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Abstract

In this article, we introduce the reader to the basic facts of the theory of surfaces in
a geometric way. This is based on a series o ftwo lectures given in Summer School in Ad-
vanced Real Analysis and its Applications to PDE, IISc-TIFR Mathematics Programme,
Bangalore, May 18–June 8, 1992.

1 Theory of Surfaces–Preliminary Notions

Our aim here is to introduce the reader to some basic concepts and results in the theory
of surfaces in R3. We shall endeavour to instill geometric intuition and a feeling for the
subject. In particular, we shall not stop to prove various equivalent definitions and concepts
introduced.

Let Rn be the n-dimensional vector space over R. We have a natural basis {ei : 1 ≤ i ≤ n}
of Rn over R, where ei := (0, . . . , 0, 1, 0, . . . , 0), 1 at the i-th place. We identify any x ∈ Rn
with the n-tuple (x1, . . . , xn) where x :=

∑
xiei. We then have the Euclidean inner product

〈x, y〉 :=
∑n

i=1 xiyi, where x =
∑
xiei and y =

∑
yiei. We let En stand for Rn with the

Euclidean inner product. En is called the n-dimensional Euclidean space. We have the norm
on En induced by the inner product ‖x‖ :=

√
〈x, x〉 for x ∈ En. We often denote En by E.

We shall denote by ∇f(p) the gradient of f at p.

Intuitively, our notion of a surface in Rn+1 is a nonempty subset S ⊂ Rn+1 such that each
p ∈ S has a relative open neighbourhood in S which is homeomorphic (diffeomorphic?) to
an open set in Rn and further (this is the most important) there exists a(n) (affine) tangent
hyperplane that best approximates S at p.

We shall start with the definition of a level surface. Let f : U ⊂ Rn+1 → R be a smooth
function on an open set U . Let c be in the image of f . Let S := f−1(c). To get a tangent
plane we impose a further condition on f : For each p ∈ S, ∇f(p) 6= 0. Such an S is called a
level surface of f at c. We look at some examples.

Example 1. The simplest function one can think of is an affine linear function of the form
f(x) := 〈x,N〉 − c for some c ∈ R where N := (a1, . . . , an) ∈ Rn+1. Since ∇f is the constant
vector N , we must assume that N 6= 0. In this case S := f−1(0) is a hyperplane.
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Example 2. Let g(x) := 〈x, x〉 − R2, x ∈ Rn+1, R > 0. Then S = g−1(0) is the sphere
of radius R centered at the origin. Note that the gradient ∇g(x) = (x1, . . . , xn+1) 6= 0, as
‖x‖ = R.

Example 3. A right circular cylinder of base radius R is a level surface in R3 if we consider
the function h(x) := x21 + x22 −R2.

Example 4. The saddle surface S := {(x, y, z) ∈ R3 : z = xy} is a level surface. (Proof?)

Before we define the tangent plane to a surface let us recall the concept of tangent vectors
to a curve in E.

A curve in U , an open subset of E, is a “smooth” map c : (a, b)→ U . By smooth we mean
that it has sufficiently many continuous derivatives on (−ε, ε). This is same as saying that
the component functions ci have sufficiently many continuous derivatives. Here, of course,
c(t) := (c1(t), . . . , cn(t)). We say that it passes through the point p := c(0). The tangent to
this curve at c(t) is by definition the vector

c′(t) := lim
h→0

c(t+ h)− c(t)
h

= (c′1(t), . . . , c
′
n(t)).

c′(t) is also called the velocity vector of c at c(t). The length l(c) of the curve c is defined by
setting l(c) :=

∫ ε
−ε ‖c

′(t)‖ dt.

Ex. 5. Let h : (a, b)→ (−ε, ε) be a smooth map such that h′(s) 6= 0 for any a < s < b. Then
c ◦ h : (a, b) → U is a curve tracing the same image as c. h is called a reparameterization of
c. Show that l(c ◦ h) = l(c).

We can put this in a picturesque language: The train travels the same distance whether
it is slow or fast!

A continuous map c : (a, b) → S ⊂ Rn+1 is said to be a smooth curve in S if c : (a, b) →
Rn+1 is smooth. If c : (−ε, ε)→ S and if p := c(0) then we say that c passes through p. The
tangent vector v := c′(0) is said to be a tangent vector to S at p. We denote by Tp(S) the set
of all tangent vectors to S at p. That is,

TpS := {v ∈ Rn+1 : ∃ a curve in S through p with c′(0) = v}.

This geometric definition does not reveal the fact that TpS is an n-dimensional vector sub-
spaces of Rn+1. So, we give an analytic definition of TpS.

Let S := f−1(0) . Let v ∈ TpS. Let c be any curve in S passing through p with c′(0) = v.
The map f ◦ c : (−ε, ε)→ R is then constant so that we have

0 =
d

dt
(f ◦ c(t)) |t=0= f ′(c(0))(c′(0)) = 〈∇f(p), v〉 .

Thus the ∇f(p) is orthogonal to any vector tangent to S at p. Hence ∇f(p) can be considered
as normal to the surface at p. This suggests us the following definition:

TpS := {v ∈ Rn+1 : 〈∇f(p), v〉 = 0}.
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Clearly, TpS is an n-dimensional linear subspace of Rn+1. The above two definitions can be
seen to be equivalent. (See Remark 9 below for an idea towards a proof.)

We invite the reader to convince himself this definition coincides with the notion of the
affine tangent plane if we translate tangent plane by p. That is, p+ TpS is the affine tangent
plane. See the pictures below (?!) in the case of a sphere and a cylinder.

An important property of the level surfaces is the existence of a smooth nowhere vanishing
normal field on S, viz., the map

p 7→ Np := N(p) :=
∇f(p)

‖∇f ‖ (p)
.

We now define a surface to be a nonempty subset in E that looks like a level surface
around each point. More precisely,

Definition 6. A nonempty subset S ∈ Rn+1 is said to be a surface in Rn+1 if for each p ∈ S,
there exists an open set Vp 3 p and a smooth function gp : Vp → R such that i) S∩Vp = g−1p (0)
and ii) ∇gp(x) 6= 0 for allx ∈ S ∩ Vp.

Remark 7. (May be omitted on first reading.) Def. 6 is the most convenient one for us to
work with. The more conventional definition is as follows:

Definition 8. A surface in En+1 is a set S ⊂ En+1 such that every point p ∈ S has an open
neighbourhood V in En+1 with the following property:
There exists an open set U in En and a smooth map ϕ : U → V such that i) ϕ : U → V ∩ S
is a homeomorphism and ii) ϕ is regular, i.e., the Frechet derivative, or what is the same, the
Jacobian

dϕ(u1, . . . , un) :=


∂x1
∂u1

· · · ∂x1
∂un

...
...

...
∂xn+1

∂u1
· · · ∂xn+1

∂un

 |(u1,...,un) : En → En+1

is of rank n at every point in U . Here we have written

ϕ(u1, . . . , un) = (x1(u1, . . . , un), . . . , xn+1(u1, . . . , un)).

The pair (ϕ,U) is called a parameterization of V ∩ S.

The tangent space in this case may be taken to be the image of the derivative of the
parameterizing map: TpS := dϕ(u)(Rn) where ϕ(u) = p.

That Def. 6 and Def. 8 are equivalent follows from an instructive application of the inverse
mapping theorem. (End of Remark.)

We shall however work with Def. 6. If S is a surface then TpS is defined as TpS := {v ∈
Rn+1 : 〈v,∇gp(p)〉 = 0}.

Remark 9. (May be omitted on first reading.) The equality of the all the tangent spaces
defined so far can be seen if one realizes the following facts:
i) TpU is the n-dimensional vector space Rn.
ii) ϕ carries smooth curves in U into smooth curves in V ∩ S.
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Note that given any point p ∈ S, there exits a unit normal field in S ∩ Vp, viz.,

x 7→ ∇gp(x)/ ‖∇gp(x)‖ .

Our next goal is to attach a numerical quantity to any point of S which will tell us how
curved S is at that point. Even though most of what we say below continues to be true in
higher dimensions, we shall restrict ourselves to n = 3.

In any kind of measurement we need a standard object against which we compare other
objects. Intuitively, we should like to think a plane in R3 is as “straight” and not curved at
all. Hence one way of measuring the curvature of S at p ∈ S is to see how much it deviates
from being a plane. As the tangent plane TpS is thought of as the plane best approximating
the surface at p, our first tentative definition of a curvature of the surface is the rate of change
of TpS as p varies over a path. (Differentiation or rate of change of quantities are best done
via curves!) But there are many directions or curves through any given point of the surface
and hence the question arises which are to be considered. As there are only two linearly
independent directions at each point p we may start with finding the rate of change of the
tangent spaces along two curves ci passing through p where c′i(0) form a basis of TpS.

Since the tangent spaces are 2-dimensional objects, we wonder whether there is any 1-
dimensional object whose rate of change will allows us to infer that of the tangent spaces. As
you may have guessed, there is an obvious choice, viz., the map p 7→ Np in the neighbourhood
S ∩ Vp. Hence our definition of curvature reads as follows:

The curvature at a point is the rate of change of a unit normal N along
two linearly independent directions at that point.

More precisely, if v ∈ TpS and c is any curve through p with c′(0) = v we then compute
DvN := d

dt(N ◦c(t)) |t=0. An easy application of the chain rule shows that DvN is independent
of the choice of the curve as long as c′(0) = v. Where does this vector DvN belong to? Since
〈N(c(t)), N(c(t))〉 = 1, on differentiation we get 2 〈DvN,Np〉 = 0. That is, DvN ∈ TpS.

Thus, we get a map Lp : TpS → TpS given by Lpv := DvN . It is easy to see that Lp is
linear. It can be shown that Lp is symmetric with respect to the inner product TpS inherits
from R3. Thus curvature of S is to be got as a numerical quantity from this symmetric linear
map Lp. Once we have a symmetric linear map of a finite dimensional inner product space we
think of the natural numerical quantities associated with it, viz., the eigenvalues, which are
real numbers. The eigen values λi(p) of Lp are called the principal curvatures of S at p. The
symmetric functions Hp := (1/2)[λ1(p) + λ2(p)] and Kp := λ1(p)λ2(p) are respectively called
the mean curvature and the Gaussian curvature of S at p. Of these Kp remains invariant if
we choose Ñ := −N as the unit normal to define L̃ = −L.

Remark 10. (May be omitted on first reading) The above symmetric functions have the
following property: They generate algebraically all the polynomial functions f : M(2,R)→ R
which are “invariant under conjugation”: f(AXA−1) = f(X) for all X ∈ M(2,R) and
invertible A.

λi(p)’s have geometric meaning, if we recall how we got them out of Lp: They are the
maximum and minimum of the function v 7→ 〈Lpv, v〉 on the compact space {v ∈ TpS : ‖v‖ =
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1}. Thus, if vi is an eigenvector of unit norm corresponding to the eigenvalue λi, then vi is
called a “principal direction.” Thus vi is a direction of “an extremum” for Lp.

Let us look at some of our earlier examples.

1) If S is the plane given by 〈X,N〉 + c = 0 then TpS = {v ∈ R3 : 〈v,N〉 = 0}, i.e., the
plane itself is translated paralleley to pass through the origin. Hence the unit normal field
p 7→ Np can be taken as Np := (N/ ‖N ‖) for all p ∈ S. Hence DvN = 0 for v ∈ TpS. Hence
the plane has the curvatures 0 as it should be.

2) Let S be a cylinder of base radiusR. Let p := (x0, y0, z0) ∈ S. There is an obvious choice
of 2 linearly independent directions through p, viz., those corresponding to the curves c1, the
straight line through p parallel to the z-axis and the circle which is the intersection of the
cylinder and the plane z = z0. The unit normal can be taken as Np := (x0, y0)/R. Now on c1,
Nq = Np for all q ∈ c1 and hence Dc′(0)N = 0. (For, q ∈ c1 will have the same x, y coordinates
but different “height” z. Hence Nq = (x0, y0, 0)/R. Also, c1(t) := (x0, y0, z0 + t) = p + te3
so that c′1(0) = e3. Hence e3 ∈ TpS and De3N = 0.) Thus, e3 is a principal direction with
principal curvature 0.

Since x20 + y20 = R2, we can find θ0 ∈ (0, 2π] such that x0 = R cos θ0, y0 = R sin θ0. Hence
c2 is given by

c2 := (R cos(θ0 + t), R sin(θ0 + t), z0)

so that c′2(0) = (−R sin θ0), R cos(θ0), 0). That is, c′2(0) = (−y0, x0, 0), the usual tangent to
the circle. The unit normal field along c2 is given by

N(c2(t)) := (cos(θ0 + t), sin(θ0 + t), 0).

Hence Dc′2(0)
N = (1/R)c′2(0). Hence Lp is given by Lp =

(
0 0
0 1/R

)
with respect to this

basis. Hence Hp = 1/2R and Kp = 0.

3) Let S := S2(R) be the sphere of radius R centered at the origin. Then the unit normal
filed is given by Np = p/R. Then,

DvN :=
d

dt
|t=0 N ◦ c(t) =

d

dt
|t=0

c(t)

R
=
c′(0)

R
=
v

R
.

Thus Lp is the scalar operator (1/R) Identity. Hence every direction is principal and the
principal curvatures are 1

R ,
1
R so that Hp = (1/R) and Kp = 1/R2. Note that this implies

that larger the radius less curved is the sphere, which is intuitively appealing.

4) For the saddle surface S = {z = xy in R3} and p = 0, Lp is given by Lpe1 = −e2 and

Le2 = −e2. Hence Lp =

(
0 −1
−1 0

)
with eigen values 1,−1 with eigen directions e1 − e2 and

e1 + e2. Details are left to the reader. We have Hp = 0 and Kp = −1.

2 Examples of Surfaces acc. to Definition 1.2

This section may be omitted on first reading.
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Example 11. S(r) has a parameterization (u, v) 7→ (r cosu cos v, r cosu sin v, r sinu) for 0 <
v < 2π and 0 < u < π.

Example 12. A surface of revolution. Let c : (a, b) 3 u 7→ (x(u), 0, z(u)) be a curve in the xz-
plane. We revolve it around the z-axis to get a surface of revolution with the parameterization:
ϕ(u, v) := (x(u) cos v, x(u) sin v, z(u)) for (u, v) ∈ (a, b) × (0, 2π). (Notice that Eg. 11 is a
special case.)

Example 13. Let f : U → R be a smooth function on an open set U of E2. Then S :=
{(x, y, z) : z = f(x, y), x, y, z ∈ R} is a surface. The parameterization is given by (x, y) 7→
(x, y, f(x, y)).

Example 14. Let f : Ω ⊂ E3 → R be a smooth function. We say that a ∈ f(Ω) is a regular
value if for any p ∈ Ω with f(p) = a, the gradient of f at p is nonzero: (∂f∂x ,

∂f
∂y ,

∂f
∂z )(p) 6= 0.

If a is a regular value of f then S := {p ∈ Ω : f(p) = a} is a surface. I shall leave this as an
instructive exercise in the use of inverse function theorem.

We define a (smooth) curve in a surface S as follows: c : (−ε, ε)→ S is a curve if for every
s ∈ (−ε, ε), we have a neighbourhood V of c(s) in E3 and a δ > 0 such that the restriction
c : (s− δ, s+ δ)→ V is smooth. We can therefore speak of tangents and the lengths of curves
as earlier.

Example 15. In S(r), consider the equator c in the xy-plane: c : s 7→ r cos se1 + r sin se2 ≡
(r cos s, r sin s, 0) for 0 ≤ s ≤ 2π. Then c′(s) = −r sin se1 + r cos se2 ≡ (−r sin s, r cos s, 0) so
that ‖c′(s)‖ = r for all s and hence l(c) = 2πr, as is to be expected.

Ex. 16. 1) Let ϕ : U → V ∩ S be a parameterization around p ∈ S. We let X1 :=
(∂x∂u ,

∂y
∂u ,

∂z
∂u) and X2 := (∂x∂v ,

∂y
∂v ,

∂z
∂v ). Xi are tangent vectors at ϕ(u, v) to S and they are

linearly independent for all (u, v) ∈ U . (Can you think of some natural curves which have
these as their tangent vectors?)

Ex. 17. We let TpS := RX1 ⊕ RX2 for all p = ϕ(u, v) with (u, v) ∈ U . Then TpS is a
2-dimensional subspace of E3 independent of the parameterization. It is called the tangent
space of S at p.

Ex. 18. The vector or the cross product np := X1 × X2(u, v) is nonzero. It is called the
normal field to the surface at p, since it is perpendicular to TpS.

Ex. 19. Verify that for S = S(r) the normal at x ∈ S is given by nx = x/r. In the case of
S = f−1(a) (Eg. 14), we have np = ∇f(p), the gradient of f at p.

3 Gaussian Curvature

We now indicate the geometric meaning of the Gaussian curvature.

If S is a surface in E3 and (ϕ,U) is a parameterization of a piece of S, the vector field
np := X1 ×X2 is a nonzero normal vector field on ϕ(U) ⊂ S. Hence we have a normal field
n of unit norm on ϕ(U), unique up to sign. Thus we have a map n : ϕ(U) → S2(1), called
the Gauss map.

6



Example 20. 1) For S = S(r), the Gauss map is x 7→ x/r.
2) For S = E2, the Gauss map is the constant x 7→ e3.
3) For the cylinder in Eg. 3, the Gauss map is (x, y, z) 7→ (1/r)(x, y, 0).

Definition 21. As x varies over a small oriented area around p in S, the Gauss map nx
sweeps out an oriented area in S2(1). The rate of change of this oriented area is called the
Gaussian curvature of S at p.

A more precise definition is analytical. We define K(p), the Gaussian curvature of S at
p to be the determinant of the Jacobian dnp of the Gauss map. This is what we should
expect if we remember the change of variable formula from calculus of several variables. It is
important to realize that K(p) does not depend on the choice of the sign of n.

Example 22. 1) For the sphere S(r) the Gauss map can be thought of the restriction of the
linear map x 7→ x/r from E2 to itself and hence the curvature is given by K(p) = 1/r2. Thus
a sphere of smaller radius is more ‘curved’ than a sphere of larger radius. This is certainly
clear if you look at the way the Gauss map sweeps out areas.

2) The plane has curvature 0. This is clear either from the geometric definition or from
the analytical one.

3) The cylinder springs a surprise on almost everybody. Contrary to general expectations,
it is not ‘curved’ at all, i.e., its Gaussian curvature is zero. For as x varies over a region of
the surface, nx varies over a part of the equator only, whose area is 0!

The theorem of Gauss says that the Gaussian curvature is intrinsic in the sense that it
depends only on the inner product structure on the tangent spaces of S.

A more precise statement is given below.

A function f : S → R is said to be smooth if for each p ∈ S there exists an open set Wp

in R3 and a smooth function F : Wp → R such that F |W∩S= f . Given a surface S, there
exists two important classes of smooth functions:
i) fa : S → R given by f(x) := ‖x− a‖2, for a fixed a ∈ R3.
ii) hu : S → R given by hu(x) := 〈x, u〉 for a fixed unit vector u ∈ R3. gu is called the height
function in the direction u.

For any smooth function f : S → R we have a linear map f ′(p) or df(p) on TpS given
by f ′(p)(v) := (d/dt)(f ◦ c(t)) |t=0, for any curve c with c(0) = p and c′(0) = v. By Riesz
representation theorem there exists a unique vector, say, ∇f(p) ∈ TpS such that f ′(p)(v) =
〈v,∇f(p)〉 for all v ∈ TpS. The map p 7→ ∇f(p) is called the gradient of f .

Let h := hu be as above, Then

h′(p)(v) =
d

dt
g ◦ c(t) |t=0==

d

dt
〈c(t), u〉 |t=0=

〈
c′(0), u

〉
.

Hence the ∇h(p) = uT , the projection of u onto the TpS part of the orthogonal decomposition
R3 = TpS ⊕RNp. Note that p is a critical point of hu (i.e., h′u(p) = 0) iff u is normal to S at
p.

For f = fa, proceeding as above, we find that ∇f(p) = (p− a)T .
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If ϕ : S1 → S2 is any continuous map between surfaces, the expression ϕ = (ϕ1, ϕ2, ϕ3)
allows us to define smoothness of ϕ. The derivative dϕ(p) or ϕ′(p) is the linear map from
TpS1 → Tϕ(p)S2 given by ϕ′(p)(v) := (d/dt)ϕ ◦ c(t) |t=0 if v = c′(0) ∈ TpS1. A smooth map
ϕ : S1 → S2 is said to be isometry if ϕ is bijective, ϕ−1 is smooth and ϕ′(p) is linear isometry
of TpS1 onto Tϕ(p))S2. Equivalently, if c is any curve in S1 then `(c) = `(ϕ ◦ c).

Theorem 23 (Gauss). If ϕ : S1 → S2 is an isometry of the surfaces, then KS1(p) = KS2(ϕ(p)).

An illustrative example of this result is the map ϕ from the piece of the plane S1 :=
(0, 2π)×R×{0} ⊂ R3 to the cylinder S2 : {x2 + y2 = 1} given by ϕ(u, v, 0) = (cosu, sinu, v).
Note however that the mean curvatures are different.

A most instructive way of proving Gauss’ theorem is to define an intrinsic derivation of
tangent fields on S. You may recall that the curvature of a plane curve c with unit speed is
got as the length of the derivative of the tangent field c′(s). Hence, on a surface, we wish to
differentiate a tangent field Y with respect to a direction v ∈ TpS to get a tangent vector, say,
DvY . The natural thing to do is to define DvY := d

dt(Y ◦ c(t)) |t=0 with an obvious notation.

The trouble here is that d
dt(Y ◦ c(t)) |t=0 may not be a tangent vector. (See what happens if

you consider DXX where X is a tangent field on the unit sphere S.) But however there is no
need to despair as we can easily repair this. We set

DvY := (∇vY )T ,

where ∇vY is the usual gradient in R3. It is easy to see that D satisfies the following
properties:

Let Xi denote the coordinate tangent fields in an open set of S. That is, Xi := dϕ( ∂
∂xi

).
For X,Y, Z tangent fields on S and f, g smooth functions on S we have

1. DX(Y + Z) = DXY +DXZ

2. D(X+Y )Z = DXZ +DY Z

3. DfXY = fDXY

4. DX(gY ) = gDXY +X(g)Y

5. DXiXj −DXjXi = 0

6. Z 〈X,Y 〉 = 〈DZX,Y 〉+ 〈X,DZY 〉

Now it is easy to show that there is a unique D satisfying the above properties and it is
given by

〈DXiXj , Xk〉 =
1

2

[
∂

∂xi
〈Xj , Xk〉+

∂

∂xj
〈Xk, Xi〉 −

∂

∂xk
〈Xi, Xj〉

]
. (1)

Thus DXY is defined intrinsically, i.e., using only the concepts involving the objects defined
on S and not anything extraneous as the normal. The way to prove Eq. 1 is to start with
Xi(〈Xj , Xk〉 and use the properties of D to expand and cyclically change i, j, k.
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Use the definition DXiXj = (∇XiXj)
T = ∇XiXj − 〈LXi , Xj〉N in the equation DXiXj −

DXjXi = 0 and collect the tangent and normal terms (using the symmetry of L) to get〈
DXiDXj −DXjDXiXj , Xi

〉
= 〈Lxi, Xi〉 〈LXj , Xj〉 − 〈LXi, Xj〉2 = det(L) = K

This last equation proves Gauss theorem.

For further details the reader is referred to [1] or [2].

4 Geodesics

Definition 24. A geodesic on a surface S is a curve c : (−ε, ε) → S with zero acceleration
as observed from the surface. By this we mean that the acceleration c′′(s) ⊥ Tc(s)S for all s.

Thus, the tangential component (c′′)> = 0.

A more intuitive definition runs as follows: The length of the segment between any two
of its sufficiently nearby points is less than or equal to the length of any curve joining these
points. That is, given any two points c(t), c(t+δ) sufficiently nearby, the length of the segment

of the curve between these points, viz.,
∫ t+δ
t ‖c′(s)‖ ds is less than or equal to l(σ), the length

of any curve σ that joins these points. This definition is equivalent to the above one, but we
shall not prove it in our lectures.

The analytical definition (c′′)> = 0 can be translated into a system of second order
ordinary differential equations via parameterization. Hence by the existence and uniqueness
theorem in the theory of ordinary differential equations, it follows that there exists a unique
geodesic with given initial data. That is, if p ∈ S and v ∈ TpS are given there exists a
“unique” geodesic cp,v : (−ε, ε) → S such that c(0) = p and c′(0) = v. (ε may depend upon
v.)

Example 25. The great circles, i.e., the intersection of the planes through the origin and
S(r), are the geodesics on a sphere S(r). We can describe these without messy notation. Let
x ∈ S and v(6= 0) ∈ TpS. Note that this means 〈x, v〉 = 0. (See Ex. 16.) We then want the
description of a circle centered at the origin of radius r in the plane spanned by x and v:

c(s) ≡ cx,v := cos sx+
r

‖v‖
sin sv.

One easily sees that c′′(s) = −c(s) ⊥ TpS and that cx,av(s) = cx,v(as) for any a ∈ R.

Example 26. The curves c(s) := (r cos s, r sin s, rs) are geodesics on a cylinder S := {(x, y, z) :
x2 + y2 = r2}.

A more natural way of parameterizing a geodesic through the arc length, i.e., a parameter-
ization with ‖c′‖ = 1. If c : [0, T ]→ S is a geodesic, we first of all note that, for any t, c′(t) 6= 0
since otherwise it has to be the constant curve due to uniqueness. (Do you understand this
reasoning completely?) If we introduce s(t) :=

∫ t
0 ‖c

′(t)‖ dt, s is then a strictly increasing
function and hence we can use it to reparametrize c. In the new s-parameterization, we have
l(c |[0,a]) = a for any 0 ≤ a ≤ T .
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The geodesics of the sphere with respect to the arc length are given by c(s) = cos srx +
r sin s

rv for v ∈ TpS with ‖v‖ = 1. (This is enough; see the last line of Eg. 25.) The reader is
urged to check the details of this.
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