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The aim of this article is to prove the theorem of the title. As a rule no first course
in topology proves this result. Even if they raise the question of homeomorphism between
Rm and Rn they refer to Brouwer’s theorem on the invariance of domain which is proved as
an application of Homology Theory. We wish to make the following elementary proof more
widely known. It could be taught in any first course on Topology. There is nothing original
in the following proof except the organization of the material available in the literature.

Outline of the Proof

• Definition of a simplex, standard simplex; barycentric subdivision.

• Dimension of a compact metric space. dimTn ≤ n where Tn is the standard n-simplex
in Rn.

• Sperner’s lemma — restricted version (applicable only to triangulation arising from
barycentric subdivision).

• Nagata’s Lemma (restricted version): Let ∆k(s) be the k-th barycentric subdivision of
an n-simplex. Let {Ui}n0 be an open cover of s such that Ui ⊆ s \ Fi where Fi is the
face opposite to the vertex ei. Then there exists and r and an n-simplex in ∆r(s) which
intersects each of Ui.

• dim sn = n.
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Definition 1. A topological space X is said to have dimX ≤ n if given any open cover A of
X there exists an open cover B with the following properties:

1. For each B ∈ B there is an A ∈ A such that B ⊂ A.

2. There exists on element of X which lies in n + 1 memvbers of B and no element of X
lies in more than n+ 1 members of B.

We say that X is of (covering) dimension n if n is the least integer m such that dimX ≤ m.
If no such n exists then we write dimX =∞.

Ex. 2. Homeomorphic spaces have the same dimension.

Ex. 3. Let X be a compact metric space. We say that dimX ≤ n if for every ε > 0 there is
a finite open cover A of X by sets of diameter < ε such that some point of X lies in n + 1
members of A and no point of X lies in more than n+ 1 members of A. Hint: Use Lebesgue
covering lemma.

Ex. 4. Let X be a comapct metric space of dimension n. Let K be a closed subset of X.
Then dimK ≤ n.

Definition 5. A set of vectors {v0, v1, . . . , vk} in Rn is said to be geometrically (or affinely)
independent if the set of vectors {v1 − v0, v2 − v0, . . . , vn − v0} is linearly independent. A
singleton set is geometrically independent by definition.

Example 6. A set {v0, v1} is geometrically indenpendent iff they are not multiples of each
other. A set {v0, v1, v2} is geometrically indenpendent iff they are not collinear. A set
{v0, v1, v2, v3} is geometrically indenpendent iff they are not coplanar.

Ex. 7. A set of vectors {v0, v1, . . . , vk} in Rn is said to be geometrically (or affinely) inde-
pendent iff for any set of real numbers λi with

∑k
i=0 λi = 0 and

∑k
i=0 λivi = 0 we have λi = 0

for 0 ≤ i ≤ k.

Definition 8. Let {v0, v1, . . . , vk} in Rn be geometrically independent. The (open) simplex
sk is the set

sk := {x ∈ Rn : x =
k∑

i=0

λivi, λi > 0 and
∑
i

λi = 1}.

We refer to k as the algebraic dimension of s. s is also called a k-simplex. We denote the
simplex sk by (v0v1 . . . vk). vi are called the vertices of sk. The simplex σi spanned by
{v0, . . . , v̂i, . . . , vk} is called the i-th face opposite to the vertex vi. (v̂i means vi is omitted.)
More generally, one defines an r-face of the simplex (v0 . . . vk) as the r-simplex (vi1 . . . vir) for
0 ≤ i1 < i2 · · · ir ≤ k. If σ is an r-face of s we write σ ≺ s.

Example 9. Any one simplex with vertices v0 and v1 is the open line segment joining v0
and v1. Any two simplex spanned by three noncollinear vectors is the open interior of the
triangle of which they are vertices. Any three simplex spanned by four coplanar vectors is
the open tetrahedron. The faces are respectively the endpoints of the line segment, sides of
the triangle and the faces of the tedrahedron.

The proof of the theorem of the title depends on the following
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Theorem 10. Let Tn be the closure of any n-simplex in Rn. Then dimTn = n.

Assuming the theorem let us complete the proof of the main result. Let f : Rn → Rm be
a homemorphism. Let us assume that, if possible, that m 6= n. Let m < n without loss of
generality. Let Tn be as above. Then f(Tn) is a compact subset of Rm. Hence there exists
an m-simplex, say, s such that f(Tn) ⊂ s ⊂ s. Since dim s ≤ m and dimTn = n, we infer
that n = dim f(Tn) ≤ m < n in view of Exercises 2 and 4. This contradiction shows that
m = n.

We break the proof of Theorem 10 into two statements: dimTn ≤ n and dimTn ≥ n. In
the next section we establish the first and the second in the last section.

1 Barycentric Subdivision

Definition 11. A complex K is a collection of simplices {s} with the following property: If
s ∈ K and σ ≺ s then σ ∈ K. The set |K| = ∪s∈Ks is called the geometric realisation of the
complex K and K is called a triangulation of |K|.

Definition 12. Let s := (v0 . . . vk) be any simplex. Then the barycenter of s is the vector
(v0 + · · ·+ vk)/(k + 1). We denote this vector by b(s).

Example 13. The barycenter of any 0-simplex is itself. The barycenter of (v0v1) is the
midpoint of the line segment, that of (v0v1v2) is the centroid of the triangle and that of
(v0 . . . v3) is the centre of garvity of the tetrahedron.

Definition 14. Let a complex K be given. The first barycentric subdivision of K is the
complex ∆1(K) whose vertices are b(s) where s runs through all the faces of all simplices
of K. The other simplices in the newcomplex are of the form (b(s1)b(s2) . . . b(sr)) where
s1 ≺ s2 · · · ≺ sr. We leave it to the reader that ∆1K is indeed a complex. Recursively we
define Dr(K) := D1(Dr−1(K)), called the r-th barycentric subdivision of K.

The following simple exercise will be repeatedly used in the sequel.

Ex. 15. Let µ(K) := max{diam s : s ∈ K} be mesh of the complex. Let s be any simplex.
Show that µ(s) is the length of the longest side, i.e.,1-dimensional face and µ(∆r(s))→ 0 as
r →∞.

Theorem 16. Let s be an n-simplex. Then dim s ≤ n.

Proof. Given ε > 0 let us choose r sufficiently large so that the mesh of ∆r(s) is less than
ε/2. Then the closed simplices in ∆r−1(s) is an ε-covering such that each vertex vi ∈ s lies
in ∩ni=0star(vi). This does the job. (Details are to be given.)

2 Sperner’s Lemma and its Corollaries

We shall give a very special version of Sperner’s lemma which will be sufficient for our purpose.
For more general versions, see references.
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Theorem 17. Let s = (v0 . . . vn) be a simplex. Let ∆r(s) be the r-th barycentric subdivision
of s. Let a map f : V (∆r(s))→ V (s) be given such that f(v) = vi where vi is a vertex of the
carrier of v. (Such maps will be called Sperner maps.) Then there exists a simplex σ ∈ Dr(s)
such that f(σ) = {v0, . . . , vn}.

Proof. We shall prove this for r = 1 by induction on n. For n = 1 this is clear. Let us
assume that the result is true for n − 1. Assume without loss of generality that f(z) = vn
where z = b(s) ∈ ∆1(s). Then f induces a Sperner map on the n − 1-simplex (v0 . . . vn−1).
By induction hypothesis, we there is an n − 1-simplex, say, σn−1 = (b0 . . . bn−1) such that
f(V (σ)) = {v0, . . . , vn−1}. Clearly the simplex τ = (b0 . . . bn−1vn) is of the required type.
Thus the result is true for ∆1(s) for any n-simplex s.

To complete the proof we now use induction on r and the previous paragraph. Let a
Sperner map f : V (∆r(s)) → V (s) be given. Then it induces a Sperner map on ∆r−1(s) by
restriction. By induction there exists a σ ∈ ∆r−1(s) such that f(σ) = {0, 1, . . . , n}. By the
first part of the proof there exists a simplex τ ∈ ∆1(σ) such that τ is completely labelled.
But then τ ∈ ∆r(s) and meets our requirement.

3 dimT n = n

Theorem 18. Let s := (v0 . . . vn) be an n-simplex and Tn := s. Let {Ui : 0 ≤ i ≤ n} be an
open cover of T such that Ui does not interset the i-th face. Then there a sufficiently large
positive integer r such that there is an n-simplex σ in ∆rs such that σ ∩ Ui 6= emptyset.

Proof. Let ε be the Lebesgue number of the covering {Ui}. We choose r so that the mesh
of ∆r(s) is less than ε/2. We define a Sperner map f : f(v) = i if v ∈ Ui and vi is a vertex
of the carrier of v. This is possible by our assumption on the cover. Sperner lemma gives a
simplex of the required kind.

Theorem 19. Let the notation be as above. Then dim sn ≥ n.

Proof. To prove this we need to exhibit an open cover A such that any B is in Defintion 1
will be of order greater than or equal to n+ 1. Let us take Ai = Tn \ Fi, the complement of
the i-th face. Let B be any open cover such that B ≤ A. After doing a little jugglery we may
assume that B has n+ 1 members. By the last result the order of B is n+ 1.
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