
Existence of Continuous Functions

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

If x 6= y are two distinct points of a space X, is there a continuous function f : X → R
such that f(x) 6= f(y)? In general, this may not be true. There may not exist continuous
functions on the given space other than the constants. For each pair of distinct points, if there
is an f ∈ C(X,R) with f(x) 6= f(y), we say that the family C(X,R) separates points. This
is the reason for defining the completely regular and normal spaces which ensures plenty of
continuous functions. One kind of spaces for which existence of an abundance of continuous
real valued functions is assured is the class of metric spaces. We shall look at them first.

1 Case of Metric Spaces

The crucial fact here is the simple observation: If (X, d) is a metric space and x ∈ X, then
the function fx(y) := d(x, y) is continuous on X. For, by triangle inequality we have

|fx(y)− fx(z)| = |d(x, y)− d(x, z)| ≤ d(y, z).

Thus {fx : x ∈ X} is a separating family of continuous functions on X. More generally, we
have

Lemma 1. Let A be any nonempty subset of a metric space (X, d). Define d(x,A) ≡ dA(x) :=
inf{d(x, a) : a ∈ A}. Then |dA(x) − dA(y)| ≤ d(x, y) and hence dA is uniformly continuous
on X.

Proof. Observe from the triangle inequality d(x, a) ≤ d(x, y) + d(y, a), we obtain

inf
a∈A

d(x, a) ≤ inf
a∈A

(d(x, y) + d(y, a))

= d(x, y) + inf
a∈A

d(y, a),

so that dA(x) ≤ d(x, y) + dA(y). Thus, da(x)− dA(y) ≤ d(x, y). Interchanging x and y yields
the result.

Ex. 2. dA(x) = 0 iff x is a limit point of A. Hence if A is a closed set then d(x,A) = 0 iff
x ∈ A.
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Lemma 3 (Urysohn’s Lemma for Metric Spaces). Let A and B be nonempty disjoint closed
subsets of a metric space X. Then there exists an f ∈ C(X,R) such that 0 ≤ f(x) ≤ 1 for
x ∈ X and f = 0 on A and f = 1 on B.

Proof. Note that for any x ∈ X, d(x,A) + d(x,B) 6= 0. For, if it were so, then d(x,A) = 0 =
d(x,B). Since A and B are closed x ∈ A and x ∈ B by the last exercise. This contradicts
our hypothesis that A ∩B = ∅.

The function f(x) := d(x,A)
d(x,A)+d(x,B) meets our requirements.

Theorem 4 (Tietze extension theorem for metric spaces). Let Y be a closed subspace of a
metric space (X, d). Let f : Y → R be a bounded continuous function. Then there exists a
continuous function g : X → R such that g(y) = f(y) for all y ∈ Y and

inf{g(x) : x ∈ X} = inf{f(y) : y ∈ Y }, sup{g(x) : x ∈ X} = sup{f(y) : y ∈ Y }.

Proof. Assume that f ≥ 0. Consider the function Mx(r) := sup{f(y) : y ∈ Y ∩ B(x, r)}.
Then, for each x ∈ X, Mx is real valued, bounded and monotonic increasing in r. Hence it is
Riemann integrable as a function of r over any finite interval. Let δ(x) := d(x, Y ). Note that
δ(x) > 0 iff x /∈ Y . We define g by g(x) = f(x) if x ∈ Y and if x /∈ Y ,

g(x) :=
1

δ(x)

∫ 2δ(x)

δ(x)
Mx(r) dr.

We claim that g is continuous at any y ∈ Y . If x /∈ Y , then

min
Y ∩B(y,3δ)

f ≤ g(x) ≤ max
Y ∩B(y,3δ)

f, where δ := d(x, y).

Since 3δ → 0 as x→ y (with x /∈ Y ), it follows that, for any ε > 0, |g(x)− f(y)| < ε if x /∈ Y
and δ(x) < δ0 for δ0 sufficiently small. On the other hand, |g(x)− f(y)| = |f(x)− f(y)| < ε
if x ∈ Y and d(x, y) < δ1 by continuity of f on Y . Thus g is continuous at y.

Consider next the continuity of g at z /∈ Y . Let x be any point in X with d(x, z) <
d(z, Y )/3. Let α := d(x, z). Then 2α < d(x, Y ). For, otherwise, d(x, Y ) ≤ 2α so that
d(z, Y ) ≤ d(z, x) + d(x, Y ) < 3α. Hence α > d(z,X)/3, contradicting our assumption on x.
Since |δ(x)− δ(z)| ≤ d(x, z) = α (by Lemma 1), Mz(r) ≥Mx(r−α) as B(x, r−α) ⊂ B(z, r)
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and Mz(r) ≥ 0, we have

g(x)− g(z) =
1

δ(x)

∫ 2δ(x)

δ(x)
Mx(r) dr − 1

δ(z)

∫ 2δ(z)

δ(z)
Mz(r) dr

≤ 1

δ(x)

∫ 2δ(x)

δ(x)
Mx(r) dr − 1

δ(x) + α

∫ 2δ(x)−2α

δ(x)+α
Mx(r − α) dr

=
1

δ(x)

∫ 2δ(x)−3α

δ(x)
Mx(r) dr +

1

δ(x)

∫ 2δ(x)

2δ(x)−3α
Mx(r) dr

− 1

δ(x) + α

∫ 2δ(x)−3α

δ(x)
Mx(s) ds, using a change of variable

=
α

δ(x)[δ(x) + α]

∫ 2δ(x)−3α

δ(x)
Mx(r) dr +

1

δ(x)

∫ 2δ(x)

2δ(x)−3α
Mx(r) dr

≤ 4Mα

δ(x)
,

where M = supY f . A similar inequality holds with x and z interchanged. Hence g(x)→ g(z)
as x→ z. One easily checks that g is as desired.

To treat the general case, let m := infY f . Consider F := f −m. Apply the first case to
F to get a continuous extension G. Then g := G+ c is as required.

We shall use Weierstrass approximation theorem to give a proof of Tietze theorem for Rn.

Proof. (of Tietze theorem for Rn.) Let us prove the result when the closed set is compact.
So, we assume that f : K → R is a continuous function on a compact subset of Rn. By
Weierstrass approximation theorem, for each k ∈ Z+, there exists a polynomial pk such that
|f(x)− p(x)| < 2−k−2 for all x ∈ K. We let q0 = p0 and qk := pk − pk−1. Then pk =

∑k
i=1 qi

and
∑
qk converges uniformly to f on K.

Let M := sup{|f(x)| : x ∈ K}. Then |p0(x)| ≤ 2−2 + M for x ∈ K. Also, |qk(x)| < 2−k

for k ≥ 1 and x ∈ K. We let

h0 := max{−2−2 −M,min{q0, 2−2 +M}},
hk := max{−2−k,min{qk, 2−k}}, for k ≥ 1.

Then hk(x) = qk(x) for x ∈ K, hk is continuous on Rn and |hk(x)| ≤ 2−k for x ∈ Rn and
for all k. Hence

∑
hk converges uniformly on Rn to a continuous function h. Then h is

continuous and h(x) = f(x) for x ∈ K.

We now extend to result if the subset K is any arbitrary closed subset. If K is bounded
the result follows from the previous paragraph. So, we assume that K is not bounded. Let
k ∈ N be such that B[0, k] ∩K is nonempty. Let fk be the restriction of f to this nonempty
compact set. Then there exists a continuous function hk on Rn which extends fk. Define

gk(x) :=

{
hk(x), if x ∈ B[0, k]

f(x), if x ∈ K ∩B[0, k + 1].
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Then gk is continuous on the compact set B[0, k] ∪ (K ∩ B[0, k + 1]). There is an extension
hk+1 on Rn. Let

gk+1(x) :=

{
hk+1(x), if x ∈ B[0, k + 1]

f(x), if x ∈ K ∩B[0, k + 2].

Continuing in this way, we obtain a sequence (gm) whose domains are increasing to Rn. Define
g(x) := gm(x) if x ∈ B[0,m]. Then g is an extension of f .

2 Normal Spaces

Lemma 5. A space X is a normal space iff for each closed set F and an open set V containing
F there exists an open set U such that F ⊂ U ⊂ U ⊂ V .

Proof. Let X be normal and F , V as above. Then F and X \ V are disjoint closed sets.
By normality of X there exist open sets U and W such that F ⊂ U and X \ V ⊂ W and
U ∩W = ∅. Since U ⊂ X \W and X \W is closed, we see that U ⊂ X \W ⊂ V . Thus U is
as required. The converse is left as an exercise.

Ex. 6. Recall that a dyadic rational is a rational number of the form p/2n, where p and n
are integers. Show that the set of dyadic rationals is dense in R.

Lemma 7. urys2 Let X be a normal space. If A and B are closed subsets of X, for each
dyadic rational r = k2−n ∈ (0, 1], there is an open set Ur with the following properties: (i)
A ⊂ Ur ⊂ X \B, (ii) U r ⊂ Us for r < s.

Proof. Let U1 := X \B. By the last lemma, there exist disjoint open sets V and W such that
A ⊂ V and B ⊂W . Let U1/2 = V . Then, since X \W is closed, we have

A ⊂ U1/2 ⊂ U1/2 ⊂ X \W ⊂ X \B = U1.

Applying the same lemma once again to the open set U1/2 containing A and to the open set

U1 containing U1/2, we get open sets U1/4 and U3/4 such that

A ⊂ U1/4 ⊂ U1/4 ⊂ U1/2 ⊂ U1/2 ⊂ A ⊂ U3/4 ⊂ U3/4 ⊂ V.

Continuing this manner, we construct, for each dyadic rational r ∈ (0, 1), an open set Ur with
the following properties:

(i) U r ⊂ Us, 0 < r < s ≤ 1.
(ii) A ⊂ Ur, 0 < r ≤ 1. (iii) Ur ⊂ U1, 0 < r ≤ 1.

More formally, we proceed as follows. We select Ur for r = k2−n by induction on n.
Assume that we have chosen Ur for r = k2−n, 0 < k < 2n, 1 ≤ n ≤ N − 1. To find Ur for
r = (2j + 1)2−N , 0 ≤ j < 2N−1, observe that U j21−N and X \ U(j+1)21−N are disjoint closed
sets. So once again appealing to the last lemma, we can choose an open set Ur such that

U j21−N ⊂ Ur ⊂ U r ⊂ U(j+1)21−N .

These Ur’s are as desired.
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Theorem 8. Urysohn’s Lemma. A space X is a normal space iff the following is true: For
any two disjoint closed subsets A and B of X there exists a continuous function f : X → [0, 1]
such that f = 0 on A and f = 1 on B.

Proof. Let Ur’s be as in the last lemma. We define the function f so that the sets ∂Ur are
the level sets of f for the value r. We achieve this by defining

f(x) =

{
0, x ∈ Ur for all r

sup{r : x /∈ Ur}, otherwise.

Clearly, 0 ≤ f ≤ 1, f = 0 on A and f = 1 on B. We need only establish the continuity of f .

Let x ∈ X be such that 0 < f(x) < 1. Let ε > 0. Choose dyadic rationals r and s
in (0, 1) such that f(x) − ε < r < f(x) < s < f(x) + ε. Then x /∈ Ut for dyadic rationals
t ∈ (r, f(x)). By (i), x /∈ U r. On the other hand x ∈ Us. Hence W = Us \ U r is an open
neighbourhood of x. If y ∈ W , then from the definition of f we see that r ≤ f(y) ≤ s. In
particular, |f(y)− f(x)| < ε for y ∈W . Thus f is continuous at x. The cases when f(x) = 0
or 1 are easier and left to the reader.

Lemma 9. Let X and Y be Banach spaces. Let T : X→ Y be a bounded linear map. Assume
that for y0 ∈ Y there exist constants M and r ∈ (0, 1) such that there exists x ∈ X such that
‖x‖ ≤ M ‖y0‖ and ‖y0 − Tx‖ ≤ r ‖y‖. Then there exists z ∈ X such that Tz = y0 with
‖z‖ ≤M/(1− r).

Proof. Let y ∈ Y be given. We may assume without loss of generality that ‖y‖ = 1. Given
y ∈ Y let z1 = x as given in the lemma. For y0 = y − Tz1, we can find a z2 ∈ X such
that ‖z2‖ ≤ M ‖y − Tz1‖ ≤ Mr and ‖y − Tz1 − Tz2‖ ≤ r ‖y − Tz1‖ ≤ r2. Proceeding by
induction, we get a sequence (zn) in X such that (i) ‖zn‖ ≤ mrn−1 and (ii) ‖y −

∑n
i=1 Tzi‖ ≤

rn. The series
∑∞

n=1 zn converges to an element z ∈ X. We have Tz = y0.

Theorem 10 (Tietze Extension Theorem). Let X be a normal space and Y a closed subset
of X. Let f ∈ Y := Cb(Y,R). Then there exists a g ∈ X := Cb(X,R) such that g(y) = f(y)
for all y ∈ Y and sup{g(x) : x ∈ X} = sup{f(y) : y ∈ Y }.

Proof. Let T : X → Y denote the restriction map g 7→ g|Y . We show that T satisfies the
hypothesis of the previous lemma. Without loss of generality, assume that |f(y)| ≤ 1 for all
y ∈ Y . Let A := f−1([−1,−1/3]) and B := f−1([1/3, 1]). Then A and B are closed in Y and
hence in X. By Urysohn’s lemma, there exists a g ∈ X such that |g(x)| ≤ 1/3 for x ∈ X
and g = −1/3 on A and g = 1/3 on B. One easily checks that ‖Tg − f ‖X ≤ 1/3. If we take
M = 1/3 and r = 2/3, then T satisfies the previous lemma. Note that the assertion about
the equality of the norms is also obtained.

Ex. 11. Let X be a normal space and F a closed subset. Assume that f : F → (−R,R) be
a continuous function. Then f can be extended to a continuous function from X to (−R,R).
Hint: You may need Urysohn’s lemma.

Ex. 12. Let X be a normal space and F a closed subset. Assume that f : F → R be a
continuous function. Then f can be extended to a continuous function from X to R. Hint:
R is homeomorphic to (−1, 1).

5



Ex. 13. Assuming Tietze extension theorem, prove Urysohn’s lemma.

Ex. 14. Let A be a closed subset of a normal space X. Let f : A→ Sn be continuous. Show
that there exists an open set U ⊃ A (U depends on f) and an extension g of f to U .

Ex. 15. Show that with the notation of Exer. 14 that f may not extend to all of X. Hint:
What happens (i) if n = 0 and X is connected or (ii) if X := B[0, 1] ⊂ Rn+1, A := Sn and f
is the identity?
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