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Proof of all the theorems here is based on Group action, and we will use the following facts.

Fact 1. Let G be a group and H, a subgroup of G. Then G acts transitively on the set G/H,
left cosets of H,where the action is defined as: g · aH = gaH. (In fact, all transitive actions
arise in this way.)

Fact 2. Let G be a group acting on a set X. For each x ∈ X, we define Gx := {g ∈ G : gx =
x}, called the stabilizer of x in G. Note that Gx is a subgroup of G for all x ∈ X. Now if G
acts transitively on X and if x, y in X, then their stabilizers are related as follows: if a ∈ G
is such that ax = y, then Gx = aGya

−1.

Fact 3. Let G be a finite group acting on a finite set X. For every point x in X we define
Ox := {gx | g ∈ G}, called the orbit of x. Then |G| = |Ox| · |Gx|. In other words the
cardinality of an orbit divides that of the group G.

Fact 4. Let G be a finite group acting on a finite set X. Then there exist mutually disjoint
orbits O1, . . . ,On for some n such that X = ∪ni=1Oi. Hence we have

|X| = |O1|+ |O2|+ · · ·+ |On|.

Note that if x ∈ Oi is any element then Oi = Ox. So we can also write

|X| = |Ox1 |+ · · ·+ |Oxn |, where xi ∈ Oi is any element.

Theorem 1 (Lagrange’s Theorem). If G is a finite group, then the order of a subgroup H
divides that of G. That is, if H ≤ G, then |H| divides |G|.

Proof: Let H be a subgroup of G. Then by Fact 1, G acts transitively on G/H, the
set of left cosets of H. Now the stabilizer of the identity coset eH = H ∈ G/H is given by
GH = {g ∈ G | gH = H} = H. But then by Fact 3, |G| = |GH | · |OH | = |H| · |OH |. Hence
|H| divides |G|.

Theorem 2. Let G be a group of even oder. Then there exists an element of order 2.

Proof: Let H = {+1,−1} be the 2-element group with multiplication. We let H act on
G as follows: 1 · g := g and −1 · g := g−1, for all g ∈ G. Using Fact 4 we get

|G| = |Ox1 |+ · · ·+ |Oxn |, for some x1, . . . , xn ∈ G.
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Now we note that for each x ∈ G, the orbit Ox = {x, x−1} and if x = e, then Oe = {e}.
Therefore,

|G| = 1 +
∑
xi 6=e
|Oxi |.

So, if |Oxi | = 2, for all xi 6= e, then |G| is congruent to 1 modulo 2, a contradiction. Hence
there exists at least one element xj 6= e such that |Oxj | = 1. This means that x−1j = xj , or

x2j = e. Hence,the order of xj is 2.

Remark: In fact, we established that there exists odd number of elements of order 2.

Theorem 3 (Cauchy Theorem). Let G be a finite group and p be a prime such that p divides
the order of G. Then there exists an element a ∈ G such that order of a is p.

Proof: Assume |G| = m. Consider the set

X = {(g1, g2, . . . , gp) | gi ∈ G, g1 · g2 · · · gp = e}.

Note that (e, e, . . . , e) ∈ X. In fact |X| = mp−1, because each gi, 1 ≤ i ≤ p − 1 can be
chosen in m ways, and once we choose g1, g2, . . . , gp−1, then gp = (g1 · · · gp−1)−1 is uniquely
determined. Observe that p divides |X|, since p divides m and p− 1 ≥ 1.

Let H be the group generated by the p cycle σ := (1, 2, . . . , p). Then |H| = p. There
exists a natural action of H on X, defined as follows: If τ ∈ H and (g1, . . . , gp) ∈ X, then
τ(g1, . . . , gp) := (gτ(1), . . . , gτ(p)). We need to check that for all x ∈ X and τ in H, τ(x) ∈ X.
(Note that if G is abelian then this is trivial.) Now if x = (g1, . . . , gp) ∈ X, theng1 · · · gp = e,
hence g1 = (g2 · · · gp)−1. So, σ(g1, . . . , gp) = (g2, . . . , gp, g1) ∈ X, if g2 · g3 · · · gp · g1 = e. But
this is true because g2 · · · gp · g1 = (g2 · · · gp) · (g2 · · · gp)−1 = e. Now we write X = ∪ni=1Oxi as
the disjoint union of its orbits Oxi for some x1, . . . , xn ∈ X. Therefore

|X| = |Ox1 |+ · · ·+ |Oxn |

Since the orbit O(e,...,e) = {(e, . . . , e)}, we can write

|X| = 1 +
∑

xi 6=(e,...,e)

|Oxi |

Since |Oxi | divides p for each i, either |Oxi | = 1 or p, for 1 ≤ i ≤ n. If |Oxi | = p, for
all xi 6= (e, . . . , e), then |X| ≡ 1 (mod p), a contradiction to the fact that p divides |X|.
Hence there exists at least one orbit Oxi for xi 6= (e, . . . , e) such that |Oxi | = 1. Let us fix
one such xi = (a1, . . . , ap). Then σ(a1, . . . , ap) = (a2, . . . , ap, a1), and hence (a1, . . . , ap) =
(a2, . . . , ap, a1). This implies that a1 = a2, a2 = a3, . . . ap = a1. Hence a1 = a2 = · · · = ap(= a
say). But a1 · · · ap = e, implies ap = e.

Remark: We note that, as in theorem 2, here too we have proved that the number of elements
of order p in G is ≡ −1(|p|).

Theorem 4 (The Sylow Theorem). Let G be a finite group such that |G| = pnm, where
n ≥ 1 and (m, p) = 1. Then

1. There exists a subgroup H of order pn called the Sylow p- subgroup of G.
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2. Any two Sylow p-subgroups are conjugate in G. That is if H and K are two Sylow
p-subgroups of G then K = gHg−1, for some g ∈ G.

3. Let k be the number of Sylow p-subgroups of G, then k is congruent to 1 modulo p.

(For our convenience we will call the statements (1), (2),and (3) as 1st, 2nd and 3rd
Sylow theorem.)

Motivation for the proof of the 1st Sylow theorem. Consider the set Σ = {S ⊆
G : |S| = pn}. If at all there is a subgroup of order pn then it has to be in Σ. Now one
can immediately think of an action of G on Σ defined as follows: If g ∈ GandS ∈ Σ, then
g · S := {gs | s ∈ S}. If there is a Sylow p-subgroup H, then H ∈ Σ and its orbits under this
action is the set of left cosets, {gH | g ∈ G}. Hence |OH | = m. This means that (p, |OH |) = 1.
This suggests that we should look for an orbit O such that p does not divide |O|. So, we must
prove that there exists an orbit O such that p does not divide |O|. Fix one such orbit O, and
S ∈ O. Consider the stabilizer GS of S and call it H. Then we prove that |H| = pn.

Proof of 1st Sylow theorem: Let us consider the set Σ = {S ⊆ G : |S| = pn}. Note that
|Σ| =

(
pnm
pn

)
. We now claim that

1.
(
pnm
pn

)
≡ m(|p|)

2. and p does not divide
(
pnm
pn

)
.

For the time being let us assume these claims and complete the proof of the theorem. By
Fact 4 we can write Σ = ∪ki=1Oi, as the disjoint union of its orbits under this action of G and

hence |Σ| =
∑k

i=1 |Oi|. Since p does not divide the left hand side, p does not divide the right
hand side. This implies that there exists at least one i such that p does not divide |Oi|. We
choose one such Oi and call this orbit O. Fix S in O and let H = GS , the stabilizer of S in
G. We will now show that H is a p-sylow sub group of G. i.e., we will show that |H| = pn.

By Fact 3, we have that |G| = |GS | · |O| = |H| · |O|. Since pn divides |G| and p does
not divide |O|, pn divides |H|, hence |H| ≥ pn. Next fix s0 in S and let H act on S in a
natural way: (h, s) 7→ hs. (Check that this is an action.) Now Hs0 = {h ∈ H | hs0 =
s0} = {e}, since hs0 = so implies h = e, by the right cancellation law in the group. Hence
|H| = |Hs0 | · |Os0 | = 1 · |Os0 | ≤ |S|, since Os0 ⊆ S. So, |Os0 | ≤ |S| = pn. Thus |H| ≤ pn. It
follows that |H| = pn.

We now prove the claims made in the proof of the theorem.

Lemma 1. If p is a prime and (m, p) = 1 then for n ≥ 1

1.
(
pnm
pn

)
≡ m(|p|) and

2. p does not divide
(
pnm
pn

)
.

Proof: Note that (2) follows from (1). To prove (1) consider the polynomial (1 +X)p
nm

in Zp[X]. So,
(
pnm
pn

)
is the coefficient of of Xpn in the polynomial (1 +X)p

nm. On the other

hand (1 +X)p
nm = (1 +Xpn)m, since (a+ b)p = ap + bp in Zp. Hence the coefficient of Xpn

in this case is
(
m
1

)
= m(|p|). Thus

(
pnm
pn

)
≡ m(|p|).
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Observation 1. Let us choose an orbit O such that p does not divide |O|. Fix S ∈ O and
define H = GS as defined in the proof of 1st Sylow theorem. Fix s0 ∈ S, then h 7→ hs0 is
a bijection between H and S.(why?) So, Hs0 ⊆ S, but |Hs0| = |S| = pn. Hence S = Hs0.
Thus S actually arises as a right coset of H.

Now let T ∈ O be any element, then T = gS, for some g ∈ G. Hence T = gHs0 =
as−10 Hs0 = aK, where gs0 = a and K =s−10 Hs0. Thus any element T in O is of the form
T = aK, where K is a fixed Sylow p-subgroup of G given by K = s−10 Hs0.

Observation 2. In particular if O is such that p does not divide |O|, then O is set of left
cosets of K and hence we conclude that |O| = m.

Motivation of the proof of 2nd Sylow theorem

Let H be a Sylow p-subgroup of G. By Fact 1 the stabiliser of any left coset aH of H
under the action of G on the set of all left cosets G/H is a conjugate of H. Thus if S is a
conjugate of H, that is S=gHg−1 for some g ∈ G. Then S fixes aH for some a ∈ G. By
looking at the stabilizer of aH for all a ∈ G we get all conjugates of H. Thus if we want to
prove that any Sylow p-sbugroup S is a conjugate of H, we must prove that S fixes aH for
some a ∈ G. Proof of this fact follows from the following lemma.

Lemma 2. Let G be a p group such that |G| = pn and X be a finite set on which G acts.
Define the set XG = {x ∈ X | gx = x, for all g ∈ G}. Then |X| ≡ m(|p|) where m = |XG|.

Proof: By Fact 4 we have

|X| =
m∑
i=1

|Oxi | for some x1, . . . , xn ∈ X.

Since |Oxi | divides pn, |Oxi | = pk, for some 0 ≤ k ≤ n. But |Oxi | = 1 iff xi ∈ XG. This
implies that |XG| =

∑
xi∈XG |Oxi |. Hence,

|X| =
m∑
i=1

|Oxi | =
∑

xi∈XG

|Oxi |+
∑

xi 6∈XG

|Oxi | = |XG|+
∑

xi 6∈XG

|Oxi |.

Since p divides |Oxi | for xi 6= XG, implies that p divides
∑

xi 6∈XG |Oxi |. Hence |X| ≡ m(|p|).

Ex. 3. Using the above lemma prove

1. Cauchy theorem and

2. the center of group G, Z(G) = {g ∈ G | ga = ga for all a ∈ G} is non trivial, if G is a
group of a prime power.

Proof of 2nd Sylow theorem:

Let H and S be two Sylow p-subgroups of G. Let S act on X = G/H by restricting the
standard action of G on X = G/H. By Lemma 2, |X| = m ≡ |XS |(|p|). Since (p,m) = 1, it
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follows that XS 6=. This means that there exists x = aH in X such that saH = aH for all
s ∈ S. In other words the stabiliser of aH for the standard action of G on G/H is S. Since
this action of G on G/H is transitive, the stabilisers of H and aH are conjugate. This proves
that S = aHa−1.

Proof of 3rd Sylow theorem: Let k be the number of Sylow p-subgroups of G. Under the
action of G on Σ (as defined in the proof of 1st Sylow theorem) either p divides the order of
an orbit or it does not. We break the orbits of G in Σ into two classes. Let {Oi}ri=1 be the
collection of orbits such that p does not divide |Oi| and {Tj}lj=1 be the collection of orbits
such that p divides |Tj |. We claim that k = r.

If H is a Sylow p-subgroup of G then H ∈ Σ and the orbit of H is the left cosets of H.
So, |OH | = m, hence p does not divide |OH |. This means that OH = Oi for some 1 ≤ i ≤ r .
This proves that k ≤ r. We now claim that r ≤ k. First notice that each Oi is the set of left
cosets of a Sylow p subgroup. If Hi ∈ Oi is the Sylow p-subgroup, then Hi = Hj iff i = j.
For, otherwise GHi = GHj and hence Oi = Oj , which is a contradiction. This proves that
k = r. Now we have

|Σ| =
k∑
i=1

|Oi|+
l∑

j=1

|Tj | = km+ tp.

Since p does not divide |Oi| but |Oi| divides pnm it follows that |Oi| = m. Hence |Σ| ≡
mk(|p|). But by Lemma 1, |Σ| =

(
pnm
pn

)
≡ m(|p|). Hence these two together imply that

k ≡ 1(|p|).

2nd proof of 3rd Sylow theorem:

Let X be the set of all Sylow subgroups of G. Fix H ∈ X and let H act on X by
conjugation, that is (h, S) 7→ hSh−1. (Why is this an action?) By Lemma 2, |X| ≡ |XH |(|p|).
First notice that H ∈ XH . So, it is enough to prove that |XH | = 1. That is if S ∈ XH then
S = H. Let S ∈ XH , then

hSh−1 = S for all h ∈ H. (1)

This implies that hS = Sh, for all h ∈ H and hence HS = SH. Now let T = HS. We
claim that T is a subgroup of G. For h1s1, h2s2 ∈ T , (h1s1)(h2s2)

−1 = h1h1s
−1
2 h−12 =

h1h
−1
2 h2s1s

−1
2 h−12 = (h1h

−1
2 ) · (h2s1s−12 h−12 ) ∈ T , since h1h

−1
2 ∈ H and h2s1s

−1
2 h−12 ∈ S,

by Eq 1. Also S is a normal subgroup of T : for h1s1 ∈ T and s ∈ S, h1s1s(h1s1)
−1 =

h1s1ss
−1
1 h−11 ∈ S, by Eq 1. But |S| = |H| = pn and hence H and S are Sylow p-subgroups

of T . This implies that they are conjugate in T by 2nd Sylow theorem. But S is normal in
T and hence H = S. Thus |XH | = 1, hence |X| = k ≡ 1(|p|), by Lemma 2.

Ex. 4. Let G be a finite group and p, the smallest prime such that p divides the order of G.
Then any subgroup of G of index p is normal.

Ex. 5. Prove that a group of the order 35 is cyclic.

Ex. 6. Prove that a group of the order 500 is not simple, that is, it has a non trivial normal
subgroup.

Ex. 7. If G is a group of the order pn, then there exists a subgroup of order pi, for 1 ≤ i ≤ n
and subgroup of the order pi is normal normal in a subgroup of the order pi+1.
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Ex. 8. Prove that a group of the order pn is solvable.

Ex. 9. If p and q are primes such that p does not divide q − 1, then a group of order pq is
isomorphic to Zpq.
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