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We shall consider Rn as the vector space of column vectors, that is, matrices of type n×1.
The standard inner product or the dot product of two vectors x, y ∈ Rn is given by

〈x, y〉 = x · y = ytx,

where the 1 × 1 matrix is identified as a real number. Given an n × n matrix A, we have
a linear map on Rn given by x 7→ Ax. In the sequel, we shall not distinguish between the
matrix A and the associated linear map. I am sure that the context will make it clear what
we are referring to.

A quadratic form q : Rn → R is said to be positive definite iff q(v) > 0 for any nonzero
v ∈ Rn. We say that an n × n real symmetric matrix A is positive definite if the associated
quadratic form q : x 7→ xtAx is positive definite.

Let us first look at lower dimensions to gain some insight. When n = 1, any quadratic
from on R is of the form q(x) = ax2. This is positive definite iff a > 0. Now, consider a form
in two variables:

q(x1, x2) := a11x
2
1 + 2a12x1x2 + a22x

2
2.

(We chose to represent the coordinates of vectors in R2 by x1, x2, in stead of x, y, which are
easier to type and write, so that we can perceive how the higher dimensional case will go!)
Assume that this is positive definite. Then for all vectors (x1, 0) with x1 6= 0, we must have
a11x

2
1 > 0. Hence we conclude that a11 > 0. We can rewrite the form as follows:

q(x1, x2) = a11

(
x1 +

a12
a11

x2

)2

+

(
a22 −

a212
a11

)
x22. (1)

We choose a vector so that x1+ a12
a11
x2 = 0 with x2 6= 0. It follows from (1) that (a22−

a212
a11

) > 0.

This is the same as saying that det

(
a11 a12
a12 a22

)
> 0.

Let us now look at n = 3. Let the quadratic form be given by q(x1, x2, x3) =
∑3

i,j=1 aijxixj .
If this is positive definite, by taking vectors with x2 = x3 = 0, we see that a11 > 0. Hence we
rewrite the quadratic form as follows:

q(x) = a11

(
x1 +

a12
a11

x2 +
a13
a11

x3

)2

+

(
a22 −

a212
a11

)
x22 +

(
a33 −

a213
a11

)
x23

+ 2

(
a23 −

a12a13
a11

)
x2x3. (2)
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As analyzed earlier, we see that q is positive definite iff a11 > 0 and the quadratic form in the
variables x2, x3 is positive definite. The latter entails in the conditions

a22 −
a212
a11

> 0 and det

(
a22 −

a212
a11

a23 − a12a13
a11

a23 − a12a13
a11

a33 −
a213
a11

)
> 0.

The second condition may be understood if we compute the determinant of A = (aij), suing
an elementary operation, as follows:

detA = det

a11 a12 a13

0 a22 −
a212
a11

a23 − a12a13
a11

0 a23 − a12a13
a11

a33 −
a213
a11

 .

The above can be put in a more tractable form a follows. Let

y = x1 + (a12/a11)x2 + (a13/a11)x3 and z = y − x1.

Then q(x) = a11y
2 − a11z2 +

∑3
i,j=2 aijxixj . Now it is clear how the general case will look

like. Given q(x) =
∑n

i,j=1 aijxixj , we let

y = x1 + (a12/a11)x2 + · · ·+ (a1n/a11)xn and z = y − x1.

We check that q(x) = a11y
2 − a11z

2 +
∑n

i,j=2 aijxixj . This suggests how to proceed by
induction. We now define a quadratic form that depends on n−1 variables, namely, x2, . . . , xn:
q′(x′) =

∑n
i,j=2 aijxixj − a11z2. If we set bij := aij − (ai1a1j)/a11, we find that

q′(x, ) =

n∑
i,j=2

bijxixj .

The relation between determinants the symmetric matrix A of the quadratic form q and that
of q′ is given by

detA = det


a11 a12 a13 . . . a1n
0 b22 b23 . . . b2n
0 b23 b33 . . . b3n
...

...
...

. . .
...

0 bn2 bn3 . . . bnn

 .

Note that the matrix, say, B on the right side of the equation is obtained by an obvious
elementary operation. If q is positive definite, then a11 > 0. Also, if we denote by Mk(X) the
k-th principal minor of a square matrix X, then Mk(A) = Mk(B). It follows by induction
that q′ is positive definite and hence q is. This completes the classical proof of the criterion
for the positive definiteness of a real symmetric matrix. Note that the proof carries through
in the case of hermitian matrices also, with obvious modifications such as x2j replaced by zjzj
etc.

We now indicate a more conceptual and less computational proof which uses basic concepts
from linear algebra.

Lemma 1. A real symmetric matrix A is positive definite iff all its eigenvalues are positive.
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Proof. Let A be a real symmetric matrix of order n. If A is positive definite and λ is an
eigenvalue of A with a unit eigenvector x ∈ Rn, then 0 < xtAx = Ax · x = λx · x = λ.

Conversely, if A is symmetric with all its eigenvalues positive, by diagonalization theorem,
there exists an orthonormal basis of Rn consisting of eigenvectors. Assume that {vi : 1 ≤ i ≤
n} be such a basis with Avi = λivi. Then any x ∈ Rn can be written as x =

∑n
i=1 xivi where

xi = x · vi. We compute

Ax · x = A

(
n∑

i=1

xivi

) n∑
j=1

xjvj

 =
n∑

i,j=1

λjxixjvi · vj =
n∑

i=1

λix
2
i > 0

if x 6= 0. Thus A is positive definite.

Lemma 2. Let v1, . . . , vn be a basis of a vector space V . Suppose that W is a vector subspace.
If dimW > m, then

W ∩ span{vm+1, . . . , vn} 6= (0).

Proof. Recall that if Wj , j = 1, 2, are vector subspaces, then dim(W1 ∩ W2) = dimW1 +
dimW2 − dim(W1 +W2). Now, if dimW > m, then

dim(W ∩ span{vm+1, . . . , vn})
= dimW + dim(span{vm+1, . . . , vn})− dim(W + span{vm+1, . . . , vn})
> m+ (n−m)− n = 0.

The result follows.

Lemma 3. Let A be an n× n real symmetric matrix. If 〈Aw,w〉 > 0 for all w ∈W , then A
has at least dimW positive eigenvalues (counted with multiplicity).

Proof. Let dimW = r. Let {vk : 1 ≤ k ≤ n} be an orthonormal eigen-basis of A on Rn

such that Avk = λkvk for all k. Let us assume, without loss of generality, that λk > 0 for
1 ≤ k ≤ m and that λk ≤ 0 for k > m. If m < dimW , then, by Lemma 2, there is a nonzero
vector v ∈W such that w = am+1vm+1 + · · ·+ anvn. We compute

〈Aw,w〉 =

n∑
j,k=m+1

ajak 〈Avj , vk〉 = a2m+1λm+1 + · · ·+ a2nλn ≤ 0,

a contradiction. Hence m ≥ dimW , as required.

Definition 4. Let A := (aij) be an n× n matrix. Then the matrix (aij)1≤i,j≤k is called the
k-th principal submatrix and determinant is known as the k-th principal minor.

Theorem 5 (Sylvester). A real symmetric n×n matrix is positive definite iff all its principal
minors are positive.

Proof. Let A be be a real positive definite n×n symmetric matrix. Since the eigenvalues of A
are positive, it follows that detA, being the product of the eigenvalues must be positive. Now
the restriction Ak of A to the k dimensional vector subspace Rk := {x ∈ Rn : xj = 0 for j > k}
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is also positive definite. Clearly the matrix of Ak is the k-th principal matrix and hence its
determinant must be positive by the argument above.

Let A be be a real n × n symmetric matrix all of whose principal minors are positive.
We prove, by induction that A is positive definite by showing that all its eigenvalues are
positive. For n = 1, the result is trivial. Assume the sufficiency of positive principal minors
for (n − 1) × (n − 1) real symmetric matrices. If A is an n × n real symmetric matrix, then
its (n − 1)-th principal submatrix is positive definite by induction. Let W = Rn−1 ⊂ Rn

be the subspace whose last coordinate is 0. Then for any nonzero w ∈ W , we observe
that〈Aw,w〉 = 〈An−1x

′, x′〉 where x = (x′, 0) ∈ Rn and x′ ∈ Rn−1. Since An−1 is positive
definite by induction, we see that 〈An−1x

′, x′〉 > 0 for x′ ∈ Rn−1. Hence 〈Ax, x〉 > 0 for
x ∈ W . By Lemma 2, A has at least (n− 1) positive eigenvalues. Now detA is the product
of the eigenvalues of A and (n− 1) of these eigenvalues are positive. Hence, it follows that all
the eigenvalues of A are positive. Hence A is positive definite.
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