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Abstract

After recalling the Sturm’s comparison theorem, we illustrate some of its typical ap-
plications in the theory of surfaces. Even though some acquaintance with Gauss theory of
surfaces will be advantageous, it is not absolutely necessary, as I have striven to illustrate
the uses in the case of a sphere in 3-space.

Introduction

Consider the spheres S2(r) and S2(R) of radii 0 < r < R in the euclidean 3-space E3. Take
two “similarly situated” curves, say, the equators cr and cR on the spheres. We know that
l(cr) < l(cR), where l(c) denotes the length of a curve c in E3. What we are going to do is
to give a “complicated” proof of this obvious fact (and other such) using Sturm’s theorem.
If you have a smattering of the theory of surfaces, you can easily adapt the proof which we
present for the spheres to the general case of comparing the lengths of 2 “similarly situated”
curves in 2 different surfaces. However let me assure you that if you follow diligently, there
is no need for a previous exposure to Differential Geometry of surfaces. In fact, I have tried
my best to write this in a such a way that this exposition will enhance your understanding if
you start learning differential geometry of surfaces.

I hope you have an intellectually stimulating reading.

1 Sturm’s Theorem

We recall Sturm’s theorem and its proof briefly.

Theorem 1 (Sturm). Let yi be nonnegative solutions of y′′i + kiyi = 0 on an interval [0, l].
Assume that both of them satisfy either Eq. 1 or Eq. 2:

y1(0) = y2(0) = a > 0 & y′1(0) = y′2(0) (1)

y1(0) = y2(0) = 0 & y′1(0) = y′2(0) = b > 0 (2)

We also assume that k1(s) ≤ k2(s). If si is the first zero of yi to the right of 0, then i) s2 ≤ s1
and ii) y1 ≥ 0 and y2(s) ≤ y1(s) for 0 < s ≤ s2. Furthermore, equality holds at s0 ∈ (0, l) iff
k1(s) = k2(s) for 0 < s < s0.
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Proof. We shall only give a sketch of a proof. Multiply the first equation by y2 and the second
by y1 and then subtract the latter from the former. We add and subtract the term y′1y

′
2 to

this. The resulting equation is

y′′1y2 − y′1y′2 − (y1y
′′
2 − y′1y′2) + (k2(s)− k1(s))y1y2 = 0.

Integration and the initial conditions lead us to

(y′1y2 − y1y′2)(s) =

∫ s

0
(k1 − k2)y1y2ds.

We note the identity (d/ds)(y1/y2) = (y′1y2−y1y′2)/y22 and proceed to complete the proof.

2 Surfaces-A Rapid Introduction

Let Rn be the n-dimensional vector space over R. We have a natural basis {ei : 1 ≤ i ≤ n}
of Rn over R, where ei := (0, . . . , 0, 1, 0, . . . , 0), 1 at the i-th place. We identify any x ∈ Rn
with the n-tuple (x1, . . . , xn) where x :=

∑
xiei. We then have the euclidean inner product

〈x, y〉 :=
∑n

i=1 xiyi, where x =
∑
xiei and y =

∑
yiei. We let En stand for Rn with the

euclidean inner product. En is called the n-dimensional euclidean space. We have the norm
on En induced by the inner product ‖x‖ :=

√
〈x, x〉 for x ∈ En. We often denote En by E.

A curve in U , an open subset of E, is a “smooth” map c : (−ε, ε)→ U for some positive
ε. By smooth we mean that it has sufficiently many continuous derivatives on (−ε, ε). This is
same as saying that the component functions ci have sufficiently many continuous derivatives.
Here, of course, c(t) := (c1(t), . . . , cn(t)). We say that it passes through the point p := c(0).
The tangent to this curve at c(t) is by definition the vector

c′(t) := lim
h→0

c(t+ h)− c(t)
h

= (c′1(t), . . . , c
′
n(t)).

c′(t) is also called the velocity vector of c at c(t). The length l(c) of the curve c is defined by
setting l(c) :=

∫ ε
−ε ‖c

′(t)‖ dt.

Ex. 2. Let h : (a, b)→ (−ε, ε) be a smooth map such that h′(s) 6= 0 for any a < s < b. Then
c ◦ h : (a, b) → U is a curve tracing the same image as c. h is called a reparameterization of
c. Show that l(c ◦ h) = l(c).

We can put this in a picturesque language: The train travels the same distance whether
it is slow or fast!

We restrict ourselves to n = 3.

There are geometric objects other than open subsets in En on which we can talk of smooth
curves. For example, E2 :=

∑2
i=1Rei. A more suggestive example is any sphere of radius

r > 0:
S(r) ≡ S2(r) := {x ∈ E3 : 〈x, x〉 = r2}.

It is clear that any point on S(r) has a neighbourhood which is homeomorphic to a disk in
E2. Roughly speaking, a surface in E3 is a subset S of E3 with this property. More precisely,
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Definition 3. A surface in E3 is a set S ⊂ E3 such that every point p ∈ S has an open
neighbourhood V in E3 with the following property:
There exists an open set U in E2 and a smooth map ϕ : U → V such that i) ϕ : U → V ∩ S
is a homeomorphism and ii) ϕ is regular, i.e., the Frechet derivative or what is the same

the Jacobian dϕ(u, v) :=

(
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂y

∂y
∂v

∂z
∂v

)
(u, v) : E2 → E3 is of ϕ is of rank 2 at every point

(u, v) ∈ U . Here we have written ϕ(u, v) = (x(u, v), y(u, v), z(u, v)). (ϕ,U) is called a
parameterization of V ∩ S.

Example 4. S(r) has a parameterization (u, v) 7→ (r cosu cos v, r cosu sin v, r sinu) for 0 <
v < 2π and 0 < u < π.

Example 5. A surface of revolution. Let c : (a, b) 3 u 7→ (x(u), 0, z(u)) be a curve in the xz-
plane. We revolve it around the z-axis to get a surface of revolution with the parameterization:
ϕ(u, v) := (x(u) cos v, x(u) sin v, z(u)) for (u, v) ∈ (a, b) × (0, 2π). (Notice that Example eg:1
is a special case.)

Example 6. Let f : U → R be a smooth function on an open set U of E2. Then S :=
{(x, y, z) : z = f(x, y), x, y, z ∈ R} is a surface. The parameterization is given by (x, y) 7→
(x, y, f(x, y)).

Example 7. Let f : Ω ⊂ E3 → R be a smooth function. We say that a ∈ f(Ω) is a regular
value if for any p ∈ Ω with f(p) = a, the gradient of f at p is nonzero: (∂f∂x ,

∂f
∂y ,

∂f
∂z )(p) 6= 0.

If a is a regular value of f then S := {p ∈ Ω : f(p) = a} is a surface. I shall leave this as an
instructive exercise in the use of inverse function theorem.

We define a (smooth) curve in a surface S as follows: c : (−ε, ε)→ S is a curve if for every
s ∈ (−ε, ε), we have a neighbourhood V of c(s) in E3 and a δ > 0 such that the restriction
c : (s− δ, s+ δ)→ V is smooth. We can therefore speak of tangents and the lengths of curves
as earlier.

Example 8. In S(r), consider the equator c in the xy-plane: c : s 7→ r cos se1 + r sin se2 ≡
(r cos s, r sin s, 0) for 0 ≤ s ≤ 2π. Then c′(s) = −r sin se1 + r cos se2 ≡ (−r sin s, r cos s, 0) so
that ‖c′(s)‖ = r for all s and hence l(c) = 2πr, as is to be expected.

Ex. 9. Let ϕ : U → V ∩S be a parameterization around p ∈ S. We let X1 := (∂x∂u ,
∂y
∂u ,

∂z
∂u) and

X2 := (∂x∂v ,
∂y
∂v ,

∂z
∂v ). Xi are tangent vectors at ϕ(u, v) to S and they are linearly independent

for all (u, v) ∈ U . (Can you think of some natural curves which have these as their tangent
vectors?)

Ex. 10. We let TpS := RX1 ⊕ RX2 for all p = ϕ(u, v) with (u, v) ∈ U . Then TpS is a
2-dimensional subspace of E3 independent of the parameterization. It is called the tangent
space of S at p.

Ex. 11. The vector or the cross product np := X1 × X2(u, v) is nonzero. It is called the
normal field to the surface at p, since it is perpendicular to TpS.

Ex. 12. Verify that for S = S(r) the normal at x ∈ S is given by nx = x/r. In the case of
S = f−1(a) (Eg. 7), we have np = ∇f(p), the gradient of f at p.
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Geodesics

Definition 13. A geodesic on a surface S is a curve c : (−ε, ε) → S with zero acceleration
as observed from the surface. By this we mean that the acceleration c′′(s) ⊥ Tc(s)S for all s.

Thus, the tangential component (c′′)> = 0.

A more intuitive definition runs as follows: The length of the segment between any two
of its sufficiently nearby points is less than or equal to the length of any curve joining these
points. That is, given any two points c(t), c(t+δ) sufficiently nearby, the length of the segment

of the curve between these points, viz.,
∫ t+δ
t ‖c′(s)‖ ds is less than or equal to l(σ), the length

of any curve σ that joins these points. This definition is equivalent to the above one, but we
shall not prove it in our lectures.

The analytical definition (c′′)> = 0 can be translated into a system of second order
ordinary differential equations via parameterization. Hence by the existence and uniqueness
theorem in the theory of ordinary differential equations, it follows that there exists a unique
geodesic with given initial data. That is, if p ∈ S and v ∈ TpS are given there exists a
“unique” geodesic cp,v : (−ε, ε) → S such that c(0) = p and c′(0) = v. (ε may depend upon
v.)

Example 14. The great circles, i.e., the intersection of the planes through the origin and
S(r), are the geodesics on a sphere S(r). We can describe these without messy notation. Let
x ∈ S and v( 6= 0) ∈ TpS. Note that this means 〈x, v〉 = 0. (See Exer. 9.) We then want the
description of a circle centered at the origin of radius r in the plane spanned by x and v:

c(s) ≡ cx,v := cos sx+
r

‖v‖
sin sv.

One easily sees that c′′(s) = −c(s) ⊥ TpS and that cx,av(s) = cx,v(as) for any a ∈ R.

Example 15. The curves c(s) := (r cos s, r sin s, rs) are geodesics on a cylinder S := {(x, y, z) :
x2 + y2 = r2}.

A more natural way of parameterizing a geodesic through the arc length, i.e., a param-
eterization with ‖c′‖ = 1. If c : [0, T ] → S is a geodesic, we first of all note that, for any
t, c′(t) 6= 0 since otherwise it has to be the constant curve due to uniqueness. (Do you un-
derstand this reasoning completely?) If we introduce s(t) :=

∫ t
0 ‖c

′(t)‖ dt, s is then a strictly
increasing function and hence we can use it to reparametrize c. In the new s-parameterization,
we have l(c |[0,a]) = a for any 0 ≤ a ≤ T .

The geodesics of the sphere with respect to the arc length are given by c(s) = cos srx +
r sin s

rv for v ∈ TpS with ‖v‖ = 1. (This is enough; see the last line of Eg. 14.) The reader is
urged to check the details of this.

Gaussian Curvature

The most important concept in the theory of surfaces is Gaussian curvature. If S is a surface
in E3 and (ϕ,U) is a parameterization of a piece of S, the vector field np := X1 × X2 is a
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nonzero normal vector field on ϕ(U) ⊂ S. Hence we have a normal field n of unit norm on
ϕ(U), unique up to sign. Thus we have a map n : ϕ(U)→ S2(1), called the Gauss map.

Example 16. 1) For S = S(r), the Gauss map is x 7→ x/r.
2) For S = E2, the Gauss map is the constant x 7→ e3.
3) For the cylinder in Eg. 15, the Gauss map is (x, y, z) 7→ (1/r)(x, y, 0).

Definition 17. As x varies over a small oriented area around p in S, the Gauss map nx
sweeps out an oriented area in S2(1). The rate of change of this oriented area is called the
Gaussian curvature of S at p.

A more precise definition is analytical. We define K(p), the Gaussian curvature of S at
p to be the determinant of the Jacobian dnp of the Gauss map. This is what we should
expect if we remember the change of variable formula from calculus of several variables. It is
important to realize that K(p) does not depend on the choice of the sign of n.

Example 18. For the sphere S(r) the Gauss map can be thought of the restriction of the
linear map x 7→ x/r from E2 to itself and hence the curvature is given by K(p) = 1/r2. Thus
a sphere of smaller radius is more ‘curved’ than a sphere of larger radius. This is certainly
clear if you look at the way the Gauss map sweeps out areas.

Example 19. The plane has curvature 0. This is clear either from the geometric definition
or from the analytical one.

Example 20. The cylinder springs a surprise on almost everybody. Contrary to general
expectations, it is not ‘curved’ at all, i.e., its Gaussian curvature is zero. For as x varies over
a region of the surface, nx varies over a part of the equator only, whose area is 0!

Complete Surfaces & Hopf-Rinow Theorem

In general, for a given surface S and p ∈ S and v ∈ TpS, the geodesic may not be defined on
all of R. See, for example, the surface E2 \ {(0, 0, 0)} in E3. We usually deal with surfaces on
which all geodesics are defined on the entire line R. Such surfaces are said to be geodesically
complete. The spheres S(r), the plane E2 ⊂ E3, the cylinder S := {(x, y, z) : x2 + y2 = r2}
are geodesically complete.

On any surface M , we have a pseudo-metric: d(p, q) := inf l(σ), where the infimum is
taken over all (piece-wise) smooth curves σ joining p and q. One can show easily that d is, in
fact, a metric and that the metric topology on M coincides with the subspace topology.

We now quote the basic result about the geodesically complete surfaces without a proof:

Theorem 21 (Hopf-Rinow). hopf Let M be a surface in E3. The following are equivalent:
M is geodesically complete.
(M,d) is complete.
Any closed and d-bounded subset of M is compact.

Any of the above statements implies the following: Given any p, q ∈ M , there exists a
geodesic c : [0, 1]→M such that c(0) = p and c(1) = q and l(c) = d(p, q).
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If M is geodesically complete, we can define the exponential map. If v ∈ TpM , then we
set expp v := cp,v(1) since 1 is in the domain of any geodesic.

Example 22. Let x ∈ S := S2(1). Let u ∈ TxS be of norm 1, i.e., 〈u, x〉 = 0 and ‖u‖ = 1.
Take v := π/2v. Then

expx v := cx,v(1) = cx,u(π/2) = cosπ/2x+ sinπ/2u = u.

3 Rauch Comparison for Spheres

It is clear that on any geodesic c in S(r) if we start from c(0), after πr, the geodesic ceases to
be minimizing. That is, if we consider any point c(s) with s > πr, then there is a shorter way
of reaching it, viz., along the opposite direction. Jacobi attempted to find conditions on the
parameter value s0 from which onwards the geodesic ceases to be minimizing. He approached
the problem through the calculus of variations. We shall adopt somewhat simpler and more
geometric approach.

Let c be a given geodesic. Following Jacobi we start with a 1-parameter variation ct
(−ε < t < ε) of geodesics such that c0 = c and ct(0) = c(0). We wish to write such a family
in the case the geodesic c(s) := r(cos(s/r)e1 + sin(s/r)e2) in S(r). It is easy if you draw some
picture or if you realize that you have to vary the tangent e2 of c: If we write H(s, t) := ct(s),
then

H(s, t) := r(cos(s/r)e1 + sin(s/r)(cos t e2 + sin t e3)).

The variational field of a geodesic variation H is by definition ∂H
∂t |t=0. Hence in our case it is

J(s) :=
∂H

∂t
|t=0= r sin(s/r)(− sin t e2 + cos t e3) |t=0= r sin(s/r)e3.

J is called the Jacobi field of the geodesic variation.

Remark: All of the above can easily be done in a more general set up. The key to this is
the following observations:
i) e3 is the tangent to the curve t 7→ σ(t) := cos t e2 + sin t e3 through e2 ≡ c′(0) in Te1S ii)
J(0) = 0 and J ′(0) = e3 and iii) expe1(sσ(t)) = H(s, t).

Now we are ready to exhibit the link that connects geometry and analysis. It is the fact
that J satisfies the following second order equation: J ′′ + (1/r2)J = 0 with J(0) = 0 and
J ′(0) = e3. This can be reduced to an equivalent scalar equation by writing J(s) = j(s)e3
where j(s) := r sin(s/r). Hence we get j′′ + (1/r2)j = 0 with the initial conditions j(0) = 0
and j′(0) = 1. The important thing to note here is that the coefficient is the Gaussian
curvature.

In the general case also we get an exact analogue, if we start with a 1-parameter family
of geodesic variation of a given geodesic c. That is, the jacobi field, viz., the variational field
will satisfy the Jacobi equation J ′′(s) + K(s)J(s) = 0 along c where K(s) is the Gaussian
curvature function along c. Again this can be reduced to a scalar equation.

We can now state the result of Jacobi without proof :
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Theorem 23 (Jacobi). If H is a 1-parameter variation of geodesics and J(s) := ∂H
∂t |t=0 is

the Jacobi field along c := H(s, 0) such that ct(0) := H(0, t) = c(0) for all t and such that
there exists s0 with J(s0) = 0 for some s0 > 0, then c is not minimizing after s0.

Using this we give our first application of Sturm’s theorem to the geometry of surfaces.

Theorem 24 (Bonnet). Let M be a complete surface (in R3). Assume that the curvature
function K(p) ≥ r for some r > 0 for all p ∈ M . Then M has diameter ≤ π/

√
r. Hence M

is compact.

Proof. The proof uses the Hopf-Rinow theorem. Let p and q be points of M . Since M is
complete, there exists a geodesic c joining p and q such that l(c) = d(p, q). We may assume
that it is parameterized by arc length. By Sturm’s theorem it follows that any Jacobi field
along c has a zero at or before π/

√
r. Hence c is not minimizing if d(p, q) > π/

√
r. Hence

d(p, q) ≤ π/
√
r.

The reader should note that we used only a weaker version of Sturm’s theorem. We now
discuss another consequence of Sturm’s theorem which compares the solutions themselves.
Roughly speaking, the result we wish to illustrate says that the length of a curve on a surface
of lesser curvature is greater than or equal to that of a “similar” curve on a surface of larger
curvature. This result is known as Rauch’s theorem.

To illustrate Rauch’s theorem in our case, let me first show how to relate the length of a
curve with Jacobi fields.

Let c(s) := r cos s e1 + sin s e2 be the equator in S(r). To compute the length of c, say,
from 0 to π, we need to evaluate

∫ π
0 ‖c

′(s)‖ ds. In particular, we need to compute ‖c′(s)‖.
As we have a concrete parameterization we could forge ahead straight-away. In stead, we
indicate the strategy of Rauch which involves jacobi fields and Sturm’s theorem.

From p = e1, we have the unique minimizing geodesic γs : t 7→ H(s, t) := γs(t) :=
cos t e1 + sin t(cos s e2 + sin s e3) to the point c(s). γs(π/2) = c(s). Now if we fix an s0, then
s 7→ γs is a geodesic variation of γs0 and hence we have a corresponding Jacobi field Js0 along
γs0 given by

Js0(t) :=
∂H

∂s
|s=s0 (t) = sin t(− sin s0 e2 + cos s0 e3).

Now the important observation is that the value of Js0(t) at t = π/2 is c′(s0)!

Thus to compare the lengths of the equators cr and cR we proceed as above to get jacobi
fields Jrs and JRs with the property that Jrs (π/2) = c′r(s) and JRs (π/2) = c′R(s). Now Jrs is a
solution of the Jacobi equation Jrs

′′+ r−2Jrs = 0. Analogous result holds for r replaced by R.
It is easy to see that we can invoke Sturm to conclude that JRs (t) ≥ Jrs (t) for all t ∈ [0, π/2]
and for any fixed s. In particular, at t = π/2, we have∥∥c′r(s)∥∥ = Jrs (π/2) ≤ JRs (π/2) =

∥∥c′R(s)
∥∥ .

We thus have a point-wise estimation of the tangent vectors of the curves under question and
hence l(cr) ≤ l(cR).

How far this proof goes over to the general situations? Almost verbatim, if one knows
the correct jargon! Let Mi be surfaces and pi ∈ Mi. We fix a linear isometry of Tp1M1 onto
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Tp2M2. Let ε > 0 be such that the exponential map exppi is a diffeomorphism on the ball
Bpi(0, ε) ⊂ TpiMi. Let σi : [0, 1] → Bpi(0, ε) be a curve. Let ci(s) := exppi(σi(s)). Then we
can compare the lengths of the tangent vectors of the curves ci(s) (and hence the lengths of
the curves themselves) in a way entirely analogous to the above.

We may also use the above to deduce an area comparison theorem (due to Bishop) and
an angle comparison theorem (due to Alexandrov).

For a nice introduction to Differential Geometry of Surfaces, we refer the readers to
do Carmo, M., Differential geometry of curves and surfaces, Prentice-Hall, New Jersey, 1976.
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