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Theorem 1 (Taylor’'s Theorem with Remainder). Let n and p natural numbers. Assume
that f: [a,b] — R is such that f™Y) is continuous on [a,b and ) (x) exists on (a,b). Then
there ezists ¢ € (a,b) such that
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In particular, when p = n, we get Lagrange’s form of the remainder
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and when p =1, we get Cauchy’s form of the remainder
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The ¢ is continuous on [a, b], differentiable on (a,b) and g(a) = 0 = g(b). Hence by Rolle’s
theorem, there exists ¢ € (a,b) such that ¢’(c) = 0. Using the definition of g in (7) we get
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Using (6) in (8) and simplifying we get
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That is, F(a) = Wﬂ”)(c). This is what we set out to prove.
Lagrange’s form of the remainder is obvious. If we write ¢ = a+6(b—a) for some 6 € (0, 1),
Cauchy’s form of the remainder is obtained from (2). O

Theorem 2 (Binomial Series). Let m € R. Define
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Proof. If m € N, this is the usual binomial theorem. In this case, the series is finite and there
is no restriction on .

Let m ¢ N. Consider f: (—1,00) — R defined by f(x) = (14 z)™. For z > —1, we have
Fl@)=ml+z)m" @) =mm—1)--(m—n+1)1+z)™ "

If x = 0, the result is trivial as 1™ = 1. Now for z # 0, by Taylor’s theorem
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Therefore, to prove the theorem, we need to show that, for |z| < 1,
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To prove R,, — 0, we use Lagrange’s form for the case 0jxjl.
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if n > m, since 0 < # < 1. Letting a, := ](:’;)ac”\, we see that a,11/a, = xmjﬁ — z. Since
0 < & < 1, the ratio test says that the series ) a, is convergent. In particular, the n-th
term a, — 0. Since |R,| < ay, it follows that R,, — 0 when 0 < z < 1.

Let us now attend to the case when —1 < & < 0. If we try to use the Lagrange form of
the remainder we obtain the estimate
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if n > m. This is not helpful as (1 — )™ ™" may shoot to infinity if # goes near 1. Let us now
try Cauchy’s form.
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Now, 0 < 1+2 < 1+60x < 1. Hence |(1 + 0x)™ ! < C for some C > 0. Note that C is
independent of n but dependent on .

It follows that |z" (7;;__11)\ — 0 so that R, — 0. This completes the proof of the theorem.
O

Example 3. As another application of Taylor’s theorem with Lagrange form of the remainder,
we now establish the sum of the standard alternating series is log 2.
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Consider the function f: (—1,00) — R defined by f(z) := log(1 + z). We then have By a
simple induction argument, we see that
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Hence the Taylor series of f around 0 is
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We now wish to show that the series is convergent at x = 1. This means that we need to
show that the sum of the series at + = 1 is convergent. We therefore take a = 0, b = 1 in
Taylor’s theorem and show that the remainder term (in Lagrange’s form) R,, — 0. For each
n € N, there exists ¢, € (0,1) such that
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We have an obvious estimate:
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We now prove Taylor’s theorem with the integral form of the remainder. In practice it is
most often easier to estimate integrals.



Theorem 4 (Taylor’s Theorem with Integral Form of the Remainder). Let f be function on
an interval J with ™ continuous on J. Let a,b € J. Then
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Proof. We begin with
+/ab f(t)dt

We apply integration by parts formula f; udv = uwv|%— [ /dv to the integral where u(t) = f'(t)
and v = —(b —t). (Note the non-obvious choice of v!) We get
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We again apply integration by parts to the integral where u(t) = f”(t) and v(t) = —(b—1)?/2.
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Hence we get
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By induction we let
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and apply integration by parts. We get
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By induction the formula for R,, is obtained. O

Recall the mean value theorem for the Riemann integral:

Theorem 5. Let f: [a,b] = R be continuous. Then there exists ¢ € (a,b) such that
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b
(b—a)f(c) = / f(t)dt, that is, f(c) =



We use this to deduce as a corollary Cauchy’s form the remainder in the Taylor’s theorem.
integrals. Applying the mean value theorem for integrals to (12), we conclude that there exists
¢ € (a,b) such that
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which is Cauchy’s form of the remainder.

Example 6. We now apply the integral form of the remainder to arrive at the result (Theo-
rem 2) on binomial series.

Assume that m is not a non-negative integer. Then a,, := (7;) # 0. Since
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has radius of convergence 1. Similarly, the series n(f) x™ is convergent for |x| < 1. Hence

n<m> " — 0 for |z] < 1. (13)
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We now estimate the remainder term using (13). We have, for 0 < |z| < 1,
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We claim that
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since 1 + sz > 1 — s. Thus the integrand in (14) is bounded by
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Therefore, we obtain
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which goes to 0 in view of (14).

This completes the proof of the fact that the binomial series converges to (1 + x)™.



