Taylor's Theorem

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1 (Taylor's Theorem with Remainder). Let n and p natural numbers. Assume that $f: [a, b] \to \mathbb{R}$ is such that $f^{(n-1)}$ is continuous on $[a, b \text{ and } f^{(n)}(x) \text{ exists on } (a, b)$. Then there exists $c \in (a, b)$ such that

$$
f(b) = f(a) + (b - a)f'(a) + \frac{(b - a)^2}{2!}f''(a) + \dots + \frac{(b - a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + R_n,
$$
 (1)

where

$$
R_n = \frac{(b-c)^n - p(b-a)^p}{p(n-1)!} f^{(n)}(c).
$$
 (2)

In particular, when $p = n$, we get Lagrange's form of the remainder

$$
R_n = \frac{(b-a)^n}{n!} f^{(n)}(c),\tag{3}
$$

and when $p = 1$, we get Cauchy's form of the remainder

$$
R_n = b - a) \frac{(b - c)^{n-1}}{(n-1)!} f^{(n)}(c) \tag{4}
$$

$$
= \frac{(b-a)^n}{(n-1)!} (1-\theta)^{n-1} f^{(n)}(a+\theta(b-a)), \text{ where } 0 < \theta := \frac{(c-a)}{(b-a)} < 1. \tag{5}
$$

Proof. Consider

$$
F(x) = f(b) - f(x) - (b - x)f'(x) - \frac{(b - x)^2}{2!}f''(x) - \dots - \frac{(b - x)^{n-1}}{(n-1)!}f^{(n-1)}(x).
$$

We have for $x \in (a, b)$,

$$
F'(x) = \frac{-(b-x)^{n-1}f^{(n)}(x)}{(n-1)!}.
$$
\n(6)

We now define

$$
g(x) = F(x) - \left(\frac{b-x}{b-a}\right)^p F(a). \tag{7}
$$

The g is continuous on [a, b], differentiable on (a, b) and $g(a) = 0 = g(b)$. Hence by Rolle's theorem, there exists $c \in (a, b)$ such that $g'(c) = 0$. Using the definition of g in (7) we get

$$
0 = g'(c) = F'(c) + \frac{p(b-c)^{p-1}}{(b-a)^p}F(a).
$$
\n(8)

Using (6) in (8) and simplifying we get

$$
\frac{(b-c)^{n-1}}{(n-1)!}f^{(n)}(c) = \frac{p(b-c)^{p-1}}{(b-a)^p}F(a).
$$
\n(9)

That is, $F(a) = \frac{(b-c)^n - p(b-a)^p}{p(n-1)!} f^{(n)}(c)$. This is what we set out to prove.

Lagrange's form of the remainder is obvious. If we write $c = a + \theta(b-a)$ for some $\theta \in (0,1)$, Cauchy's form of the remainder is obtained from (2). \Box

Theorem 2 (Binomial Series). Let $m \in \mathbb{R}$. Define

$$
\binom{m}{0} = 1 \text{ and } \binom{m}{k} := \frac{m(m-1)\cdots(m-k+1)}{k!} \text{ for } k \in \mathbb{N}.
$$

Then

$$
(1+x)^m = \sum_{k=0}^{\infty} {m \choose k} x^k = 1 + mx + \frac{m(m-1)}{2!} + \cdots, \text{ for } |x| < 1.
$$

Proof. If $m \in \mathbb{N}$, this is the usual binomial theorem. In this case, the series is finite and there is no restriction on x.

Let $m \notin \mathbb{N}$. Consider $f : (-1, \infty) \to \mathbb{R}$ defined by $f(x) = (1+x)^m$. For $x > -1$, we have

$$
f'(x) = m(1+x)^{m-1}, \ldots, f^{(n)}(x) = m(m-1)\cdots(m-n+1)(1+x)^{m-n}.
$$

If $x = 0$, the result is trivial as $1^m = 1$. Now for $x \neq 0$, by Taylor's theorem

$$
f(x) = f(0) + xf'(0) + \dots + R_n = \sum_{k=0}^{n-1} {m \choose k} x^k + R_n.
$$

Therefore, to prove the theorem, we need to show that, for $|x| < 1$,

$$
|f(x) - \sum_{k=0}^{n-1} {m \choose k} x^k| = |R_n| \to 0 \text{ as } n \to \infty.
$$

To prove $R_n \to 0$, we use Lagrange's form for the case $0 \le i \le 1$.

$$
|R_n| = |\frac{x^n}{n!} f^{(n)}(\theta x)| = |\binom{m}{n} x^n (1 + \theta x)^{m-n}| < |\binom{m}{n} x^n|,
$$

if $n > m$, since $0 < \theta < 1$. Letting $a_n := \left|\binom{m}{n}x^n\right|$, we see that $a_{n+1}/a_n = x\left|\frac{m-n}{n+1}\right| \to x$. Since $0 < x < 1$, the ratio test says that the series $\sum_{n} a_n$ is convergent. In particular, the *n*-th term $a_n \to 0$. Since $|R_n| < a_n$, it follows that $R_n \to 0$ when $0 < x < 1$.

Let us now attend to the case when $-1 < x < 0$. If we try to use the Lagrange form of the remainder we obtain the estimate

$$
|R_n| < |{m \choose n} x^n (1 + \theta x)^{m-n} | < |{m \choose n} x^n (1 - \theta)^{m-n}|
$$

if $n > m$. This is not helpful as $(1 - \theta)^{m-n}$ may shoot to infinity if θ goes near 1. Let us now try Cauchy's form.

$$
|R_n| = |mx^n \binom{m-1}{n-1} \left(\frac{1-\theta}{1+\theta x}\right)^{n-1} (1+\theta x)^{m-1}|
$$

\$\leq |mx^n \binom{m-1}{n-1} (1+\theta x)^{m-1}\$. (10)

Now, $0 < 1 + x < 1 + \theta x < 1$. Hence $|(1 + \theta x)^{m-1}| < C$ for some $C > 0$. Note that C is independent of n but dependent on x .

It follows that $|x^n\binom{m-1}{n-1}| \to 0$ so that $R_n \to 0$. This completes the proof of the theorem. \Box

Example 3. As another application of Taylor's theorem with Lagrange form of the remainder, we now establish the sum of the standard alternating series is log 2.

$$
\log 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}.
$$

Consider the function $f: (-1, \infty) \to \mathbb{R}$ defined by $f(x) := \log(1+x)$. We then have By a simple induction argument, we see that

$$
f^{(n)}(x) = (-1)^{n-1}(n-1)!(1+x)^{-n}.
$$

Hence the Taylor series of f around 0 is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} x^n.
$$

We now wish to show that the series is convergent at $x = 1$. This means that we need to show that the sum of the series at $x = 1$ is convergent. We therefore take $a = 0, b = 1$ in Taylor's theorem and show that the remainder term (in Lagrange's form) $R_n \to 0$. For each $n \in \mathbb{N}$, there exists $c_n \in (0,1)$ such that

$$
R_n := \frac{f^{(n)}(c_n)}{n!} = \frac{(-1)^{n-1}(n-1)!}{n!(1+c_n)^n}.
$$

We have an obvious estimate:

$$
|R_n| = |\frac{(-1)^{n-1}(n-1)!}{n!(1+c_n)^n}| \le |\frac{1}{n(1+c_n)^n}| \le \frac{1}{n}.
$$

Hence $\log 2 = f(1) = \sum_{n=1}^{\infty}$ $f^{(n)}(0)$ $\frac{n!}{n!}1^n = \sum_{n=1}^{\infty}$ $(-1)^{n-1}$ $\frac{1}{n}$.

We now prove Taylor's theorem with the integral form of the remainder. In practice it is most often easier to estimate integrals.

Theorem 4 (Taylor's Theorem with Integral Form of the Remainder). Let f be function on an interval J with $f^{(n)}$ continuous on J. Let $a, b \in J$. Then

$$
f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \dots + \frac{f^{(n-1}(a)}{(n-1)!}(b-a)^{n-1} + R_n
$$
\n(11)

where

$$
R_n = \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.
$$
 (12)

Proof. We begin with

$$
f(b) = f(a) + \int_a^b f'(t) dt.
$$

We apply integration by parts formula $\int_a^b u dv = uv \vert_a^b - \int u' dv$ to the integral where $u(t) = f'(t)$ and $v = -(b - t)$. (Note the *non-obvious* choice of v!) We get

$$
\int_{a}^{b} f'(t)dt = -f'(t)(b-t)|_{a}^{b} + \int_{a}^{b} f''(t)(b-t) dt.
$$

Hence we get

$$
f(b) = f(a) + f'(a)(b - a) + \int_a^b f''(t)(b - t) dt.
$$

We again apply integration by parts to the integral where $u(t) = f''(t)$ and $v(t) = -(b-t)^2/2$. We obtain

$$
\int_a^b f''(t)(b-t) dt = f''(t) \frac{(b-t)^2}{2} \Big|_a^b + \int_a^b f^{(3)}(t) ((b-t)^2/2) dt.
$$

Hence

$$
f(b) = f(a) + f'(a)(b - a) + f''(a)\frac{(b - a)^2}{2} + \int_a^b f^{(3)}(t)\frac{(b - t)^2}{2} dt.
$$

Assume that the formula for R_k is true:

$$
R_k = \int_a^b \frac{(b-t)^{k-1}}{(k-1)!} f^{(k)}(t) dt.
$$

By induction we let

$$
u(t) = f^{(k)}(t)
$$
 and $v(t) = -(b-t)^{k-1}$

and apply integration by parts. We get

$$
\int_{a}^{b} f^{(k)}(t) \frac{(b-t)^{k-1}}{(k-1)!} dt = f^{(k)}(t) \frac{(b-a)^{k}}{k!} + \int_{a}^{b} \frac{(b-t)^{k}}{k!} f^{(k+1)}(t) dt.
$$

 \Box

By induction the formula for R_n is obtained.

Recall the mean value theorem for the Riemann integral:

Theorem 5. Let $f : [a, b] \to \mathbb{R}$ be continuous. Then there exists $c \in (a, b)$ such that

$$
(b-a)f(c) = \int_a^b f(t) dt
$$
, that is, $f(c) = \frac{1}{b-a} \int_a^b f(t) dt$.

We use this to deduce as a corollary Cauchy's form the remainder in the Taylor's theorem. integrals. Applying the mean value theorem for integrals to (12), we conclude that there exists $c \in (a, b)$ such that

$$
R_n = (b - a) \frac{(b - c)^{n-1}}{(n-1)!} f^{(n)}(c),
$$

which is Cauchy's form of the remainder.

Example 6. We now apply the integral form of the remainder to arrive at the result (Theorem 2) on binomial series.

Assume that m is not a non-negative integer. Then $a_n := \binom{m}{n} \neq 0$. Since

$$
\frac{a_{n+1}}{a_n} = \frac{m-n}{n+1} \to 1,
$$

the binomial series

$$
(1+x)^m = 1 + \sum_{n=1}^{\infty} \binom{m}{n} \frac{x^n}{n!}
$$

has radius of convergence 1. Similarly, the series $\sum_n n {m \choose n} x^n$ is convergent for $|x| < 1$. Hence

$$
n \binom{m}{n} x^n \to 0 \text{ for } |x| < 1. \tag{13}
$$

We now estimate the remainder term using (13). We have, for $0 < |x| < 1$,

$$
R_n = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} n! \binom{m}{n} (1+t)^{m-n} dt
$$

=
$$
\int_0^x n \binom{m}{n} \left(\frac{x-t}{1+t}\right)^{n-1} (1+t)^{n-1} dt.
$$
 (14)

We claim that

$$
|\frac{x-t}{1+t}| \le |x| \text{ for } -1 < x \le t \le 0 \text{ or } 0 \le t \le x < 1.
$$

Write $t = sx$ for some $0 \leq s \leq 1$. Then

$$
\left|\frac{x-t}{1+t}\right| = \left|\frac{x-sx}{1+st}\right| = |x||\frac{1-s}{1+ts}| \le |x|,
$$

since $1 + sx \ge 1 - s$. Thus the integrand in (14) is bounded by

$$
|n\binom{m}{n}\left(\frac{x-t}{1+t}\right)^{n-1}(1+t)^{n-1}dt| \leq n|\binom{m}{n}||x|^{n-1}(1+t)^{m-1}.
$$

Therefore, we obtain

$$
|R_n(x)| \le n \left| \binom{m}{n} ||x|^{n-1} \int_{-|x|}^{|x|} (1+t)^{m-1} \cdot \le Cn \left| \binom{m}{n} ||x|^{n-1}, \right.
$$

which goes to 0 in view of (14) .

This completes the proof of the fact that the binomial series converges to $(1+x)^m$.