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The prototype equation of this chapter is y′′+k2y = 0 where k is a positive constant. The
solution C sin k(x − x0) is oscillatory in R. We observe two features of these solutions. The
first is that the zeros of two linearly independent solutions are interlaced. If y1 and y2 are two
linearly independent solutions and if x1 and x2 are two consecutive zeros of y1, then y2 has
exactly one zero in (x1, x2). The second noteworthy feature is that the distance between two
consecutive zeros is π/k and becomes smaller as k becomes larger. We generalize these two
observations to the case of solutions of differential equations of the form (ry′)′(x)+p(x)y(x) =
0.

Consider the second order DE

a(x)y′′ + b(x)y′ + c(x)y = 0, (1)

where a, b, c are continuous with a(x) > 0 on an interval J . If we multiply both sides of the
equation (1) by

(1/a)e
∫ x
x0

b(x)
a(x) dx

for x0, x ∈ J , then the equation (1) can be rewritten in the form

[r(x)y′]′ + p(x)y = 0, (2)

where r > 0 and r, p are continuous on J . Here,

r(x) := e
∫ x
x0

b(x)
a(x)

dx
and p(x) =

c(x)

a(x)
e
∫ x
x0

b(x)
a(x) dx.

Equation (2) is called the self-adjoint form of the equation (1).

Example 1. The equations y′′−y = 0 and y′′+y = 0 are in self-adjoint form. The self-adjoint
form of Euler’s equation x2y′′ − xy′ + 2y = 0 on (0,∞) is

(
1

x
y′)′ +

2

y3
y = 0.

Ex. 2. Put the following DE’s in self-adjoint form:
(a) x2y′′ + xy′ + (x2 − n2)y = 0 (n constant).
(b) xy′′ + (1− x)y′ + ny = 0 (n constant).
(c) y′′ − 2xy′ + 2ny = 0 (n constant).
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Theorem 3 (Sturm Separation Theorem). Let y1 and y2 be two linearly independent solutions
of Eq. (2) on the interval J = [a, b]. Assume that r(x) > 0 on J . Then between any two
consecutive zeros of y1 there will be precisely one zero of y2.

Proof. Since yj are linearly independent, neither can be the zero solution. Let x1 and x2 be
two consecutive zeros of y1 with x1 < x2. Since −y1 is also a solution, we may assume that
y1(x) > 0 on (x1, x2). Similarly we may assume that y2(x1) ≥ 0. Since yj ’s are solutions of
the DE (2), we get

(ry′1)
′ + py1 = 0 and (ry′2)

′ + py2 = 0.

Multiplying the first of these equations by y2 and the second by y1, and subtracting the
resulting equations we obtain

y2(ry
′
1)
′ − y1(ry′2)′ = 0 or y2(ry

′
1)
′ = y1(ry

′
2)
′

Integrate both sides from x1 to x2 to get∫ x2

x1

y2(ry
′
1)
′ dx =

∫ x2

x1

y1(ry
′
2)
′ dx. (3)

We integrate both sides of (3) by parts to obtain

y2(ry
′
1) |x2x1 −

∫ x2

x1

ry′1y
′
2 dx = y1(ry

′
2) |x2x1 −

∫ x2

x1

ry′1y
′
2 dx.

Cancelling the equal terms (involving the integrals) and rearranging we have

r(x1)W (y1, y2)(x1) = r(x2)W (y1, y2)(x2). (4)

Thanks to the linear independence of y1 and y2, the Wronskian is never zero on J . However,
by hypothesis, y1(x1) = 0 = y1(x2), so that

W (x1) = −y′1(x1)y2(x1) 6= 0 and W (x2) = −y′1(x2)y2(x2) 6= 0. (5)

By our assumption y2(x1) ≥ 0. From (5), we deduce that y2(x1) > 0 and y′1(x1) 6= 0. (The
latter can be arrived at by the uniqueness and the linear independence also!) Since y1(x) > 0
for x1 < x < x2, we must have y′1(x1) > 0. (Why? See Exercise 4 below.) Hence we conclude
that W (x1) < 0. Similarly, y′1(x2) < 0. Since r(x) > 0 on J , Eq. (4) implies that W (x2) is
negative. Thus from (5) and the fact that y′1(x2) < 0, we conclude that y2(x2) < 0. It follows
from the intermediate value theorem that y2 must have a zero in (x1, x2).

Finally, y2 can have only one zero between x1 and x2. If it had more than one, say
x1 < α < β < x2 we can reverse the roles of y1 and y2 in the above argument to conclude
that y1 must have a zero in (α, β) ⊂ (x1, x2). This contradicts our hypothesis that x1 and x2
are consecutive zeros of y1.

Ex. 4. If u is a solution of (2) such that u(x1) = 0 = u(x2) and u(x) > 0 on (x1, x2), then
u′(x1) > 0.

Ex. 5. Prove that between any two consecutive zeros of sinx there is a zero of sinx+ cosx.
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Ex. 6. Show that the functions f(x) := a sinx + b cosx and g(x) := c sinx + d cosx have
alternating zeros whenever ad− bc 6= 0.

Ex. 7. Show that the zeros of cos log x and sin log x alternate.

The Sturm separation theorem indicates that the number of zeros of any two solutions of
(2) are approximately the same. However it does not guarantee the existence of any zeros.
We now prove a theorem which compares the oscillation of the solutions of two different
equations.

Theorem 8 (Sturm Comparison Theorem). Consider the DE’s

(r(x)y′)′ + p(x)y = 0 (6)

(r(x)z′)′ + q(x)z = 0. (7)

Assume that r(x) is positive and y and z are solutions of (6) and (7) respectively. Let x1 and
x2 be two consecutive zeros of y in J . Assume that q(x) ≥ p(x) for x ∈ J := [a, b] with strict
inequality holding at some point x0 ∈ (x1, x2) .

If z vanishes at x1, it will vanish again in (x1, x2). Moreover, in that case, every solution
of (7) will vanish at some point in the interval (x1, x2).

Remark 9. Roughly speaking, the first conclusion says that larger p in (2) the more rapidly
its solutions will oscillate.

Proof. As in the last theorem, we may assume without loss of generality, that y > 0 on
(x1, x2) and that y′(x1) > 0 and y′(x2) < 0. Multiplying (6) by z(x) and (7) by −y(x) and
adding, we obtain

z(ry′)′ − y(rz′)′ + (q − p)yz = 0.

Integrate this equation from x1 to x2 and apply integration by parts to the first two terms.
We get (

zry′ |x2x1 −
∫ x2

x1

)
−
(
yrw′ |x2x1 −

∫ x2

x1

)
=

∫ x2

x1

(q − p)yz dx.

The two integrals on the left-hand side of this equation cancel out. Gathering like terms
yields

r(x2)W (z, y)(x2)− r(x1)W (z, y)(x1) =

∫ x2

x1

(q − p)yz dx. (8)

Using the facts z(x1) = 0 = y(x1) and y(x2) = 0 the equation (8) reduces to

r(x2)z(x2)y
′(x2) =

∫ x2

x1

(q − p)yz dx. (9)

If z(x) > 0 on (x1, x2), then the integrand on the RHS of (9) is nonnegative. It is, in fact,
positive, since q(x0) > p(x0) for some x0 ∈ (x1, x2). (Use the continuity of q − p and the
monotonicity of the integral.) We therefore conclude that the RHS of (9) is positive. Since
r(x2) > 0 and y′(x2) < 0, it follows that z(x2) < 0. Since z > 0 on (x1, x2), it follows by
continuity that z(x2) ≥ 0. It follows from this contradiction that z must vanish at some point
in (x1, x2).

If z1 is another solution of (7), not a scalar multiple of z, then by Sturm’s separation
theorem, z1 must have a zero between the zeros of z and therefore in the interval (x1, x2).
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Corollary 10. Consider the equation y′′ + py = 0. Assume that 0 ≤ m ≤ p(x) ≤ M for
x ∈ (a, b). If a solution of this equation has two consecutive zeros x1 < x2 in (a, b), then

M−1/2π ≤ x2 − x1 ≤ m−π/2m.

Proof. Compare this equation with z′′ +Mz = 0. Then z(x) = sin
√
M(x− x1) is a solution

with a zero at x1. The zeros of this solution nearest to x1 are at a distance M−1/2π, the first
inequality follows. The second is proved in an analogous manner by considering z′′ + my =
0.

Example 11 (A Typical Application: Bessel’s Equation). Consider the Bessel’s equation of
order p

x2y′′ + xy′ + (x2 − p2)y = 0, (x ∈ (0,∞)),

where p is a constant. This can be transformed by the substitution y = u/
√
x to

u′′ +

(
1 +

1− 4p2

4x2

)
u = 0. (10)

(Note that this substitution does not change the zeros!) We compare this with z′′ + z = 0
and arrive at the following conclusions.

(a) For 0 ≤ p < 1/2, every solution of Bessel’s equation of order p has at least one zero in
every interval ⊂ (0,∞) of length π.

(b) If p = 1/2, every nontrivial solution of Bessel’s equation of order p,

y = u/
√
x =

1√
x

(c1 cosx+ c2 sinx),

has zeros separated by an interval of length π for x > 0.

(c) If p > 1/2, every solution of Bessel’s equation of order pcan have at most one zero in
every interval of length π.

Ex. 12. Let p < 0 on [a, b]. Let y be a nontrivial solution of the equation y′′+ py = 0. Then
y can have at most one zero in [a, b]. Hint: Suppose not. Let x1 and x2 with a ≤ x1 < x2 ≤ b
be zeros of y. Compare this solution with the solution z = 1 of z′′ = 0.

Ex. 13. With the notation of Cor. 10 show that the number n of zeros in (x1, x) ⊂ (a, b)
satisfies the following inequalities

x− x1
π

√
m < n <

x− x1
π

√
M.

Ex. 14. Show that every solution of y′′+ t2y = 0 on [1,∞) must have a zero in [1,∞). Hint:
Compare with z′′ + z = 0.

Ex. 15. Which of the equations (a) y′′+(1+x2)y = 0, (b) z′′+2xz = 0 has the more rapidly
oscillating solution in the interval [1, 10]?

Ex. 16. How many zeros does every solution of y′′ + xy = 0 have in the interval (0,∞)?
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Ex. 17. Prove that every solution of Bessel’s equation of order p ≥ 0 has infinitely many
zeros in (0,∞).

We end this topic with a simple proof of the following well-known oscillation theorem.

Theorem 18. Consider (ry′)′ + py = 0 where r > 0 and r, p are continuous. Assume that∫∞
(1/r) = ∞ =

∫∞
p, where the lower limit is arbitrarily large. Then any solution of the

equation oscillates in (0,∞).

Proof. Assume the contrary. Then there exists a solution y and A > 0 such that y has no zeros
in (A,∞). Let z := (ry′)/y. Then z is a solution of the (Riccati) equation z′+ (z2/r) + p = 0
on (A,∞). Integrating this equation between A and t sufficiently large yields

z(t) +

∫ t

A

z2

r
= z(a)−

∫ ∞
A

p < 0. (11)

If we let R(t) :=
∫ t
A
z2

r , then (11) tells us that R2 ≤ R′r. Separating the variables and
integrating we get ∫ t

A

1

r
=

∫ t

A

dR

R2
=

1

R(A)
− 1

R(t)
≤ 1

R(A)

which contradicts our hypothesis that
∫∞

(1/r) =∞.

Ex. 19. Give another solution of Ex. 17.

Ex. 20. Let y be a nonzero solution of y′′ + py = 0 on J := [a, b]. Show that y cannot have
infinitely many zeros in J .
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