choice of r. This shows that no such r exists or what is the same ai = 0 for 1 ≤ i ≤ k.

Corollary 22. Let A : V → V be a linear map on an n-dimensional vector space over F .
Then A has at most n distinct eigen values.

Let F be arbitrary and A : V → V . The eigenspaces of A span V iff A is diagonalizable.

Definition 23. We say that a linear map A : V → V is diagonalizable if there exists a basis
of V with respect to which the matrix of A is diagonal.

The following result, albeit easy, offers a most important sufficient condition for a linear
map to be diagonalizable.

Proposition 24. Let A : V → V has n = dimV distinct eigenvalues. Then A is diagonaliz-
able.

Proof. Let λk, 1 ≤ k ≤ n, be the distinct eigenvalues of A. Then, by very definition, there
exist nonzero vectors vk such that Avk = λkvk, 1 ≤ k ≤ n. The set {v1, . . . , vn} is linearly
independent ad hence is a basis of V . Clearly, the matrix of A with respect to this basis is
diag (λ1, . . . , λn).

Theorem 25. Let A : V → V be linear. Then the following are equivalent.
(i) A is diagonalizable, that is, there exists a basis of V with respect to which the matrix of

A is a diagonal matrix.
(ii) There exists an A-eigen basis of V , that is, a basis of V consisting of eigenvectors of

A.
(iii) V is the sum of eigen subspaces of A, that is, V =

∑
λ Vλ where λ runs through the

distinct eigenvalues of A.

10



Proof. It is clear that (i) ⇐⇒ (ii). Also, (ii) =⇒ (iii) trivial. To show that (iii) =⇒ (ii),
we need only observe that the sum

∑
λ Vλ is a direct sum by Lemma 21. Now we select a

basis of Vλ for each eigenvalue λ of A. Their union is the required eigen-basis.

Theorem 26. Let A : V → V be diagonalizable and W ⊂ V be invariant under A. Then
(1) If V = ⊕Vλ is the direct sum decomposition into eigenspaces of A, then we have W =

⊕(W ∩ Vλ).
(2) There is an A-invariant complement of W . (In other words, any diagonalizable linear

map is semisimple.)

Proof. Let w ∈ W . Write w =
∑
vλ according to the direct sum decomposition V = ⊕Vλ.

We need to show that vλ ∈ W . Since W is invariant under A, it is invariant under p(A) for
any polynomial p(X) ∈ F [X]. In particular, p(A)w =

∑
p(λ)vλ ∈ W for any polynomial p.

Let λ1, . . . , λk be those eigenvalues for which vλ 6= 0. For 1 ≤ i ≤ k, consider the polynomial
pi(X) =

∏
j 6=i(X − λj). Then the element pi(A)w =

∑
pi(λj)vλj = pi(λi)vλi ∈ W . Since

pi(λi) 6= 0, we deduce that vλi ∈ W . As this holds true for all 1 ≤ i ≤ k, it follows that
vλ ∈W . This proves (1).

To prove (2), let W ′λ be any complement of (W ∩ Vλ) in Vλ. (Why does this exist?) Then
W ′ :=

∑
W ′λ is an A-invariant complement of W .

Reason: Since A = λI on Vλ, by Example 7, any vector subspace of Vλ, in particular, W ′λ
is invariant under A. Let Wλ = Vλ ∩W . Then, we have,

V = ⊕Vλ = ⊕ (Wλ ⊕W ′λ) = (⊕Wλ)⊕ (⊕W ′λ) = W ⊕W ′.

Theorem 27. Let A,B : V → V be a pair of commuting diagonalizable linear maps. Then
they are simultaneously diagonalizable, that, there exists an ordered basis of V with respect to
which each of A,B is represented by a diagonal matrix.

Proof. Let V = ⊕Vλ(A) be the eigenspace decomposition of A and V = ⊕Vµ(B), that of B.
Fix λ ∈ F and v ∈ Vλ(A). We write v =

∑
µ vµ according to the eigenspace decomposition of

B. We then have ∑
λvµ = λv = Avλ =

∑
Avµ.

Since the sums are direct and since the space Vµ(B) are invariant under B, we conclude that
Avµ = λvµ for all µ. Consequently, we see that Vλ = ⊕µ (Vλ(A) ∩ Vµ(B)) and hence

V = ⊕λ,µ (Vλ(A) ∩ Vµ(B)) . (1)

If we now choose a basis for each of the nonzero summands Vλ(A) ∩ Vµ(B) then each of the
vectors in it would be an eigenvector for both A and B. Putting all these together will yield
a required basis of V .

One may also argue as follows. Since A and B commute and since Vλ = ker(A − λI),
the space Vλ is invariant under B and V = ⊕µVµ. The result follows now from Theorem 26
(1).

11



Remark 28. The result above can be extended to a family of pairwise commuting diago-
nalizable linear maps. Start with A,B two members of the family, arrive at (1). Pick up an
element C of the family and argue as in the proof but with C and the decomposition (1). Due
to finite dimensionality, the procedure has to stop at a decomposition of the form V = ⊕ri=1Vi
such that each member of the family acts as a scalar on Vi.

For a more formal proof, argue by induction on the dimension of V .

Ex. 29. Let A,B : V → V be two commuting linear maps. If A and B are diagonalizable,
so is A+B.

5 Nilpotent Operators

Definition 30. A : V → V is said to be nilpotent if there exists k ∈ N such that Ak = 0.

Remark 31. Just an idea! Let V be an n dimensional vector space. Suppose that we want
to show that k ≤ n, then we look for a set of k linearly independent elements in V .

Lemma 32. Let A : V → V be a nilpotent linear map on an n-dimensional vector space V .
Then there exists k ∈ N such that Ak = 0 and k ≤ n.

In particular, if A is nilpotent, then An = 0.

Proof. Since A is nilpotent, there exists k ∈ N such that Ak = 0. Let m be the smallest
positive integer such that Am = 0. Therefore, Am−1 6= 0 and hence there exists v ∈ V such
that Am−1v 6= 0. We claim that {Akv : 0 ≤ k ≤ m− 1} is linearly independent. If not, there
exist ak ∈ F , 0 ≤ k ≤ m − 1 such that

∑m−1
k=0 akA

kv = 0. Applying Am−1 to both sides of
this equation, we get

m−1∑
k=0

akA
k+m−1v = 0.

Since k + m − 1 ≥ m − 1 for k ≥ 1, we see that Ak+m−1v = 0 for k ≥ 1. Hence the only
summand that remains is the term corresponding to k = 0. Thus we get a0A

m−1v = 0. Since
Am−1v 6= 0, we conclude that a0 = 0. We now apply Am−2 to conclude that a1 = 0 and so
on.

If you want to see a more formal proof, here it is. Let r be the least integer such that
ar 6= 0 so that

∑m−1
k=r akA

kv = 0. Applying Am−1−k to both sides of the equation, we get
akA

m−1v = 0. Now one proceeds as earlier.

Thus the m vectors Akv, 0 ≤ k ≤ m − 1 are linearly independent in the n-dimensional
vector space V . Hence m ≤ n.

Ex. 33. If A,B : V → V are two commuting nilpotent linear maps, then A + B is also
nilpotent.

Ex. 34. Let A : V → V be both diagonalizable and nilpotent. Show that A = 0.

Proposition 35. Let A : V → V be nilpotent. Then
(i) 0 is an eigenvalue of A.
(ii) If λ is an eigenvalue of A, then λ = 0.
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Proof. If A = 0, there is nothing to prove. So, we may assume that A 6= 0. Let k be the
least positive integer such that Ak = 0. Then Ak−1 6= 0. There exists v ∈ V such that
w := Ak−1v 6= 0. (Necessarily, v 6= 0!) Now, we have Aw = 0. Since w 6= 0, it is an
eigenvector with eigenvalue 0. This proves (i).

Let λ be an eigenvalue of A. Let v ∈ V be such that Av = λv. By induction, we see that
Amv = λmv for m ∈ N. Since Ak = 0 for some k ∈ N, we see that 0 = Akv = λkv. As v 6= 0,
we conclude that λk = 0 and hence λ = 0. This proves (ii).

Given a nilpotent operator A on V , we can choose a basis of V so that the matrix A is
strictly upper triangular.

Definition 36. Let A = (aij) be an n× n matrix over a field F . The matrix A is said to be
strictly upper triangular if aij = 0 for i ≥ j.

Proposition 37. Let A : V → V be such that there exists a basis of V with respect to which
the matrix of A is strictly upper triangular. Then A is nilpotent.

Proof. This is a straightforward exercise and we urge the reader to prove it on his own.

Let B := {v1, . . . , vn} be an ordered basis w.r.t. which the matrix (aij) of A is strictly
upper triangular. Since Avi ∈ span{vj : 1 ≤ j ≤ i}, for 1 ≤ i ≤ n, it follows by induction 6/12/06
that Ai−1vi ∈ Fv1 so that Aivi = 0. Hence we conclude that Anvi = An−i(Aivi) = 0 for
1 ≤ i ≤ n. Consequently, if v =

∑n
i=1 aivi, then Anv =

∑
i aiA

nvi = 0. In other words, A is
nilpotent.

Proposition 38. Let A : V → V be linear. Let {vi : 1 ≤ i ≤ n} be a basis of V with
respect to which the matrix of A is strictly upper triangular. Then if we set V0 = {0} and
Vk := span{vi : 1 ≤ i ≤ k}, then we have the following:

(i) Vi ⊂ Vi+1 for 0 ≤ i ≤ n− 1.
(ii) Vi 6= Vi+1 for 0 ≤ i ≤ n− 1.
(iii V0 = {0} and Vn = V .
(iv) AVi ⊆ Vi−1 for 1 ≤ i ≤ n.

Proof. This is again straight forward verification and hence the reader should carry out the
proofs on his own.

The statements (i)–(iii) are obvious. To prove (iv), we observe that, Av1 = 0 and that for
j ≥ 2

Avj =

n∑
i=1

aijvi =

j−1∑
i=1

aijvi, since aij = 0 for i ≥ j.

It follows that Avj ∈ Vj−1 for j ≥ 1. If v ∈ Vi, then v =
∑i

j=1 ajvj so that Av =
∑i

j=1 ajAvj ∈
Vi−1.

The finite sequence (Vi) of subspaces is called a flag.

The next proposition is a converse of the last one.
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Proposition 39. Let A : V → V be a linear map on a vector space V over a field of dimension
n. Assume that there exists k ∈ N and for each i, 0 ≤ i ≤ k, there exists a subspace Vi of V
with the following properties:

(i) Vi ⊂ Vi+1 for 0 ≤ i ≤ k − 1.
(ii) Vi 6= Vi+1 for 0 ≤ i ≤ k − 1.
(iii V0 = {0} and Vn = V .
(iv) AVi ⊆ Vi−1 for 1 ≤ i ≤ k.

Then there exists a basis for V such that the matrix of A with respect to this basis is strictly
upper triangular.

Proof. We can prove this result by induction on n or k. Let us do induction on k for fun!

When k = 1, we have V0 = {0} and V1 = V . Since AV1 ⊂ V0, we infer that A is the zero
operator. Hence any basis of V will do!

Assume that k ≥ 2 and that the result is true for any linear map A : V → V as long as the
size of the flag is less than k. Let us consider A : V → V with a flag of size k. Since Vk−1 is
mapped to Vk−2 by A, the restriction B of A to Vk−1 has a flag of size k−1. Hence there exists
a basis {v1, . . . , vm} of Vk−1 such that the matrix of B with respect to this basis is strictly
upper triangular. Extend this to a basis {v1, . . . , vm, vm+1, . . . , vn} of V . Since Avr ∈ Vk−1
for r ≥ m + 1, we see that the r-th column of the matrix of A is (a1r, . . . , amr, 0, . . . , 0)t for
m+ 1 ≤ r ≤ n. It is now easy to see that the matrix of A is strictly upper triangular.

Theorem 40. Let A : V → V be nilpotent. Then there exists a basis of V with respect to
which the matrix of A is strictly upper triangular.

Proof. Let k ∈ N be the least such that Ak = 0. Let Vi := kerAi for 0 ≤ i ≤ k. Then, the
following are obvious:

(i) Vi ⊆ Vi+1 for 0 ≤ i ≤ k − 1.
(ii) V0 = {0} and Vk = V .
(iii) AVi ⊆ Vi−1 for 1 ≤ i ≤ k.

We now show that Vi is strictly contained in Vi+1 for 0 ≤ i ≤ k − 1. Since Ak−1 6= 0,
there exists v ∈ V such that Ak−1v 6= 0. Now the vector Ak−1−i ∈ Vi+1 but not in Vi for
0 ≤ i ≤ k − 1.

Reason: Ai+1(Ak−1−iv) = Akv = 0 so that Ak−1−iv ∈ Vi+1. However, Ai(Ak−1−iv) =

Ak−1v 6= 0 so that Ak−1−iv /∈ Vi.

Now the result follows from Proposition 39.

6 Generalized eigenvectors

Now that we have seen (Theorem 25) that V is a direct sum of eigenspaces of A iff A is
diagonalizable, we explore the possibility of extending the concept of eigenvectors. Let us
look at the earlier example of A : C2 → C2 given by Ae1 = 0 and Ae2 = e1. Even though the
only eigenvector of A is e1, the vector e2 has the property A2e2 = 0 · e2. Together they form
a basis of C2 with respect to which the map is represented by an upper triangular matrix.
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Definition 41. Let A : V → V be linear. Assume that λ ∈ F is an eigenvalue of A. A vector
v ∈ V is said to be a generalized eigenvector of A corresponding to the (genuine!) eigenvalue
λ if there exists k ∈ N such that (A− λI)kv = 0.

The generalized eigensubspace corresponding to the eigenvalue λ is defined by

V (λ) := {v ∈ V : There exists k ∈ N such that (A− λI)kv = 0}.

Remark 42. Any eigenvector with eigenvalue λ is a generalized eigenvector for λ. In the
example preceding the definition, e2 is a generalized eigenvector which is not an eigenvector
corresponding to the eigenvalue 0.

Proposition 43. Let A : V → V be linear. The the nonzero generalized eigenvectors corre-
sponding to distinct eigenvalues of A are linearly independent.

Proof. Let λj , 1 ≤ j ≤ m be distinct eigenvalues of A. Let vj ∈ V (λj), 1 ≤ j ≤ m, be nonzero
vectors. Let

∑m
j=1 ajvj = 0 for aj ∈ F . Let r be the least integer such that ar 6= 0. If r = m,

then amvm = 0 implies that am is also zero. Hence all aj ’s are zero. So, we may assume that
r < m.

Let k be the least positive integer such that (A− λr)kvr = 0. Note that this means that
(A− λr)k−1vr is an eigenvector of A with eigenvalue λr. We now argue as in Lemma 21.

Since (A− λjI)nvj = 0 for 1 ≤ j ≤ m and

(A− λrI)k−1(A− λr+1I)n · · · (A− λmI)naivi = 0, for i 6= r

it follows that
ar(λr − λr+1)

n · · · (λr − λm)n(A− λrI)k−1vr = 0.

It follows that ar(A− λrI)k−1vr = 0. We conclude that ar = 0.

Theorem 44. Let A : V → V be linear and λ ∈ F be an eigenvalue of A. Then the following
hold:

(i) V (λ) = ker(A− λI)n.
(i) A− λI is nilpotent on V (λ).
(iii) V (λ) is invariant under A.
(iv) λ is the only eigenvalue of A restricted to V (λ).

Proof. Let v ∈ V (λ) be nonzero. Let m be the least (positive) integer such that (A−λI)mv =
0. We claim that the set

{(A− λI)j : 0 ≤ j ≤ m− 1}
is linearly independent. Let

∑m−1
i=0 ai(A − λI)iv = 0. Let us operate (a − λI)m−1 on both

sides of this equation to get

a0(A− λI)m−1v + a1(A− λI)mv + · · ·+ am−1(A− λI)2m−2v = 0.

Each of the j-th term is zero since we have (A− λI)rv with r ≥ m. Thus the equation above
becomes a0(A − λI)m−1v = 0. Since (A − λI)m−1v 6= 0, we deduce that a0 = 0. Thus the
original equation reduces to a1(A − λI)mv + · · · + am−1(A − λI)2m−2v = 0 We now apply
(A − λI)m−2 to both sides and argue as above to conclude thata1 = 0 and so on. Thus all
ai = 0 and hence the claim.
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A more formal proof: Given that
∑m−1
i=0 ai(A − λI)iv = 0, let k be the least index such

that ak 6= 0. Therefore we get Am−1−k
(∑m−1

i=k ai(A− λI)iv
)

= 0, that is,

m−1∑
i=k

ai(A− λI)m−1−k+iv = 0.

For i ≥ k + 1, we have m − 1 − k + i ≥ m so that (A − λI)m−1−k+iv = 0. Thus the

equation reduces to am(A − λI)m−1v = 0. Since (A − λI)m−1v 6= 0, we are forced to

conclude that am = 0, a contradiction to our choice of m.

It follows that k ≤ n and hence (A− λI)nv = 0. Thus V (λ) = ker(A− λI)n. This proves
(i) as well as (ii). Since V (λ) = ker(A − λI)n and since A commutes with (A − λI)n, the
subspace V (λ) is invariant under A. This proves (iii).

Let µ ∈ F be an eigenvalue of restriction of A to V (λ). Let 0 6= v ∈ V (λ) be such that
Av = µv. We then have

(A− λI)nv = (µ− λ)nv = 0.

Since v 6= 0,w e deduce that µ = λ. This proves (iv).

Theorem 45. Let V be a finite dimensional vector space over a field F . Let A : V → V be
a linear map. Assume that the minimal polynomial of A splits over F . Let λi, 1 ≤ i ≤ m be
the distinct roots of the minimal polynomial of A. Then we have

(i) V = ⊕mi=1V (λi).
(ii) If µ ∈ F is an eigen value of A, then µ = λi for some i ∈ {1, . . . ,m}.

Proof. We prove (i) by induction on n.

If n = 1, then there exists λ ∈ F such that Av = λv for all v ∈ V . Thus, when n = 1,
V = ker(A− λI) = V (λ) and hence (i) is true in this case.

Let us assume the result to be true for any linear map whose minimal polynomial splits
over F on any vector space of dimension less than n. Let n > 1.

Let V be an n-dimensional vector space. Assume that A : V → V is a linear map whose
minimal polynomial splits over F . Then thanks to Theorem 19, there exists an eigenvalue
λ ∈ F of A.

We claim that V = ker(A− λI)n ⊕ Im (A− λI)n.

Let w ∈ V (λ) ∩W where we have set W := Im (A − λI)n. Since w ∈ W , there exists
u ∈ V such that (A− λI)nu = w. Since w ∈ ker(A− λI)n, we have

0 = (A− λI)nw = (A− λI)2nu.

This means that u ∈ V (λ) and hence (A − λI)nu = 0. But then it follows that w =
(A − λI)nu = 0. Thus V (λ) ∩ W = {0}. Also, by the rank-nullity theorem, dimV =
dim ker(A−λI)n + dim Im (A−λI)n = dimV (λ) + dimW . Thus we see that V (λ) +W = V .
Therefore the claim is established.

If W is the zero subspace, then V = V (λ) and (i) is proved. If not, then dimW < dimV
(since dimV (λ) ≥ dimVλ ≥ 1). Since W = Im (A − λI), it is invariant under A. For, if
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w = (A− λI)nu for some u ∈ V , then

Aw = A (A− λI)n u = (A− λI)nAu ∈ Im (A− λI)n.

Now, if B denotes the restriction of A to W , then B : W →W with dimW < dimV . In order
to invoke the induction hypothesis, we need to check if the minimal polynomial of B splits
over F . But this is trivially so, since the minimal polynomial of B must be a divisor of that
of A.

Reason: Let mA be the minimal polynomial of A on V and mB that of B. Now,

mA(B)w = mA(A)w = 0 for any w ∈ W . Thus mA is a polynomial in F [X] such that

mA(B) = 0. Since mB is the minimal polynomial of B, it follows (by division algorithm)

that mB divides mA. Since mA splits over F , so does mB .

Therefore the induction hypothesis is applicable to B : W → W . We therefore infer that
there exist scalars, say, λ2, . . . , λk ∈ F such that W = ⊕ki=2W (λi). The following are fairly
obvious:

(i) λ1 6= λi for 2 ≤ i ≤ k.

Reason: For, if not, assume that λ1 = λj for some 2 ≤ j ≤ k. There exists 0 6= w ∈ W
such that Bw = λjw. Since Bw = Aw, this means that (A−λ1)w = 0 or w ∈ ker(A−λ1)n.

Since w ∈ ker(A− λI)n ∩W = {0}, we see that w = 0, a contradiction.

(ii) W (λj) = V (λj) for 2 ≤ j ≤ k. Clearly, W (λj) ⊂ V (λj). Let v ∈ V (λj). We write
v = v1 + w with v1 ∈ V (λ1) and w ∈W . Then w = w2 + · · ·+ wk with wi ∈W (λi) ⊂ V (λi),
2 ≤ i ≤ k. Therefore we get

v1 + · · ·+ wj−1 + (v − wj) + wj+1 + · · ·+ wk = 0.

By Proposition 43, it follows that each of the summands is zero, in particular, v = wj ∈W (λj).

An alternate proof is given below.

Reason: Clearly, W (λj) ⊂ V (λj). Let v ∈ V (λj). We write v = v1 + w with v1 ∈ V (λ1)
and w ∈W . We have,

0 = (A− λjI)nv = (A− λjI)nv1 + (A− λjI)nw.

Since V (λ1) and W are invariant under A, we see that (A − λjI)nv1 ∈ V (λ1) and (A −
λjI)nw ∈W . Since the sum V = V (λ1)⊕W is direct,we conclude that (A−λjI)nv1 = 0
and (A− λjI)nw = 0. We claim that v1 = 0.

Reason: Suppose not. Let r ∈ N be the least such that (A−λjI)rv1 = 0. If we
let v2 := (A− λjI)r−1v1, then v2 6= 0. Since (A− λjI)v2 = (A− λjI)rv1 = 0,
the vector v2 is an eigenvector of A with eigenvalue λj . This contradicts the
fact that λ1 is the only eigenvalue of the restriction of A to V (λ1) (see (iv) of
Theorem 44). Hence the claim is proved.

The claim follows also from the linear independence of the nonzero generalized
eigenvectors corresponding to distinct eigenvalues (Proposition 43).
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Therefore, v ∈W and hence lies in W (λj). Consequently, we have shown that V (λj) ⊂W (λj)
for any 2 ≤ j ≤ k. Thus we have established

V = V (λ1)⊕W = ⊕kj=1V (λj).

This completes the proof of (i).

We now prove (ii). Let µ ∈ F be an eigenvalue of A with a nonzero eigenvector u. Let
u =

∑
j vj , vj ∈ V (λj), 1 ≤ j ≤ k. Since u 6= 0, there exists r such that vr 6= 0. We have

0 = (A− µI)u =
∑
j

(A− µI)vj .

Since (A−µI) commutes with (A−λjI) for all j, it leaves V (λj) invariant. Hence (A−λjI)vj ∈
V (λj) for all j. Since V = ⊕V (λj) is a direct sum, we deduce that each of the summands
(A− µI)vj in the displayed equation above must be zero. In particular, (A− µI)vr = 0, that
is, vr ∈ V (λr) is an eigenvector with eigenvalue µ. By Theorem 44-(iv), we conclude that
µ = λr.

Putting Theorems 44–45 together, we get

Theorem 46 (Structure Theorem for Linear Maps). Let F be an algebraically closed field and
V a finite dimensional vector space over F . Let A : V → V be linear. Assume that λj ∈ F , Give a proof us-

ing Thm 14.
1 ≤ j ≤ k be all the distinct eigenvalues of A. Then the following are true.

(i) V = ⊕kj=1V (λj).
(ii) V (λj), 1 ≤ j ≤ k, is A-invariant.
(iii) The map (A− λjI) is nilpotent on V (λj), 1 ≤ j ≤ k.
(iv) λj is the only eigenvalue of A on V (λj), 1 ≤ j ≤ k.

Proposition 47. Let V be a finite dimensional vector space over an algebraically closed field
F . Let A : V → V be linear. Assume that 0 is the only eigenvalue of A. Then A is nilpotent.

Proof. By structure theorem, we have V = V (0) and A = A− 0 · I is nilpotent on V (0).

Remark 48. The above result is true as long as the minimal polynomial of A splits over F ,
otherwise it is false. For instance, consider the linear map A : R3 → R3 defined by Ae1 = e2,
Ae2 = −e1 and Ae3 = 0. It is easy to see that 0 is the only eigenvalue of A.

Reason: Proceed as in Examples 17-18.

Since A3e1 = −e2, we see that A is not nilpotent.

Proposition 49. Let the notation be as in the structure theorem (Theorem 46). Let mi be
the least positive integer such that (A− λi)mi = 0 on V (λi). Then the minimal polynomial of
A is given by

mA(X) = (X − λ1)m1 · · · (X − λk)mk .

Proof. We observe that if λ is a root of mA with multiplicity r, then V (λ) = ker(A− λI)r.
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Reason: Suppose not. Let v ∈ V (λ) be such that w := (A − λI)rv 6= 0. If we let
mA(X) = q(X)(X − λ)r, then q and (X − λ)n−r are relatively prime. So, there exist
polynomials f and g such that 1 = q(X)f(X) + (X − λ)n−rg(X). We then have

w = f(A)q(A)w + g(A)(A− λI)n−rw

= f(A)mA(A)v + g(A)(A− λI)nv

= 0 + 0 = 0,

a contradiction. Thus the claim is proved.

The result in an immediate consequence of this claim. For, given 1 ≤ k ≤ n, the multiplicity
of λk as a root of mA(X) is the same as mk, according to the claim.

7 Jordan Canonical Form

Definition 50. Let A : V → V be linear and λ ∈ F be an eigenvalue of A. We say that a
finite sequence v1, . . . , vk of nonzero vectors is a Jordan string or a Jordan chain corresponding
to the eigenvalue λif the following holds:

Av1 = λv1

Av2 = v1 + λv2
...

Avk = vk−1 + λvk.

The integer k is called the length of the Jordan string.

The following are immediate from the definition.
(i) An eigenvector v with eigenvalue λ is a Jordan string of length 1.
(ii) Each vector vj of the Jordan string lies in the generalized eigenspace J(λ). In fact,

(A− λI)jvj = 0.
(iii) The set of vectors in a Jordan string is linearly independent.

Reason: Let v1, . . . , vk be a Jordan string corresponding to the eigenvalue λ ∈ F . Assume
that

∑k
i=1 aivi = 0. Let r be the largest integer such that ar 6= 0. Then r > 1.

Reason: For, if r = 1, then the linear dependence equation above becomes
a1v1 = 0. Since v1 6= 0, we are led to conclude a1 = 0, a contradiction.

Then vr =
∑r−1
i=1 −a−1r aivi. Let us operate both sides of the equation by (A − λI)r−1.

We get the following contradiction:

v1 = (A− λI)r−1vr =

r−1∑
i=1

−a−1r ai(A− λI)r−1vi = 0,

where we have used the observation (ii).
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(iv) The length of any Jordan string is at most n = dimV .
(v) If we let W := span{v1, . . . , vk}, then W is A-invariant and the matrix of the restriction

of A to W is 
λ 1

λ 1
. . .
. . . 1

λ

 .

This matrix is called a Jordan block of size k corresponding to λ ∈ F .

We now give a proof of the existence of Jordan canonical form for a nilpotent linear map
following a method of Filippov. We then make use of the structure theorem to derive the
result in the case of a general linear map. It should be noted that Filippov’s method yields
the general case also without recourse to the structure theorem. See my article on “Jordan
Canonical Form” for this approach.

Theorem 51 (Jordan canonical form for nilpotent operators). Let A : V → V be a nilpotent
operator on a finite dimensional vector space over a field F . Assume that the all the roots of
the characteristic polynomial lie in F . Then there exists an A-Jordan basis of V . Where is Jordan

basis defined?

Proof. We prove this result by induction on the dimension of V . If dimV = 1, then A = 0
and hence any nonzero element is a Jordan basis of V . The result is also true if A = 0 and
whatever be the dimension of V . So, we now assume that the result is true for all nonzero
nilpotent operators on any finite dimensional vector space with dimension less than n where
n > 1.

Let V be of dimension n and A : V → V be nonzero and nilpotent. Since kerA 6= {0},
dim ImA < n. It is also invariant under A. Thus the restriction of A to W = ImA, which
we denote by A again, is a nilpotent operator on W . We can therefore apply the induction
hypothesis. We then get a Jordan basis of W , say, J = J1∪ · · ·∪Jk where each Ji is a Jordan
string:

Ji = {vi1, . . . , vini} with Avi1 = 0 and Avij = vij−1 for 2 ≤ j ≤ ni.

We have, of course, n1 + · · ·+ nk = dim ImA.

Suggestion: The reader may assume that there is only one Jordan string during the first
reading of the proof below. He may like to understand the proof in a special case, say, 6/12/06
A : R5 → R5 given by

Ae1 = 0 = Ae2, Ae3 = e4, Ae4 = e5, Ae5 = 0.

By very assumption that J is a basis of ImA, the set {vi1 : 1 ≤ i ≤ k} (of the first
elements of the Jordan strings Ji) is a linearly independent subset of V and it is a subset of
kerA. We extend this set to a basis of kerA, say, {v11, . . . , vk1, z1, . . . , zr}. Each last element
vini ∈ Ji lies in ImA and hence we can find vini+1 ∈ V such that Avini+1 = vini . We now let
Bi := Ji ∪ {vini+1} and B := ∪ki=1Bi ∪ {z1, . . . , zr}. Using rank-nullity theorem, we see that
|B| = n. We claim that B is linearly independent subset of V . Let

(a11v11 + · · ·+ a1n1+1v1n1+1)+ · · ·+(ak1vk1 + · · ·+ a1nk+1v1nk+1)+b1z1+ · · ·+brzr = 0. (2)
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We apply A to both sides. Since zj , vi1 ∈ kerA for 1 ≤ j ≤ r and 1 ≤ i ≤ k, we arrive at the
following equation:

A ([a12v12 + · · ·+ a1n1+1v1n1+1] + · · ·+ [ak2vk2 + · · ·+ aknk+1v1nk+1]) = 0.

Since Avij = vij−1 for 1 ≤ i ≤ k and 2 ≤ j ≤ ni + 1, we get

(a12v11 + · · ·+ a1n1+1v1n1) + · · ·+ (ak2vk1 + · · ·+ aknk+1v1nk) = 0.

Since vij ’s that appear in the above equation are linearly independent, we deduce that aij = 0
for 1 ≤ i ≤ k and 2 ≤ j ≤ ni + 1. Thus (2) becomes

a11v11 + · · ·+ ak1vk1 + b1z1 + · · ·+ brzr = 0.

The vectors that appear in the equation above form a basis of kerA and hence we deduce all
the coefficients in the equation are zero. Thus, we have show that all the coefficients in (2)
are zero and hence B is linearly independent.

8 Characteristic Polynomial

Definition 52. The polynomial det(A−XI) in X is called the characteristic polynomial of
A. We shall denote it by pA(X).

Ex. 53. What is the characteristic polynomial of (i) a diagonalizable linear map and (ii) Added on
7/12/06

which can be represented as a triangular matrix with respect to some basis?

Proposition 54. Let A : V → V be linear. Assume that the minimal polynomial of A splits
into linear factors, say, mA(X) =

∏k
i=1(X − λi)

mi so that V = ⊕ki=1V (λi) be the direct
sum decomposition of V into generalized eigenspaces. Let ni := dimV (λi). Then pA(X) =
(X − λ1)n1 · · · (X − λk)nk .

In particular, pA(A) = 0. (Cayley-Hamilton Theorem)

Proof. Using the standard notation, for any α ∈ F , the eigen values of αI − A are α − λj
with multiplicities nj , 1 ≤ j ≤ k. Hence the determinant of αI − A is the product of its
eigenvalues, that is, (α − λ1)n1 · · · (α − λk)nk . Since this true for all α ∈ F , we infer that
det(XI −A) = (X − λ1)n1 · · · (X − λk)nk .

Since mA(X) = (X−λ1)m1 · · · (X−λk)mk , it follows that mA divides pA and in particular,
pA(A) = 0.

If λ ∈ F is an eigenvalue of A : V → V , then dimVλ is called the geometric multiplicity of
λ and dimV (λ) is called the algebraic multiplicity of λ. The latter is thanks to the fact that
the multiplicity of λ as a root of the characteristic polynomial is dimV (λ).

Example 55. Let A : Rn → Rn be the nilpotent map Aei = ei+1, 1 ≤ i ≤ n and Aen = 0. Added on
7/12/06

Then the characteristic polynomial (which is also the minimal polynomial) is Xn = 0. The
eigenvalue λ = 0 has 1 as its geometric multiplicity while n as its algebraic multiplicity.
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The following gives a characterization of diagonalizability of A in terms of its characteristic
and minimal polynomials.

Theorem 56. Let A : V → V be linear. Then the following are equivalent.
(i) A is diagonalizable.
(ii) The characteristic polynomial of A can be written as a product of linear factors in F ,

say, (X − λ1)
n1 · · · (X − λk)

nk with ni = dimVλi = dim ker(A − λi). (One says that the
characteristic polynomial splits over F and the algebraic multiplicity of any eigenvalue is its
geometric multiplicity.)

(iii) If the distinct eigenvalues of A are λ1, . . . , λk, then the minimal polynomial of A is
(X − λ1) · · · (X − λk).

Proof. (i) =⇒ (ii): Easy.

(ii) =⇒ (iii): Since the characteristic polynomial pA(X) splits over F , we can write it as

pA(X) = (X − λ1)n1 · · · (X − λk)nk .

Since the algebraic and geometric multiplicities are equal, for each 1 ≤ i ≤ k, there exist ni
linearly independent eigenvectors with eigenvalue λi. Hence the operator (A − λ1I) · · · (A −
λkI) kills all the vectors in V . Hence the minimal polynomial of A must be a divisor of
(X − λ1) · · · (X − λk). No term such as (X − λi) can be absent in the minimal polynomial of
A. For example,

(A− λ1I) · · · (A− λi−1I)(A− λi+1I) · · · (A− λkI)

(note the absence of the term (A− λiI) in the product above) cannot kill Vλi .

(iii) =⇒ (i): Follows from the structure theorem.

Suppose that the minimal polynomial of A splits over F but we cannot say anything about
the geometric and algebraic multiplicities. Then the next result (Theorem 58) deals with this.

Definition 57. A flag in an n-dimensional vector space V is a sequence (Vi)
n
i=0 of vector

subspaces such that dimVi = i for 0 ≤ i ≤ n and Vi ⊂ Vi+1 for 0 ≤ i ≤ n− 1.

We say that a linear map A : V → V stabilizes the flag if AVi ⊂ Vi for 0 ≤ i ≤ n,

Theorem 58. Let A : V → V be a linear map on an n-dimensional vector space over F .
Then the following conditions are equivalent.

(1) V =
∑
V (λ), that is, V is the sum of generalized eigenspaces of A.

(2) There is a Jordan basis of V for A with respect to which the matrix of A is of the form
diag (Jn1(λ1), . . . , Jnk(λk)).

(3) There is a basis of V with respect to which the matrix of A is upper triangular.
(4) A stabilizes a flag of V .
(5) A has n eigenvalues in F (counted with multiplicity).
(6) The characteristic polynomial of A splits into linear factors in F .

Proof. Note that the sum in (1) is, in fact, a direct sum. Since (A − λiI) is nilpotent on
V (λi), there exists a basis of V (λi) with respect to which the matrix of A−λiI (restricted to
V (λi)) is Jni(0). Hence the matrix of the restriction A to V (λi) is Jni(λi). Putting all these
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bases together yields a basis of V with respect to which the matrix of A is as stated. Thus
(1) =⇒ (2).

The implications (2) =⇒ (3) ⇐⇒ (4) =⇒ (5) =⇒ (6) are either obvious or easy
consequences of some of our earlier results.

If the characteristic polynomial of A splits into linear factors, say,

pA(X) = (X − λ1)n1 · · · (X − λk)nk ,

then by Theorem 14, we have

V = ker(A− λ1I)n1 ⊕ · · · ⊕ ker(A− λkI)nk = V (λ1)⊕ · · · ⊕ V (λk).

Theorem 59. Let A : V → V have n eigenvalues (counted with multiplicity) in F . Then
there exists a unique decomposition A = AD + AN where AD is diagonalizable and AN is
nilpotent. Moreover, AD and AN are polynomials in A and hence they commute with each
other.

The decomposition A = AD +AN is called the (additive) Jordan decomposition of A.

Proof. The idea is quite simple. If we choose a Jordan basis of V for A and if the matrix of A
with respect to this basis is diag (Jn1(λ1), . . . , Jnk(λk)), then AD is the map corresponding to
the diagonal part of this matrix and AN is the one corresponding to diag (Jn1(0), . . . , Jnk(0)).

In abstract terms, AD := λ1π1 + · · · + λkπk where πi : V → V (λi) is the canonical pro-
jection. As observed in (ii) of Theorem 14, the maps π are polynomials in A and hence so is
AD. Hence the same is true about AN := A−AD. Also, we have

AN = A−AD = A ◦
∑
i

πi −
∑
i

λiπi =
k∑
i=1

(A− λiI)πi.

As a consequence, we conclude that AN = (A−λiI) on V (λi) and hence is nilpotent on V (λi).
Therefore, AN is nilpotent on V .

We now prove the uniqueness. Let A = D + N be another such decomposition with D
diagonalizable etc. Then

NA = N(D +N) = ND +N2 = DN +N2 = (D +N)S = AN.

Similarly,we show that A and D commute with each other. Since AD and AN are polynomials
in A, they also commute with D and N . Therefore, AD −D is diagonalizable (Theorem 27,
or more precisely, Ex. 29) and AN −N is nilpotent. We see that AD −D = N −AN is both
diagonalizable and nilpotent and hence is the zero operator (Ex. 34).

Remark 60. Note that in the proof above, we assumed that all the roots of the minimal
polynomial mA lie in F . This is the case when F is algebraically closed. However, Cayley-
Hamilton theorem is true over any field. The general version could be deduced from this
special case which we shall not go into.
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Ex. 61. Let A : V → V be linear. Assume that the minimal polynomial mA(X) ∈ F [X] is
irreducible. Show that A is semisimple. Hint: If we set K := {f(A) : f ∈ F [X]}, then K
is a field. Consider V as a vector space over K in an obvious way. The K subspaces of the
K-vector space V are precisely the A-invariant subspaces of the F -vector space V !

Use this to give an example of a semisimple map which is not diagonalizable.

Remark 62. The following are some of the important features of the Jordan canonical form
of a linear map and they are very useful in determining the Jordan canonical form.

(i) The sum of the sizes of the blocks involving a fixed eigenvalue equals the algebraic
multiplicity of the eigenvalue, that is, the multiplicity of the the eigenvalue as a root of the
characteristic polynomial.

(ii) The number of blocks involving an eigenvalue equals its geometric multiplicity, that is,
the dimension of the corresponding eigenspace .

(iii) The largest block involving an eigenvalue equals the multiplicity of the eigenvalue as a
root of the minimal polynomial.

Let J be a Jordan canonical form of A. Then A and J are similar. Hence their charac-
teristic polynomials are the same. Statement (i) follows if we observe that the eigenvalues of
a Jordan block Jj(λ) is λ with algebraic multiplicity k.

Statement (ii) follows from the observation that the eigenvalue λ of similar matrices (or
linear maps) have the same geometric multiplicity and the fact that any Jordan block Jk(λ)
has one dimensional eigenspace.

Statement (iii) follows from the observations: (a) the map T := Jk(λ)−λIk×k is nilpotent
with index k, that is, T k = 0 but T k−1 6= 0 and (b) if J = diag (Jn1(λ1), . . . , Jnk(λk)), then
its minimal polynomial is the product of the minimal polynomials of Jni(λi).

Theorem 63 (Uniqueness of the Jordan Form). The Jordan form is unique apart from a
permutation of the Jordan blocks.

Proof. Let us assume that A is similar to two Jordan forms J1 and J2. Then there is some
eigenvalue λ of A such that the corresponding blocks in J1 and J2 differ. As observed in the
above remark (Property (ii), more precisely), the number of blocks corresponding to λ in J1
and J2 will be the geometric multiplicity , say, k of λ. Let m1 ≥ m2 ≥ · · · ≥ mk be the sizes
of the blocks of J1 corresponding to the eigenvalue λ. Let m1 ≥ m2 ≥ · · · ≥ mk be the sizes
of the blocks in J2. It follows that there exists some 1 ≤ j ≤ k such that m − i = ni for
all 1 ≤ i ≤ j − 1 but mj 6= nj . Assume without loss of generality that nj > mj . But then
(J1 − λI)mj = 0 but (J2 − λI)mj 6= 0. This is absurd since J1 and J2 are similar.

9 Similarity

We assume that the field F is algebraically closed. We say that two matrices A,B ∈M(n, F )
are similar if there exists an invertible matrix T such that TAT−1 = B. Another way of
looking at this is via group actions. Let G := GL(n, F ) denote the group of invertible matrices
in M(n, F ). Then G acts on M(n, F ) via conjugation: GL(n, F )×M(n, F )→M(n, F ) given
by (T,A) 7→ TAT−1. Then A and B are similar iff they lie in the same orbit.
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Jordan canonical form gives a distinguished representative of the orbit of A under this
action. In particular, A and B are similar iff they have the ‘same’ Jordan canonical form but
for the permutation of the Jordan blocks. We leave the details for the reader to ponder upon!

10 Exercises

The following are some of the standard exercises based on the material of this article.

Ex. 64. The characteristic polynomial of A is (X − 1)3(X − 2)2 and its minimal polynomial
is (X − 1)2(X − 2). What is its Jordan form?

Ex. 65. The characteristic polynomial of A is (X − 1)3(X − 2)2. Write down all possible
Jordan forms of A.

Ex. 66. Find all possible Jordan forms of an 8× 8 matrix whose characteristic polynomial is
(X − 1)4(X − 2)4 and the minimal polynomial (X − 1)2(X − 2)2 if the geometric multiplicity
of the eigenvalue λ = 1 is three.

Ex. 67. Show that any square matrix A is similar to its transpose. Hint: If A is similar to
J what is AT similar to?

Ex. 68. Show that there is no A ∈ M(3,R) whose minimal polynomial is x2 + 1 but there
is B ∈M(2,R) as well as C ∈M(3,C) whose minimal polynomial is X2 + 1.

Ex. 69. Let A : V → V be such that A2 = A. Discuss whether or not there exists an
eigen-basis of V .

Ex. 70. Let Ak+1 = A for some k ∈ N. Show that A is diagonalizable. Hint: Observe that

(Jn(λ))k+1 = (diag n(λ) + Jn(0))k+1 .

Ex. 71. Let V = U ⊕W . Let PW : V →W be the canonical projection and Rw : V → V be
the reflection with respect to W : RW (w+ u) = w− u. Compute the minimal polynomials of
PW and RW .

Ex. 72. Let A : V → V be of rank 1. Then AV = Fv0 for some v0 ∈ V . Show that A2 = λA
where Av0 = λv0.

Does there exists an eigen-basis of V ?

Ex. 73. Are the following matrices diagonalizable? (a) Jn(λ), (b) a nilpotent matrix and (c)
A ∈M(n,C) such that Ak = I for some k ∈ N.

Ex. 74. Let A ∈M(3,C). Assume that the characteristic and minimal polynomials of A are
known. Show that there exists only one possible Jordan form. Is it still true of we replace C
by R or if we replace 3 by 4?

Ex. 75. Consider the two matrices

A =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 and B =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
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Show that their characteristic polynomial is (X−1)4 and the minimal polynomial is (X−1)2,
but they do not have the same Jordan form. (Question: What are the Jordan forms of the
given matrices?) Thus for two matrices to be similar it is necessary but not sufficient that
they have the same characteristic and the same minimal polynomial.

Ex. 76. Show that if A ∈M(n,C) is such that An = I, then A is a diagonalizable.

Ex. 77. Prove that if λ1, λ2, . . . , λn are the eigenvalues of A and if p(X) is a polynomial,
then p(λi), 1 ≤ i ≤ n, are the eigenvalues of p(A).

Ex. 78. If A :=

(
1 1
−1 3

)
show that A50 = 250

(
−24 25
−25 26

)
.

Ex. 79. What are all the possible canonical forms of matrices in M(2,C)? It is a good
exercise to arrive at this directly with “bare hands”.

One should also do some numerical examples such as finding the Jordan canonical form
of a few matrices. I refer the reader to my article on “Jordan Canonical Form’ for examples
and exercises of this kind.
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11 Inner Product Spaces

Let V be an inner product space over F = R,C. Let EndV denote the set of all linear maps
from V to itself.

Definition 80. Let A : V → V be linear. Then the map A∗ : V → V is defined by the
equation

〈y,A∗x〉 = 〈Ay, x〉 for all x, y ∈ V.

Reason: Fix x ∈ V . Consider the map fx : y 7→ 〈Ay, x〉. It is linear. Hence (by Riesz

representation theorem), there exists a unique vector v ∈ V such that fx(y) = 〈y, v〉. We

let A∗x stand for this vector v.

We claim that A∗ : V → V given by x 7→ A∗x is linear.

Reason: Fix x, y ∈ V . For z ∈ V , we have

〈z,A∗(x+ y)〉 = 〈Az, x+ y〉
= 〈Az, x〉+ 〈Az, y〉
= 〈z,A∗x〉+ 〈z,A∗y〉 .

Hence, for all z ∈ V , we have

〈z,A∗(x+ y)−A∗x−A∗y〉 = 0.

Taking z = A∗(x+ y)−A∗x−A∗y, we find that

〈A∗(x+ y)−A ∗ x−Ay, A∗(x+ y)−A ∗ x−Ay〉 = 0.

We conclude that A∗(x+ y)−A∗x−A∗y = 0.

Similarly, if λ ∈ F, then for all z ∈ V ,

〈z,A∗(λx)〉 = 〈Az, λx〉 = λ 〈Az, x〉 = λ 〈z,A∗x〉 = 〈z, λA∗x〉 .

As earlier, we conclude that A∗(λx) = λA∗(x).

Note that the proof above remains valid even if F = R.

The map A∗ is called the adjoint of A.

Lemma 81. The map A 7→ A∗ from EndV to itself has the following properties.
(i) (A∗)∗ = A for any A ∈ EndV .
(ii) (A+B)∗ = A∗ +B∗ for any A,B ∈ EndV .
(iii) (λA)∗ = λA∗ for any A ∈ EndV and λ ∈ F.
(iv) (AB)∗ = B∗A∗ for any A,B ∈ EndV .

Proof. The proofs are routine verifications. We shall prove (i) as a sample and leave the rest
to the reader.

For, x, y ∈ V , we have

〈Ay, x〉 = 〈y,A∗x〉 = 〈A∗x, y〉 = 〈x, (A∗)∗y〉 = 〈(A∗)∗y, x〉 . (3)

Thus, Ay − (A∗)∗y = 0 for all y ∈ V .
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Definition 82. Let A : V → V be linear. We say that V is self-adjoint if A = A∗.

It is customary to call a self-adjoint map A on a complex (respectively, real) inner product
space as hermitian (respectively, symmetric).

If AA∗ = A∗A, then A is said to be normal. Note that any self-adjoint map is normal.

Ex. 83. A : V → V is self-adjoint iff 〈x,Ay〉 = 〈AX, y〉 for all x, y ∈ V .

Ex. 84. If A is self-adjoint, and λ ∈ R, then so is λA.

Lemma 85. Let A : V → V be normal. Then kerA = kerA∗.

Proof. Let x ∈ kerA. Then, we have

0 = 〈Ax,Ax〉 = 〈x,A∗Ax〉
= 〈x,AA∗x〉
= 〈A∗x,A∗x〉 .

Thus, Ax = 0 iff A∗x = 0.

Lemma 86. Let A : V → V be normal. Then any generalized eigenvector of A is an eigen-
vector.

Proof. We claim that kerAk = kerA. We prove this by induction on k. Assume the result
for k. Let x ∈ V be such that Ak+1x = 0. Then, Ak(x) ∈ kerA = kerA∗. That is, A period

inserted. 9
replaced by (Ak(x) ∈ kerA∗. Therefore we have

0 =
〈
A∗(Ak(x)), Ak−1x

〉
=

〈
Ak(x), Ak(x)

〉
.

Hence Ak(x) = 0 which implies Ax = 0 by induction hypothesis.

Now, let λ be an eigenvalue of A and v ∈ V (λ). Note that if A is normal, so is A− λI.

Reason: For, (A− λI)∗ = (A∗ − λI) and clearly, (A− λI) and (A∗ − λI) commute with

each other.

The result now follows from the claim.

Lemma 87. If λ is an eigenvalue of A, then λ is an eigenvalue of A∗.

Proof. Let x ∈ V be such that Ax = λx. The result follows from the following:〈
(A∗ − λI)x, (A∗ − λI)x

〉
= 〈x, (A− λI)(A∗ − λI)x〉
=

〈
x, (A∗ − λI)(A− λI)x

〉
=

〈
x, (A∗ − λI)(0)

〉
.

= 0.

That is, (A∗ − λI)x = 0. (Note that this result shows that if the field is R, then λ ∈ R is an
eigenvalue of A iff it is an eigenvalue of A∗.)
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Lemma 88. Let A : V → V be normal. Then nonzero eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Proof. Let Ax = λx and Ay = µy, with λ 6= µ. We are required to show that 〈x, y〉 = 0.
Note that if x 6= 0 and y 6= 0, then x 6= y

Reason: For, otherwise, Ax = λx = µx so that (λ−µ)x = 0. Since λ−µ 6= 0, we conclude

that x = 0, a contradiction.

We now compute:

(λ− µ) 〈x, y〉 = 〈(λ− µ)x, y〉
= 〈(A− µI)x, y〉
= 〈x, (A∗ − µ)y〉
= 0,

since y is an eigenvector of A∗ with eigenvalue µ. Thus, (λ− µ) 〈x, y〉 = 0. Since λ− µ 6= 0,
we arrive at the result.

Lemma 89. Let λ ∈ F be an eigenvalue of a normal linear map A : V → V . Then the
orthogonal complement V ⊥λ of the eigenspace Vλ is invariant under A.

Proof. Let u ∈ V ⊥λ . Then we need to show that Au ∈ V ⊥λ , that is, we must show that
〈Au, v〉 = 0 for v ∈ Vλ. We have

〈Au, v〉 = 〈u,A∗v〉 =
〈
u, λv

〉
= λ 〈u, v〉 = 0.

Theorem 90 (Spectral Theorem for Normal Linear Maps). Let A : V → V be a linear map
on a finite dimensional inner product space V over C. Then A is normal iff there exists an
orthonormal eigen-basis, that is, an orthonormal basis of V consisting of eigenvectors of A.

Proof. The proof is by induction on the dimension n of V . When n = 1, the result is clear,
since any linear map is a multiplication by a scalar. Therefore, any nonzero vector will be
constitute an eigen-basis.

Assume that n > 1. Since C is algebraically closed, there exists an eigenvalue λ ∈ C.
The eigen-subspace Vλ is nonzero, say, of dimension k. Hence its orthogonal complement
V ⊥λ has dimension strictly less than n. By the last lemma, V ⊥λ is invariant under A, by
induction hypothesis, V ⊥λ has an orthonormal eigen-basis of A restricted to V ⊥λ . Let it be
{vk+1, . . . , vn}. Let {v1, . . . , vk} be an orthonormal basis of Vλ. Then clearly, {vj : 1 ≤ j ≤ n}
is an orthonormal eigen-basis of A.

Lemma 91. If A is self-adjoint, then any eigenvalue of A is real.
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Proof. Let λ be an eigenvalue of A with an eigenvector u of unit norm. It suffices to show
that λ = λ. We have

λ = λ 〈u, u〉 = 〈λu, u〉 = 〈Au, u〉 = 〈u,A∗u〉 = 〈u,Au〉 = 〈u, λu〉 = λ 〈u, u〉 = λ.

The next theorem gives us a result which does not impose any condition on the linear
map.

Theorem 92. Let A : V → V be any linear map on a finite dimensional inner product space
over C. Then there exists an orthonormal basis with respect to which the matrix of A is upper
triangular.

Proof. Let λ be an eigenvalue of A and v a unit vector such that Av = λv. Let W := (Cv)⊥.
Consider B : W →W defined by

Bw := Aw − 〈Aw, v〉 v.

Thus, B is the map A followed by the orthogonal projection from V onto W . Clearly,
dimW = dimV − 1. By induction hypothesis, we may assume that there exists an ON basis
of W with respect to which B is upper triangular. Let {w1, . . . , wn−1} be such a basis. In
particular, we have

Bwi ∈ span{w1, . . . , wi}.

Then {v1 := v, v2 := w1, . . . , vn := wn−1} is an ON basis of V . We note that

Av1 = λv1

Av2 = Bw1 + 〈Aw1, w1〉 v1 ∈ span{v1, v2}
...

Avi = Bwi−1 + 〈Awi, v〉 v ∈ span{v1, w1, . . . , wi−1}.

Thus, Avi ∈ span{v1, . . . , vi} for 1 ≤ i ≤ n. Hence the matrix of A with respect to this basis
is upper triangular.

Proposition 93. Let A : V → V be self-adjoint. Assume that 〈Ax, x〉 = 0 for all x ∈ V .
Then A = 0.

Proof. This is clear from the spectral theorem for normal operators. Let {vi : 1 ≤ i ≤ n} be
an ON eigen-basis of V . Then 〈Avi, vi〉 = 0 for all 1 ≤ i ≤ n. Hence

0 = 〈Avi, vi〉 = λi 〈vi, vi〉 = λi.

Thus, λi = 0 for all i and hence

Ax = A

(
n∑
i=1

aivi

)
=

n∑
i=1

aiAvi = 0.
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We also offer a direct proof.

〈A(x+ y), x+ y〉 = 〈Ax, x〉+ 〈Ax, y〉+ 〈x,Ay〉+ 〈Ay, y〉 = 0 + 2 〈Ax, y〉+ 0.

If we fix x ∈ V , we see that 〈Ax, y〉 = 0 for all y ∈ V . Hence Ax = 0. Since x ∈ V is arbitrary,
the result follows.

12 Unitary and Orthogonal Linear Maps

Theorem 94. Let A : V → V be a linear map on an inner product space over F = R or C.
Then the following are equivalent:

(a) 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ V .
(b) ‖Ax‖ = ‖x‖ for all x ∈ V .
(c) AA∗ = A∗A = I.
(d) A takes an ON basis to an ON basis.

Proof. This is a standard result and the reader should have already learnt. So, the proof may
be skipped.

(a) =⇒ (b): If we take x = y in (a), then we get

‖x‖2 = 〈x, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 .

Taking (non-negative) square roots, (b) follows.

(b) =⇒ (c): Observe the following:

〈x, x〉 = 〈Ax,Ax〉 = 〈x,A∗Ax〉 .

Hence, we see that 〈x, (A∗A− I)x〉 = 0. Since (A∗A)∗ = A∗A∗∗ = A∗A, we infer that A∗A is
self-adjoint. Hence, A∗A− I is self-adjoint. It follows from Proposition 93 that A∗A− I = 0.
Similarly, one shows that AA∗ = I.

(c) =⇒ (d): Assume that AA∗ = I = A∗A. Let {vi : 1 ≤ i ≤ n} be an ON basis. Then
we have

〈vi, vj〉 = 〈A∗Avi, vj〉 = 〈Avi, Avj〉 .

Thus {Avi : 1 ≤ i ≤ n} is an ON set which has dimV elements. Hence it is an ON basis.

(d) =⇒ (a): Let {vi : 1 ≤ i ≤ n} be an ON basis. Note that if x =
∑

i xivi and
y =

∑
i yivi, then (in the case of F = C, the case of F = R being similar)

〈x, y〉 =

〈∑
i

xivi,
∑
j

yjvj

〉
=
∑
i,j

xiyj 〈vi, vj〉 =
∑
i

xiyi.

Now, we compute 〈Ax,Ay〉:

〈Ax,Ay〉 =

〈∑
i

xiAvi,
∑
j

yjAvj

〉
=
∑
i,j

xiyj 〈Avi, Avj〉 =
∑
i

xiyi. = 〈x, y〉 .
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Definition 95. If F = C and if A : V → V is a linear map which has any and hence all the
properties of the theorem, then A is called a unitary map.

If F = R and if A : V → V is a linear map which has any and hence all the properties of
the theorem, then A is called a orthogonal map.

Lemma 96. Let A : V → V be unitary (respectively, orthogonal). Then any eigenvalue of A
is of unit modulus.

Proof. Easy. Let v be a unit eigenvector corresponding to an eigenvalue λ.

1 = 〈v, v〉 = 〈Av,Av〉 = 〈λv, λv〉 = λλ 〈v, v〉 = λλ.

Theorem 97 (Spectral Theorem for Unitary Maps). Let V be an inner product space over
C. Let A : V → V be a unitary map. Then there exists an orthonormal basis of V with respect
to which the matrix of A is a diagonal matrix of the form diag (eit1 , . . . , eitn).

Proof. The proof is by induction on the dimension n of V . Let n = 1. Then any linear map
is of the form x 7→ λx. Hence if we take v to be any unit vector, then v is an eigenvector
with eigenvalue λ. By the last lemma, λ = 1 so that λ = eit for some t ∈ R. Thus the map is
x 7→ eitx.

n > 1. Let us assume result for all complex inner product spaces of dimension less than
n.n > 1. Let V be a complex inner product space of dimension n and let A : V → V be a
unitary map. Let λ ∈ C be an eigenvalue of A wit a unit eigenvector v. Then W := (Cv)⊥ is
a vector subspace of dimension n− 1.

Reason: Consider the map x 7→ 〈x, v〉. This is a linear map, it is nonzero since v 7→ 1 and

its kernel is precisely W . The claim now follows from the rank-nullity theorem.

We claim that W is invariant under A.

Reason: Let w ∈ W . We need to show that Aw ∈ W , that is, 〈Aw, v〉 = 0. Consider the
following:

0 = 〈w, v〉 = 〈Aw,Av〉 = 〈Aw, λv〉 = λ 〈Aw, v〉 .

Since λ 6= 0, the claim follows.

Let W be equipped with the induced inner product. Then B, the restriction of A to W is
a unitary operator. By induction hypothesis, there exists an ON basis {v2, . . . , vn} such that
Avj = eitjvj . Clearly, {v1 := v, v2, . . . , vn} is an ON basis as required.

To prove an analogous spectral theorem for orthogonal matrix, we need a few preliminary
results. It is worthwhile to revisit Example 17 at this juncture.

We shall assume for the rest of the section that V denotes a finite dimensional real inner
product space. The crucial algebraic fact which we need is the following
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Lemma 98. Let p(X) ∈ R[X]. Then p(X) is a product of real polynomials of degree 1 or 2.

Proof. We shall assume the fundamental theorem of algebra. Let p(X) := Xn + an−1X
n−1 +

· · ·+ a1X + a0 ∈ R[X]. Let λ ∈ C be a root of p. Then λ is a root of p.

Reason:
p(λ) = λ

n
+ an−1λ

n−1
+ · · ·+ a1λ+ a0 = p(λ) = 0.

Hence non-real complex roots occur in conjugate pairs. Hence

X2 + bX + c := (X − λ)(X − λ) = X2 − 2ReλX + |λ|2

is a divisor of p in C[X]. Note that b2 − 4c < 0.

Reason:
b2 − 4c = 4(Reλ)2 − 4 |λ|2 = 4[(Reλ)2 − |λ|2] < 0.

If we write p(X) = (X2 + bX + c)q(X) with q(X) ∈ C[X], we claim that q(X) ∈ R[X].

Reason: Note that q(X) = p(X)/(X2 + bX + c) since X2 + bX + c 6= 0, as it has no

real roots. For any t ∈ R, we have q(t) ∈ R since p(t), t2 + bt + c ∈ R. So, Im q(t) =

Im (an−1)tn−1 + · · ·+ Im (a1)t + Im (a0) = 0 for all t ∈ R. But then the real polynomial

Im q has infinitely many roots and hence must be identically zero. We therefore conclude

that the coefficients of q lie in R.

We now apply induction hypothesis to q and get the result.

Proposition 99. Let A : V → V be linear. Then there exists an A-invariant subspace W ⊆ V
with dimW equal to 1 or 2.

Proof. We mimic the proof of Theorem 19.

Let p(X) ∈ R[X] be a nonzero monic polynomial such that p(A) = 0. We write p(X) =
p1(X) · · · pk(X) where deg pj ≤ 2 for 1 ≤ j ≤ k. Let v ∈ V be a nonzero vector such that
p(A)v = 0. Arguing as in Theorem 19, we find that there exists a maximum i such that
p1(A) ◦ · · · ◦ pi(A)(w) = 0 where pi+1(A) ◦ · · · ◦ pk(A)v 6= 0.

If pi(X) is of degree 1, then pi(X) = X−λi for some λi ∈ R. Then λi is an eigenvalue with
eigenvector w. If pi(X) is of degree 2, say, pi(X) = X2 + bX + c, then (A2 + bA+ cI)w = 0.
If we take, W := span{w,Aw}, then W is invariant under A.

Reason: We see that A(Aw) = A2w = −bAw − cw ∈ span{w,Aw}.

Proposition 100. Let A : V → V be self-adjoint. Let b, c ∈ R be such that b2−4c < 0. Then
A2 + bA+ cI is invertible.
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Proof. The idea is to show that〈
(A2 + bA+ cI)v, v

〉
> 0 for any nonzero v ∈ V. (4)

The inequality clearly implies that A is one-one and hence onto. We compute, for v 6= 0,〈
(A2 + bA+ cI)v, v

〉
=

〈
A2v, v

〉
+ b 〈Av, v〉+ c 〈v, v〉

= 〈Av,Av〉+ b 〈Av, v〉+ c 〈v, v〉
≥ ‖Av‖2 − |b| ‖Av‖ ‖v‖+ c ‖v‖2

=

(
‖Av‖ − |b| ‖v‖

2

)2

+

(
c− b2

4

)
‖v‖2

> 0.

(We have used Cauchy-Schwarz inequality above.)

Lemma 101. Let A : V → V be self-adjoint. Then A has a real eigenvalue.

Proof. The proof is very similar to that of Theorem 19. If p(X) ∈ R[X] is a monic polynomial
such that p(A) = 0, then we write

p(X) = p1(X) · · · pr(X)(X − λ1) · · · (X − λk),

where pj(X) are second degree polynomials with non-real roots. Hence if we write pj(X) =
X2 + bjX + cj , then b2j − 4cj < 0. Hence the fact that p(A) = 0 implies that

p1(A) · · · pr(A)(A− λ1I) · · · (A− λk) = 0.

Since pj(A) are invertible by the last lemma, we deduce that (A− λ1I) · · · (A− λk) = 0. So,
one of A− λjI must be singular.

If no such linear factors occur, then p(A) is invertible in view of the last lemma and hence
p(A) 6= 0, a contradiction.

Proceeding as in the proof of Theorem 90, we arrive at

Theorem 102 (Spectral Theorem for Self-adjoint Maps). Let A : V → V be self-adjoint.
Then there exists an ON basis of V consisting of eigenvectors of A.

Reason:

Ex. 103. Find the matrix (w.r.t. the standard basis) of an orthogonal map of R2 with the
Euclidean inner product. Hint: Note that {Ae1, Ae2} is an orthonormal basis of R2 and that

any vector of unit norm can be written as

(
cos θ
sin θ

)
for some θ ∈ R. Hence A is either of the

form k(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
or of the form r(θ) :=

(
cos θ sin θ
sin θ − cos θ

)
for some θ ∈ R. k(θ)

(resp. r(θ)) is called a rotation (resp. a reflection).

Ex. 104. If A : V → V is orthogonal and λ is an eigen value of A, then λ = ±1.
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Ex. 105. Let T : V → V be orthogonal. Let A := T + T−1 = T + T ∗. Then A is symmetric
and let V := ⊕iVi be the orthogonal decomposition of A into distinct eigen spaces. Then

(a) T leaves each Vi invariant.
(b) If Vλ is an eigen space of A with eigen value λ, then we have T 2 − λT + I = 0 on

Vλ.
(c) If λ = ±2, then T acts as ±I on Vλ.
(d) If λ 6= ±2, thenW := Rv+R(Tv) is a two-dimensional subspace such that TW ⊂W .

Also, if Vλ = W ⊕ W⊥, then TW⊥ ⊂ W⊥. Hence Vλ is orthogonal direct sum of two
dimensional vector subspaces invariant under T .

(e) If T : R2 → R2 is orthogonal and satisfies T 2 + λT + I = 0 for some λ 6= ±2, then
T is a rotation.

Ex. 106 (Spectral Theorem for Orthogonal Operators). Let T be orthogonal. Then there
exists an orthonormal basis of V with respect to which T can be represented as follows:

T =



±1
. . .

±1 (
cos θ1 − sin θ1
sin θ1 cos θ1

)
. . . (

cos θr − sin θr
sin θr cos θr

)


.

That is, T is the block matrix

T = diag
(
±1, · · · ,±1, k(θ1), · · · , k(θr)

)
.

Hint: Ex. 105 and Ex. 103.

The last couple of results are valid for inner product spaces over R or C. Let V be an
inner product space over R or C and A : V → V be linear.

Definition 107. A is said to be positive if (i) A is self-adjoint and (ii) 〈Ax, x〉 ≥ 0 for all
x ∈ V .

Ex. 108. Show that the eigen values of a positive operator A are nonnegative and that there
exists a unique operator S such that S is positive and S2 = A. The operator S is called the
positive square root of A.

Ex. 109 (Polar Decomposition for Invertible Maps). Let A : V → V be nonsingular. Then
there exists a unique decomposition A = PU where U is unitary (or orthogonal) and P is
positive. (This decomposition is called the polar decomposition of A.) Hint: Think of complex
numbers. The map AA∗ is positive and let S be its positive square root. Then U := S−1A
may do the job. But why does S−1 exist?

Ex. 110 (Polar Decomposition). Let A : V → V be any linear map. Then there exists a
unitary (orthogonal) map U and a positive map P such that A = PU . Hint: Let S :=

√
AA∗.

Let W := SV . Define U1 : W → V by setting U1(Sv) := Av. Observe that dimW⊥ =
dim(AV )⊥. Define a unitary map U2 : W⊥ → (AV )⊥.
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