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Abstract

This is a summary of a course on General Topology, offered by me at the Department
of Mathematics, University of Mumbai during the academic year 2004-2005. There are no
proofs in this set of notes. Its merit, if any, lies in the choice of topics, their development
and the emphasis on concrete and geometric examples and exercises. I plan to add a bit
more material so that it could serve as a skeleton of a course in General Topology. Later
I plan to develop this into a text-book. I would appreciate your comments and views.

This set may be used in conjunction with the following articles of mine on Topology:

1. Subspace Topology
2. Quotient Topology
3. Existence of Continuous Functions
4. Compact Spaces
5. Connected Spaces
6. Generating Topologies — A Unified View of Subspace, Product and Quotient Topolo-

gies.

My book Topology of Metric Spaces published by Narosa and the books Topology by
Munkres and Topology by Armstrong are available in Indian edition and they may be used
to fill in the details of my outline.

1. Finite sets and number of elements in a finite set

2. Countable and uncountable sets: Countable sets definition and equivalent characteriza-
tions. Applications: Countability of N × N, Q+, Q, countable union of countable sets,
finite product of countable sets.

3. Uncountability of 2N: Cantor’s theorem: there exists no onto map from X to P (X).

4. Metric Spaces: Definition. examples: absolute value metric on R

5. Metrics in R2: L1 and L∞ metrics, called the sum and max metrics.

6. Generalizations of these metrics to function spaces:

7. Normed linear spaces. Examples: ‖ ‖1, ‖ ‖∞ and ‖ ‖2 on Rn.

Three classes of function spaces: B(X,R), (C[0, 1], ‖ ‖∞) and (C[0, 1], ‖ ‖1).

8. `1, the space of sequences whose associated series are absolutely summable.
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9. Open balls:

(a) in R
(b) B(0, 1) in R2 with ‖ ‖1, ‖ ‖2 and ‖ ‖∞.

(c) in Z with the induced metric. Identify all open balls.

(d) Relations between B(x, r) and B(y, s).

(e) Visualizing the open balls in C[0, 1] under ‖ ‖∞.

(f) In an NLS, B(x, r) = x+ rB(0, 1).

10. Open sets:

(a) in R: various examples and non-examples such as Q, R \Q
(b) {(x, y) ∈ R2 : x > 0, y > 0} in R2.

(c) {(x, y) ∈ R2 : x2 + y2 > 1} in R2.

(d) In an NLS V , if any vector subspace W is open, then W = V . Application: Is
C[0, 1] open in BF [0, 1], the set of bounded functions?

(e) Is R \ Z open in R?

(f) B(x, r) is open.

(g) {y ∈ X : d(x, y) > r} is open.

(h) What are the open sets in a finite metric space?

(i) Can {h ∈ C[0, 1] : f(x) < h(x) < g(x)} for some f, g ∈ C[0, 1] be an open ball? Is
it an open set?

(j) Is the open unit ball in (C[0, 1], ‖ ‖∞) open in (C[0, 1], ‖ ‖1)?
(k) If U is an open subset in an NLS, (X, ‖ ‖), then

i. x+ U is open for any x ∈ X
ii. A+ U is open for any A ⊂ X
iii. αU is open for any nonzero scaler α.

(l) Is the set U := {f ∈ C[0, 1] : f(1/2) 6= 0} open in (C[0, 1], ‖ ‖∞)?

(m) Any open subgroup of R is R.

(n) A subset U of a metric space is open iff it is the union of a family of open balls.
(As preliminary, we discussed the notion of a family of subsets of a set, their union
etc.)

(o) A subset U ⊂ R is open iff it is the union of a countable family of pair-wise disjoint
open intervals.

11. Topology: definition and examples:

(a) metric topology

(b) discrete topology: every subset is open.

(c) The topology on a finite metric space is discrete.

(d) indiscrete topology: U is open iff U = ∅ or U = X.

(e) cofinite topology: U is open iff U = ∅ or X \ U is finite.
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(f) cocountable topology: U is open iff U = ∅ or X \ U is countable.

(g) VIP topology: Fix p ∈ X. U is open iff U = ∅ or p ∈ U .

(h) outcast topology: Fix p ∈ X. U is open iff U = X or p /∈ U .

(i) VIP+outcast topology: U is open iff either p /∈ U or U c is finite.

12. Basis of a topological space and basis for a topology on a set.

13. Examples of bases:

(a) {B(x, r) : x ∈ X, r > 0} is a basis for the metric topology on any metric space.

(b) {B(x, 1/n) : x ∈ X,n ∈ N} is a basis for the metric topology on any metric space.

(c) B := {{x} : x ∈ X}. What is the topology?

(d) B := {X}. What is the topology?

(e) {(a, b) : a, b ∈ Q} is a basis for some topology on R. What is the topology? Is this
basis countable or uncountable?

(f) A basis for the VIP topology is {p} ∪ {{p, q} : q ∈ X, q 6= p}.
(g) A basis for outcast topology is {X} ∪ {{q} : q ∈ X, q 6= p}.

14. We can use bases to say something about the topologies on a set.

Theorem 1. Let X be any set. Let Bi be a basis for some topology Ti on X, for i = 1, 2.
Then T1 ≤ T2 iff the following holds: if B1 ∈ B1, then B1 ∈ T2. In particular, T1 = T2
iff every B1 ∈ B1 is in T2 and every B2 ∈ B2 is in T1.

15. Order Topology: partial and total orders, dictionary order on products, C is totally
ordered but is not an ordered field. Intervals of the form (a, b) and rays of the form
(−∞, a) and (b,∞). Examples in R2: the rays (−∞, (1, 2)), ((−1, 1),∞) and the inter-
vals ((−1, 1), (3,−2)) and ((0, 0), (0, 10)). Basis for order topology. What is the order
topology on R, on Z, on N and on a finite totally ordered set?

16. When do two norms generate the same topology on a vector space? iff we can find
positive constants C1 and C2 such that C1 ‖x‖1 ≤ ‖x‖2 ≤ C2 ‖x‖1 for all x. One then
says that the norms are equivalent.

Useful observations to prove this are:

(a) It is enough to show that B1(0, 1) is open in ‖ ‖2-topology and vice-versa.

(b) ‖x‖2 ≤ C2 ‖x‖1 iff B1(0, 1) ⊂ C2B2(0, 1) = B2(0, C2).

17. In Rn, the three norms ‖ ‖1, ‖ ‖2 and ‖ ‖∞ are equivalent. To see this observe the
following:

1

n
‖x‖1 ≤

1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 .

Later, we shall show that all norms on Rn induce the same topology, that is, they are
all equivalent.
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18. The class of all topologies on a given set is a partially ordered set: if T1 and T2 are
topologies on X, we define T1 ≤ T2 iff T1 ⊂ T2, as subsets of P (X). The indiscrete
topology is the smallest element and the discrete topology is the largest element of the
class of topologies on X. The union of topologies on X need not be topology whereas
the intersection of a (nonempty) family of topologies on X is again a topology.

This allows to define the following: if A is an arbitrary collection of subsets of a set
X, there exists a unique smallest topology on X which contains A and is called the
topology generated by A. We compared this with the concept of subgroup (or a vector
subspace) generated by subset in a group (or in a vector space). We shall later see a
practical way of looking at this topology. See Item 122.

19. Lower Limit Topology: A basis for this topology is {[a, b) : a, b ∈ R, a < b}. Since
(a, b) = ∪n≥N [a+ 1

N , b) for N sufficiently large, it follows that the lower limit topology
is finer than the usual topology on R.

20. Let X be a set and Tc and Tf be respectively cocountable and cofinite topologies on X.
Then the cocountable topology is finer than the cofinite topology.

They are the same iff X is finite. To see this, we needed a result form set theory: If X
is an infinite set, then there exists a set A such that X \A is infinitely countable.

21. Continuity: Let (X, TX) and (Y, TY ) be topological spaces. Let f : (X, TX)→ (Y, TY )
be a map and x0 ∈ X. We say that f is continuous at x0 if for any given open set V
containing f(x0), there exists an open set U containing x0 such that f(U) ⊂ V .

We motivated this definition and also proved the following theorem:

Theorem 2. Let f : (X, d)→ (Y, d) be a map between metric spaces. Let x0 ∈ X. Let
TX and TY be the topologies on X and Y induced buy their respective metrics. Then
f : (X, TX)→ (Y, TY ) is continuous at x0 iff for every ε > 0 there exists δ > 0 such that
whenever d(x, x0) < δ, we have d(f(x), f(x0)) < ε.

22. Let f : X → Y be any map between two sets. Let B ⊂ Y . The set f−1(B) := {x ∈ X :
f(x) ∈ B} is called the inverse image of B under f . The following are well-known facts:

(a) If {Bi : i ∈ I} is a family of subsets of Y , then

i. f−1 (∪i∈IBi) = ∪i∈If−1(Bi).
ii. f−1 (∩i∈IBi) = ∩i∈If−1(Bi).

(b) For any set B ⊂ Y , we have X \ f−1(B) = f−1 (Y \B).

23. Let X and Y be topological spaces. Then a map f : X → Y is said to be continuous on
X iff it is continuous at each point x ∈ X. We proved the following

Theorem 3. Let X and Y be topological spaces. Then a map f : X → Y is continuous
on X iff for every open subset V ⊂ Y , the inverse image f−1(V ) is open in X.

24. We looked at the following examples:

(a) Any constant map from a topological space to another is continuous.

(b) The identity map from (X, TX) to itself is continuous.
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(c) If T1 and T2 are topologies on a set X, then the identity map I : (X, T1)→ (X, T2)
is continuous iff T1 is finer than T2.

(d) Let (X, TX) be a topological space with the property that any map f : (X, TX)→
(Y, TY ) is continuous. Then TX is discrete and conversely.

(e) Let (Y, TY ) be a topological space with the property that any map f : (X, TX) →
(Y, TY ) is continuous. Then TY is indiscrete and conversely.

(f) The identity map from X with cocountable topology to X with cofinite topology
is continuous. The other way map is continuous iff X is finite.

(g) Let X be a set with at least two elements and p ∈ X. Let V (resp. O) denote the
VIP topology (resp. the outcast topology) on X with respect to p. Then

i. The identity map I : (X,V )→ (X,O) is not continuous. However it is contin-
uous at x = 0 and at no other point.

ii. The identity map I : (X,O)→ (X,V ) is not continuous at any point.

25. The identity map from R with the lower limit topology is continuous to R with the
usual topology.

26. Let ‖ ‖k, k = 1, 2, be two norms on a vector space V . Then they are equivalent iff the
identity map I : (V, ‖ ‖1)→ (V, ‖ ‖2) and I : (V, ‖ ‖2)→ (V, ‖ ‖1) are continuous.

27. Let X be an uncountable set with cocountable topology Tc. Then the only continuous
functions f : (X, Tc)→ R are constants.

28. We discussed the set of points of continuity of all real valued functions on the following
spaces.

(i) R with VIP topology with 0 as the VIP.
(ii) R with outcast topology with 0 as the outcast.
(iii) N with the topology T := {∅,N} ∪ {In : n ∈ N} where In = {1, 2, . . . , n}.

29. On any metric space X, we have lots of real valued continuous functions: f(x) := d(x, p)
for any fixed p ∈ X. In particular, given p 6= q in X, there exists a real valued continuous
function f on X such that f(p) 6= f(q).

30. Let A be a nonempty subset of a metric space X. We defined dA(x) ≡ d(x,A) :=
inf{d(x, a) : a ∈ A}. We looked at the following examples and drew graphs for the first
three:

(a) X = R and A = [−1, 1].

(b) X = R and A = Q.

(c) X = R and A = Z.

(d) X = R2 and A is the x-axis.

(e) X = R2 and A = {(x, y) : x2 + y2 = 1}.
(f) W is a vector subspace of Rn. Hint: If Rn = W ⊕W⊥, and if x = w + w′, then

dW (x) = ‖w′‖ = ‖x− pW (x)‖, where pW : Rn →W is the orthogonal projection.
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31. We showed that for any nonempty subsetA of a metric spaceX, the function dA : X → R
is continuous: dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a), for a ∈ A. Hence dA(x) is a lower
bound for the set {d(x, y) + d(y, a) : a ∈ A}. But then inf{d(x, y) + d(y, a) : a ∈ A} =
d(x, y) + dA(y).

32. The function x 7→ ‖x‖ is continuous on an NLS (V, ‖ ‖).

33. The functions πi : x 7→ xi, the coordinate projections are continuous on Rn (with respect
to any of the norms ‖ ‖i, i = 1, 2,∞).

34. Composite of continuous functions is continuous: Let X,Y, Z be topological spaces. Let
f : X → Y be continuous at p ∈ X and g : Y → Z be continuous at q := f(p) ∈ Y .
Then g ◦ f : X → Z is continuous at p.

35. The functions R2 → R given by σ : (x, y) 7→ x+ y and µ : (x, y) 7→ xy are continuous.

36. Let f, g : X → R be continuous functions. Consider R2 with ‖ ‖ being one of the three
norms: ‖ ‖1 , ‖ ‖2 , ‖ ‖max. Then the function ϕ : X → R2 given by ϕ(x) = (f(x), g(x))
is continuous.

37. If f, g are continuous functions from a topological space to R and if a, b ∈ R, then the
functions af + bg and fg are continuous. Hint: Use Items 34–36.

38. Any polynomial function f : Rn → R is continuous.

39. The map ρ : R∗ → R∗ given by ρ(x) = 1/x is continuous.

40. Let f : X → R be continuous and assume that f(x) 6= 0 for all x ∈ X. Then 1/f : X → R
is continuous.

41. To check continuity, it suffices to show that the inverse images of basic elements in the
codomain are open in the domain:

Lemma 4. Let (X1, Ti) be topological spaces i = 1, 2 and let B2 be a basis for T2. Then
f : (X1, T1)→ (X2, T2) is continuous iff f−1(B2) ∈ T1 for all B2 ∈ B2.

Item 25 is an immediate consequence of this.

42. Any linear map from Rn with any one of our three standard norms to any normed linear
space is continuous. In particular, any linear map from Rm to Rn is continuous. Hint:
Show that there exists C > 0 such that ‖Tx‖ ≤ C ‖x‖.

43. In view of Item 42, the three norms on Rn are equivalent.

44. Let X and Y be normed linear spaces. A linear map T : X → Y is continuous iff there
exists a positive constant C such that ‖Tx‖ ≤ C ‖x‖ for all x ∈ X. Hint: Use ε-δ
definition of continuity at 0.

Deduce that a linear map between two NLS’s is continuous iff it is continuous at 0.

45. Use Items 26 and 44 to give an easier proof of Item 16.

46. One can use functions whose continuity are known to assert that certain subsets are
open.
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(a) Since polynomial functions from Rn to R are continuous

i. The subsets {(x, y) ∈ R2 : xy 6= 0}, {(x, y) ∈ R2 : x2 + y2 6= 1} and {(x, y) ∈
R2 : xy 6= 1} are all open.

ii. The subset {(x, y) ∈ R2 : x3 − 34x2y − 28xy2 − y3 + 7xy − 19y + 125 6= 0} is
open in R2.

iii. R3 \ P , where P := {(x, y, z) : ax+ by + cz = d} is a plane, is open in R3.

iv. The rectangle R := (a, b)×(c, d) is open in R2: R = p−11 (a, b)∩p−12 (c, d), where
p1(x, y) = x etc.

v. The set {f ∈ C[0, 1] : f(1/2) 6= 0} in X := (C[0, 1], ‖ ‖∞) is open. Hint:
Consider T : X → R given by T (f) := f(1/2).

(b) Let W be a vector subspace of Rn. Then Rn \ W is open in Rn. Hint: Write
Rn = W ⊕W⊥ and let u1, . . . , uk be an orthonormal basis of W⊥. Then x ∈ Rn
lies in W iff 〈x, ui〉 = 0 for all 1 ≤ i ≤ k.

Alternately, consider the orthogonal projection π : Rn → W⊥. Then Rn \W =
π−1(W⊥ \ {0}).

(c) Let Mm×n(R) denote the set of all m×n matrices with real entries. We identify it
with Rmn in an obvious way. We use any one of the standard norms on Mm×n(R).
We let M(n,R) := Mn×n(R). Then we have

i. GL(n,R), the set of all invertible matrices is open in M(n,R).

ii. The set of symmetric matrices, being a vector subspace, cannot be open in
M(n,R). Hint: See Item 10d.

iii. Same holds true for the set of skew symmetric matrices.

47. Closed Sets: Let (X, T ) be a topological space. A set F ⊂ X is called a closed set (or
said to be closed) in X if X \F is open in X. Let C be the class of all closed subsets in
X. The following are more or less immediate:

(a) ∅, X ∈ C.
(b) If {Fi : i ∈ I} is a family of closed sets, then their intersection ∩i∈IFi is again

closed.

(c) If F1 and F2 are closed, then so is F1 ∪ F2.

48. Examples of Closed Sets:

(a) Any finite subset of a metric space is closed.

(b) Any closed ball B[x, r] in a metric space is closed. Hence any closed interval [a, b]
is closed in R.

(c) Any sphere S(x, r) := {y ∈ X : d(x, y) = r} in a metric space is closed.

(d) The set {1/n : n ∈ N} ∪ {0} is closed in R.

(e) The set (−∞, 0)∪ [1,∞) is closed in R with lower limit topology but not closed in
R with the usual topology.

(f) The only subsets of R which are both open and closed are ∅ and R.

(g) The set [0, 1) is neither closed nor open in R.

(h) Any subset of a discrete space is open as well as closed.
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(i) Any subset A ⊂ R∗ is closed in R with VIP topology with 0 as the VIP.

(j) What are the sets which are both open and closed in R with VIP topology with 0
as the VIP?

(k) Any subset of R containing 0 is closed in R with the outcast topology with 0 as
the outcast.

(l) What are the sets which are both open and closed in R with the outcast topology
with 0 as the outcast?

(m) Any vector subspace of Rn is closed. So are its translates.

(n) The set of n×n symmetric matrices and the set of n×n skew-symmetric matrices
are closed in M(n,R).

(o) The set GL(n,R) is not closed in M(n,R).

(p) The set of singular matrices in M(n,R) is closed.

(q) The set {f ∈ C[0, 1] : f(1/2) = 0} in X := (C[0, 1], ‖ ‖∞) is closed.

(r) The sets Q and R \Q are neither closed nor open in R.

49. We have the following characterization of continuity in terms of closed sets.

Theorem 5. Let f : X → Y be a map between topological spaces. Then f is continuous
iff f−1(B) is closed in X for every closed set B ⊂ Y .

50. As we did earlier in the case of continuity and open sets, we may use the above theorem
to assert that certain subsets are closed.

(a) The set {(x, y) ∈ R2 : xy = 0}, {(x, y) ∈ R2 : xy = 1}, {(x, y) ∈ R2 : x2 + y2 = 1}
are closed in R2.

(b) The closed rectangle R := [a, b]× [c, d] is closed in R2.

(c) The unit n-dimensional sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is closed in Rn+1.

(d) The set SL(n,R) of matrices A ∈M(n,R) with determinant 1 is closed in M(n,R).

(e) The subset of matrices whose trace is 0 is closed in M(n,R). (Also follows from
Item 48m.)

(f) The set O(n) of orthogonal matrices is closed in M(n,R). Hint: The maps
M(n,R) → R given by A 7→ Ri(A) · Rj(A) ≡

∑n
k=1 aikajk are continuous. Here

Ri(A) denotes the i-th row of A.

(g) The set of singular matrices in M(n,R) is closed.

(h) The set of nilpotent matrices in M(n,R) is closed.

Items 47–50 were done on September 15, 2004.

51. * Let A be a subset of a topological space. The characteristic function χA of A is defined
by

χA(x) :=

{
1 if x ∈ A
0 if x /∈ A

.

What can you conclude about A if the function χA is continuous on X?
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52. Analysis of the answers and remarks on the question paper of the first test.

53. Revision of closed sets and their properties. For any set A of a topological space (X, T ),
the smallest closed set containing A exists. It is denoted by A and called the closure of
A in X. (Compare this with the existence of the smallest topology containing a family
{Ai : i ∈ I} of subsets of a set X.) Note that A ⊂ A.

54. Examples of closures:

(a) The closure of (a, b) ⊂ R is [a, b].

(b) The closure of Q in R is R.

(c) The closure of an open ball B(x, r) in Rn is the closed ball B[x, r]. In a general
metric space, this need not be true. Consider B(x, 1) and B[x, 1] in a discrete
metric space with at least two points.

(d) Let R be given the VIP topology with 0 as the VIP. Then the closure of A = {0}
is R. The closure of R \Q is itself. The closure of {a} is itself if a 6= 0.

(e) Investigate the case of R with outcast topology.

Items 52–54 were done on 05-10-2004.

55. Let (X, T ) be a topological space and A ⊂ X. Then x /∈ A iff there exists an open set
U 3 x with U ∩ A = ∅. Hence, x ∈ A iff for every open set U 3 x, we have U ∩ A 6= ∅.
This suggests the following definition.

Definition 6. x ∈ X is said to be a limit point of A if for every open set U 3 x, we
have U ∩A 6= ∅.
This is NOT the standard definition and hence should not be confused with the notion
of cluster or an accumulation point which we shall see below. We shall follow our
nomenclature only.

56. Every point of A is a limit point of A.

57. x ∈ A iff x is a limit point of A.

58. Let (X, d) be a metric space, A ⊂ X. Then x ∈ X is a limit point of A iff there exists
a sequence (an) in A such that an → x.

59. With the notation as in the last item, x ∈ A or x is a limit point of A iff dA(x) = 0.

60. In any normed linear space (X, ‖ ‖), the closure of an open ball B(p, r) is B[p, r]. Thus,
q ∈ X is a limit point of B(p, r) iff d(p, q) ≤ r. In particular, B(p, r) = B[p, r]. Hint: If
q ∈ B[p, r], consider the line segment (1− t)p+ tq, 0 ≤ t ≤ 1. Draw picture. From this
line segment, you can find a sequence pk ∈ B(p, r) which converges to q.

61. The set theoretic results about the closure operation:

(a) If A ⊂ B, then A ⊂ B.

(b) A ∪B = A ∪B.

(c) A ∩B ⊂ A ∩B. Strict containment can occur.
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(d) ∪i∈IAi ⊂ ∪i∈IA. Strict containment can occur.

Definition 7. x ∈ X is a cluster or an accumulation point of A iff for every open set
U 3 x, the set (U \ {x}) ∩ A 6= ∅, that is, any open set U ∈ x contains a point of A
other than x.

62. Intuitively, A accumulates or clusters around x. (They are like celebrities of A!) Obvi-
ously, any cluster point of A is a limit point of A, but not conversely. The notion of a
cluster point is much stronger and more stringent than that of a limit point.

63. Every point of A = Z ⊂ R is a limit point of A but there exists no cluster point of A in
R.

64. Consider R with VIP topology with 0 as the VIP. Then any nonzero real number is a
cluster point of A = {0}. Zero is obviously a limit point of A but not a cluster point of
A.

65. The last example also shows that the following can occur. x may be a cluster point of
A, but there may exist open sets U 3 x with U ∩A is finite!

66. Any point in any ball (open or closed) in an NLS is a cluster point of the ball.

67. Analyse the situation in a metric space. In a metric space, if x is a cluster point of A,
then every open set U 3 x will contain infinitely many points of A. The proof suggested
the following definition.

Definition 8. A topological space X is said to be Hausdorff iff for every pair x, y ∈ X
of distinct points, there exist open set U, V such that x ∈ U and y ∈ V and U ∩ V = ∅.

68. Let (X, T ) be a Hausdorff (topological) space and A ⊂ X. Then x ∈ X is a cluster
point of A iff for every open set U 3 x, the set U ∩A is infinite.

69. Any finite set in a Hausdorff space cannot have a cluster point. (Hausdorff condition is
required. Look at R with VIP topology with zero as the VIP and A = {0}.)

Items 55–69 were done on 07-10-2004.

70. Let (X, T ) be any topological space and A ⊂ X. Then A is the union of A and the
cluster points of A.

Definition 9. We say that a sequence (xn) in a topological space (X, T ) converges to
a point x ∈ X, if for every open set U 3 x, there exists n0 ∈ N such that xn ∈ U for all
n ≥ n0. The point x is called the limit of the sequence and (xn) is said to be convergent.

71. If (X, T ) is a hausdorff (topological) space, then any convergent sequence has a unique
limit.

This need not be true in a general space. For instance, if we consider R with discrete
topology, any sequence is convergent to any point of R!
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72. In any hausdorff space, any finite set is closed.

This need not be true in an arbitrary topological space. For instance, consider the
indiscrete topology on R.

Hence conclude: The topology of any finite hausdorff is discrete.

73. Examples of Convergent sequences:

(a) The only convergent sequences in any discrete space are eventually constant se-
quences.

(b) In the NLS (B(X,R), ‖ ‖∞), a sequence (fn) converges to f ∈ B(X,R) iff fn
converges to f uniformly on X.

(c) A sequence (xk) in Rn converges to x ∈ Rn iff xkj → xj as k →∞ for 1 ≤ j ≤ n.

74. We analyzed the proof of Item 58 and arrived at the following conclusion:

Let (X, T ) be a space with the following property: For every x ∈ X, there
exists a countable collection of open sets {Un,x : n ∈ N} such that

(a) For every open set U 3 x, there exists n such that x ∈ Un,x ⊂ U
(b) ∩nUn,x = {x}.
Then, x ∈ X is a limit point of A ⊂ X iff there exists a sequence (an) in A
such that an → x.

75. The foregoing item led us to the following concepts.

Definition 10. Let (X, T ) be a topological space and p ∈ X. Then by a local base at
p, we mean a family {Ui : i ∈ I} of open sets containing p with the property that if U
is an open set containing p, then there exists i ∈ I such that x ∈ Ui ⊂ U .

A space is said to be first countable if there exists a countable local base at every point
p ∈ X.

76. Observe that if (X, T ) is countable, then we may assume that any local base {Un,p :
n ∈ N} is decreasing sequence.

77. We look at some examples:

(a) In R with standard topology, {(p− 1/n, p+ 1/n) : n ∈ N} is a local base. Hence R
is first countable. More generally, any metric space is first countable.

(b) If R is endowed with the discrete topology, then a local base at any point can be
taken as {x}. Hence R with discrete topology is first countable.

(c) Consider R with VIP topology. (Convention: VIP is always 0.) Then the set {p, 0}
is a local base at any p ∈ R. (If p = 0, then the set {p, 0} = {0}!) Hence R with
VIP topology is first countable.

(d) Any indiscrete topology is first countable.

78. Let (X, T ) be a hausdorff, first countable space. Let {Up,n : n ∈ N} be a countable
local base. Then ∩nUn,p = {p}. (We did not use the full power of hausdorff condition.
We could have achieved the same result with less stringent hypothesis, but we shall not
worry about this!)

11



79. In view of Item 74 and Item 78, we have the following.

Theorem 11. Let (X, T ) be first countable and hausdorff. Then x is a limit point of
A iff there exists a sequence (an) in such that an → x.

Definition 12. We say that a topological space (X, T ) is second countable if there
exists a countable basis for T .

80. Clearly, any second countable space is first countable.

81. Examples and non-examples:

(a) R with the standard topology is second countable. (See Item 13e.)

(b) A discrete space X is second countable iff the set X is countable.

(c) R with VIP topology is first countable but not second countable.

(d) Any indiscrete space is second countable.

82. Think over this: What will be the counter part (in terms of open sets) of the smallest
closed set containing A? We shall soon discuss this.

83. Answer to the last item: It is the largest open set contained in A. It is called the interior
of A and is denoted by Int (A).

84. Examples of interior of a set:

(a) The interior of an open set is itself.

(b) The interior of [a, b] ⊂ R is (a, b).

(c) The interior of Q ⊂ R is the empty set. What is Int (R \Q)?

(d) The interior of a proper vector subspace of Rn is empty. Does this generalize to
any NLS?

(e) The interior of a closed ball B[p, r] in any NLS is the open ball B(p, r). In a general
metric space, such a result is not true.

From Item 70 to up to this item were done on October 12, 2004.

(f) Let (X, T ) be a discrete space. Then Int (A) = A for any A ⊂ X.

(g) Let (X, T ) be an indiscrete space. Then Int (A) = ∅ for any A ⊂ X, A 6= X.

(h) Consider R with the VIP topology (VIP is 0). The interior of R∗ is the empty set.
What is Int (Q) and Int (R \ Q) in this topology? More generally, if 0 ∈ A, then
Int (A) = A and if 0 /∈ A, then Int (A) = ∅.

(i) Consider R with the outcast topology (outcast is 0). The interior of any set A is
A \ {0}.

85. A is open iff A = Int (A).

86. Set theoretic results about the interior operation:

(a) If A ⊂ B, then Int (A) ⊂ Int (B).

(b) Int (A) ∪ Int (B) ⊂ Int (A ∪B).

12



(c) Int (A ∩B) = Int (A) ∩ Int (B).

(d) ∪i∈IInt (Ai) ⊂ Int (∪i∈IAi).

Definition 13. Let X be a (metric) space and A ⊂ X. A point x ∈ X is said to be a
boundary point of A in X if every open set that contains x intersects both A and X \A
non-trivially. The boundary of A in X is the set of boundary points of A in X. We
denote it by ∂A.

87. Find the boundaries of each of the following sets:

(a) A1 = (a, b].

(b) A2 = R \ {0}.
(c) A = Q ⊂ R.

(d) ∂∅ = ∅ = ∂X for any topological space X.

(e) The boundary of an open or closed ball in Rn is the sphere: ∂B(x, r) = ∂B[x, r] =
S(x, r) := {y ∈ Rn : d(x, y) = r}. Is this true in an NLS? in an arbitrary metric
space?

(f) In R with VIP topology and R with outcast topology, find ∂A, where A =
{0}, {x},Q and R \Q. (x is a nonzero real number.)

(g) Let B be an open ball in Rn. Find the boundary of B minus a finite number of
points.

(h) Let A := {z ∈ C : z = reit, r ∈ [0, 1], t ∈ (0, 2π)}. (Draw a picture.) Find the
boundary of A.

Note: Items marked by * are the ones not discussed in the class but we may
discuss them in future.

88. * A few more examples to sharpen our geometric intuition.

(a) Consider A = R× {0} ⊂ R2. What is the boundary of A in R2?

(b) A = U1 ∪ U2 ∪ U3 is the subset of R2 where U1 := {x2 + y2 < 1, y > 0}, U2 :=
{−1 ≤ x ≤ 1, y = 0} and U3 := {x2 + y2 = 1, y < 0}.

(c) A = {(x, y) : x2 + y2 = 1}.

89. Show that for any subset A of a topological space (X, T ), ∂A = A∩X \A. (This is the
standard definition.

90. While trying to prove the equivalence of the definition of continuity at a point (of a
function between two metric spaces) with the sequential definition, we established the
following.

Theorem 14. Let X and Y be arbitrary topological spaces and p ∈ X. Let f : X → Y
be a map.

1. If f is continuous at p, then for every sequence (xn) in X converging to p, we have
f(xn)→ f(p).

2. Assume that X is first countable. Assume further that f has the property that for
every sequence (xn) converging to p, the sequence (f(xn)) converges to f(p) in Y . Then
f is continuous at p.

13



From part of Item 84 till the last item were done on October 14, 2004.

Definition 15. A subset D ⊂ X of a topological space is dense in X if for every
nonempty open set U ⊂ X, we have D ∩ U 6= ∅, that is U intersects D non-trivially.

91. Examples of dense sets:

(a) Q is dense in R. Is R \Q dense in R? Can you think of a countable dense subset
in R2? in Rn?

(b) In R, with the lower limit topology, the sets Q and R \Q are dense.

(c) The set A := {x ∈ `1 : xn = 0 for all n ≥ N for some N} is dense in `1.

(d) The set Dn of all sequences x = (xm) ∈ `1 whose terms are rational and xk = 0
for k > n. Let D := ∪n∈NDn. Then D is a countable dense subset of `1.

(e) The only dense subset of a discrete space X is X itself.

(f) In an indiscrete space, any nonempty subset is dense.

(g) The set {0} is dense in R with the VIP topology. The set R \Q is not dense.

(h) The set R \ {0} is dense in R with the outcast topology. This space cannot have a
countable dense set.

(i) * S := {n+m
√

2 : n,m ∈ Z} is dense in R. (Did you notice that Z and
√

2Z are
closed and S is a sum of two closed sets?) An item for Student Seminar.

(j) * Is Q2 dense in R2 with the order topology?

(k) * Weierstrass approximation theorem says that the vector subspace of polynomials
in the NLS (C[0, 1], ‖ ‖∞) is dense. (This should be a topic for Student Seminar!)

92. D ⊂ X is dense in a space (X, d) iff every point of X is a limit point of D.

93. D ⊂ X is dense in the space X iff its closure D = X. (This is the standard definition.)

94. In a metric space (X, d), a set A is dense in X iff for every x ∈ X and ε > 0, there
exists an a ∈ A such that d(x, a) < ε. (Thus, A is dense in X, if we can “approximate”
any point x ∈ X to “any level of approximation” by an element of A.)

95. * Let (X, d) be a metric space. Assume that the only dense subset is X itself. Can we
say something about the topology?

96. * Let A,B be two dense subsets of a space? Is A ∪B dense? Is A ∩B dense?

97. * If A,B are open dense subsets of a space X, is their intersection dense?

98. * Give an example of a proper open dense subset of R.

99. * Continuation of the last item. If we write an open set U = ∪̇Jk, as the disjoint union
of open intervals, then we say that the “measure” or “length” of U is

∑
k `(Jk), the

sum of lengths of the intervals Jk. Given ε > 0, can you find an open dense subset of R
whose length is less than or equal to ε?

100. * Let D be dense in (X, T1). Is D (necessarily) dense in (X, T2) where T2 is finer
(respectively, coarser) than T1?
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101. * Let X,Y be topological spaces. Assume that A is dense in X and f : X → Y is
continuous and onto. Then f(A) is dense in Y .

102. * The set of matrices in M(2,C) with distinct eigenvalues is dense. In particular, the
set of all diagonalizable matrices in M(2,C) is dense. (The topology on M(2,C) is given
by ‖A‖ := max{|aij | : 1 ≤ i, j ≤ 2}. This exercise requires a good background in Linear
Algebra. Perhaps, we shall do it later.)

Definition 16. A topological space is separable if there exists a countable dense subset.

103. Examples and non-examples of separable spaces:

(a) Rn is separable.

(b) A discrete space X is separable iff X is countable.

(c) `1 is separable.

(d) R with VIP topology is separable.

(e) R with outcast topology is not separable.

(f) Any second countable space is separable.

(g) * Let X be infinite with cofinite topology and let A be any infinite subset of X.
Then any x ∈ X is a limit point of A. In particular, X with cofinite topology is
separable.

(h) * Is R2 with the order topology separable? (Recall the geometric description of
basic open sets in this space. See Item 15.)

104. * Let X be uncountable with cofinite topology. Then X is not first countable but
separable by Item 103g.

105. * Let X be uncountable with cocountable topology. No countable set can have a limit
point and hence X is not separable.

106. * Let `∞ denote the set of all bounded real sequences. It is a normed linear space with
respect to the norm ‖x‖∞ := sup{|xn| : n ∈ N}. The space (`∞, ‖ ‖∞) is not separable.
Hint: Consider the uncountable subset {x : N→ {0, 1}} of `∞.

107. A metric space is separable iff it is second countable.

108. * R`, the space R with lower limit topology, is first countable but not second countable.

109. * Let f, g : X → Y be continuous and Y be hausdorff. Then the set {x ∈ X : f(x) =
g(x)} is closed in X.

110. * Let the hypothesis be as in the last item. Assume that A is dense in X and that
f(a) = g(a) for all a ∈ A. Then f(x) = g(x) for all x ∈ X.

Most of the items from Definition 15 till the last item were done on October
16, 2004.

111. Let X,Y be sets. Suppose f : X → Y is a bijection. Assume further that one of the
sets has an extra mathematical structure such as a group, vector space, metric or a
topology. Then we can transfer the structure to the other set using the bijection. We
look at some specific instances.
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(a) Let X be a group. Then we define y1 ·y2 to be f(x1 ·x2) where f(xi) = yi, i = 1, 2.
It turns out that Y is group and that f : X → Y , by virtue of the very definition
of group law on Y , is a group homomorphism (and hence an isomorphism.)

(b) * Let Y be a metric space. Then we set d(x1, x2) := d(f(x1), f(x2)). Then the
metric space (X, d) is isometric to (Y, d).

(c) Let X be a topological space. Let TX be the topology on X. We then define a
topology TY on Y be declaring that V ∈ TY iff there exists U ∈ TX such that
V = f(U). Then the map f : (X, TX)→ (Y, TY ) is a homeomorphism, a term not
yet defined!

112. Let f : X → Y be any map between two sets. Assume that one of them is a topological
space. What we wish to do is to endow the other set with an optimal topology in such
a way that f : X → Y becomes a continuous map between the spaces.

(a) Let Y be a topological space. Then if we endow X with the discrete topology, then
the problem is solved! But this topology has no bearing on Y and/or on the map
f ! So what we require is the smallest topology on X making f continuous.

(b) Let X to be a topological space. Considerations similar to the last item suggest
us that we require the largest topology on Y making f continuous.

113. These problems arise in a very natural way.

(a) Let X be a subset a topological space Y . Then we have an obvious or natural map
i : X → Y , the inclusion of X in Y , that is, the restriction of the identity on Y to
X.

(b) Let X be any topological space and ∼ an equivalence relation on X. Then as Y ,
we take the quotient set X/ ∼, that is, the set of equivalence classes. Once again,
we have a natural map π : X → Y , where π(x) is the equivalence class of x.

114. More general situations may also arise. Let X be a set and Yi be topological spaces,
indexed by a set I. Assume that we are given certain maps fi : X → Yi for each i ∈ I.
We again ask for a single smallest topology on X making all the maps fi continuous.
Typical instances of this phenomenon are:

(a) Let {Xi : i ∈ I} be an indexed family of topological spaces. Let X :=
∏
i∈I Xi.

We have obvious maps πi(x) = xi, the i-th projection. We wish to equip X with
the smallest topology such that each of the projections becomes continuous.

(b) * Let E be a set and let X := F be a family of functions from E to R. Consider
the evaluation maps εx(f) := f(x) for each x ∈ E. Thus, we have a family of maps
εx : X → R and we want the smallest topology which will make all these maps
continuous.

115. Let us deal with various cases. Let X be a set and Y be a topological space and
f : X → Y be a map. Any topology on X which makes f continuous must contain the
set U := {f−1(V ) : V ∈ TY }. It turns out this collection is already a topology and
hence is the smallest topology on X, as required. (We were lucky this time!)
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116. Let us look at the concrete case in Item 113a. Then the topology on X is given by

TX := {i−1(V ) : V ∈ TY } = {V ∩A : V ∈ TY }.

The topology TX is called the subspace topology on Y and any U ∈ TX is said to be
open in X. We say that F ⊂ X is closed in X if its complement, X \ F , in X is open
in X.

Let us look at some examples to develop our intuition:

(a) Consider A = [0, 1] ⊂ R. Then the sets [0, 1/2), (1/2, 1] and (1/2, 3/4) are open in
in A.

(b) Consider A = Q ⊂ R. Then the set {r ∈ Q : −
√

2 ≤ r ≤
√

2} is both open and
closed in Q.

(c) Let X be a metric space and ∅ 6= A ⊂ X. Then we have two topologies on A:
(i) one comes from the induced metric, call it δ, on A and (ii) the other is the
subspace topology. They are the same.

(d) * Let A := [0, 1] × [0, 1]. Then A has the order topology as well as the subspace
topology as a subset of R2 with order topology. They are not the same. (Contrast
this the last item.)

(e) Consider R with VIP topology and A = R∗. Then the subspace topology on R∗ is
the discrete topology. The subspace topology on Q is the VIP topology on Q. (Do
you understand this statement?)

(f) * Investigate the subspace topology on Q considered as a subset of R with outcast
topology.

117. Let A be nonempty and open in X. Then U ⊂ A is open in A iff it is open in X.

118. Let A ⊂ X. Then F ⊂ A is closed in A iff there exists a closed set C in X such that
F = A ∩ C.

* As a specific example, the set of Item 116b is open as well as closed in Q. (Contrast
this with Item 48f.)

119. Let us consider the general case in Item 114. We want the smallest topology T that
contains all sets of of the form f−1i (Vi) where Vi is open in Xi and i ∈ I. That is T
is the smallest topology containing the family of sets S := {f−1i (Vi) : Vi ∈ Ti; i ∈ I},
where Ti is the topology on Xi.

There is no reason to believe that f−1i (Vi)∩ f−1j (Vj) must be again of the form f−1r (Vr)
for some r ∈ I. Hence S may not be topology on X.

Items 111–119 were done on October 19, 2004.

120. When we wanted to look at the concrete case in Item 114a, we needed to review the
concept of cartesian product.

Definition 17. Let {Xi : i ∈ I} be an indexed family of sets. Then the Cartesian
product X :=

∏
i∈I Xi is defined by∏
i∈I

Xi := {x : I →
⊎
i∈I

Xi : x(i) ∈ Xi for each i ∈ I},
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where
⊎
i∈I Xi stands for the disjoint union.

(a) We usually write x ∈
∏
i∈I Xi as x = (xi), where xi := x(i). We shall call xi as the

i-th coordinate of x. Let πi :
∏
j∈I Xi → Xj denote the map πj(x) = x(j) = xj .

This is called the j-th projection of X onto the j-th factor Xj .

(b) As a convention, if I = {1, 2, . . . , n}, we identify X with X1 × · · · × Xn, that is,
with the set of “ordered n-tuples” (x1, . . . , xn). Similarly, if I = N, we identify
X with X1 × X2 × · · · × Xn × · · · , that is the set of ordered infinite tuples x 7→
(x1, x2, . . . , xn, . . .).

(c) If Vj ⊂ Xj , then π−1j (Vj) =
∏
i∈I Ui where Ui = Xi for i 6= j and Uj = Vj . In

particular, π−11 (V1) = V1 ×X2 where X = X1 ×X2 etc.

121. What we requite on X :=
∏
i∈I Xi to make the projections πi (i ∈ I) continuous is the

smallest topology that contains

S := {f−1i (Vi) : Vi ∈ Ti, i ∈ I}.

This led us to the more general problem.

122. Given a set X and a collection S of subsets of X, how to we describe the open sets in
the smallest topology, say, TS that contains S? (We assume, as this is the case that
occurs in practice, that for every x ∈ X, there exists S ∈ S such that x ∈ S.) We did
this in two steps.

(a) We wanted a base for some topology on X which will also contain S. Clearly,
B := {S1 ∩ · · · ∩ Sn : Sj ∈ S, n ∈ N} is a base for some topology and S ⊂ B.

(b) The topology TB := {U ⊂ X : ∀x ∈ U,∃B ∈ B such that x ∈ B ⊂ U} is then the
smallest topology that contains S.

(c) Thus, we can rid of the intermediate B and define the topology directly in terms
of S. We say U ∈ TS iff for every x ∈ U , there exists n ∈ N such that we can find
Sj , 1 ≤ j ≤ n with x ∈ S1 ∩ · · · ∩ Sn ⊂ U . One can again show directly that this
is the smallest topology containing S.

(d) S is called a subbase and TS is the topology generated by S.

123. Let us look at some concrete examples:

(a) Consider S := {(−∞, a) : a ∈ R} ∪ {(b,∞) : b ∈ R}. The topology generated by S
on R is the usual topology.

(b) Consider R and S := {{0, x} : x 6= 0, x ∈ R}. What is the topology on R?

(c) Let X be a set with at least 3 elements. Let S be the family of two-element subsets
of X. The topology generated by S is the discrete topology.

(d) What is the topology on R2, if we take the subbase consisting of all straight lines
in R2?

(e) What is the topology on R2, if we take the subbase consisting of all straight lines
parallel to the x-axis in R2?

(f) * What is the topology on R2, if we take the subbase consisting of all circles in
R2?

18



(g) * What is the topology on R2, if we take the subbase consisting of all circles, with
centre at the origin, in R2?

(h) * Consider S = {X} as a subbase on X. What topology do we get on X?

Items 120–123 were done on October 21, 2004.

124. We reviewed Item 122. We applied it to the problem posed in Item 121. Thus we
arrived at the definition of product topology on

∏
i∈I Xi as follows.

Definition 18. As a subbase for a topology on X, we take the set

S :=

{∏
i∈I

Ui : where Ui = Xi for all but finitely many i and Ui is open in Xi

}
.

The basis for the product topology on X is finite intersections of elements from S. In
particular, G ⊂ X is open iff for every x ∈ G, there exists S1, . . . , Sn ∈ S such that
x ∈ S1 ∩ · · · ∩ Sn ⊂ G. Thus, there exist i1, . . . , in ∈ I and Uij an open subset of Xij

such that x ∈
∏
i Vi where Vi = Xi for i 6= ij and Vij = Uij and x ∈

∏
i∈I Vi ⊂ G.

125. Let ∅  Ui  Xi, be open in Xi for i ∈ I. Then U =
∏
i∈I Ui could never be open in X

unless I is finite.

126. If I is finite, say, I = {1, 2, . . . , n}, then the basic open sets are of the form U1×· · ·×Un
where Ui is an arbitrary open set in Xi for each 1 ≤ i ≤ n.

127. Warning: If, at first, we defined finite products of topological spaces with basis as
in the last item, we would be tempted to use the following collection as a basis for a
topology on the product

∏
i∈I Xi:

B :=

{∏
i∈I

Ui : where Ui is an arbitrary open set in Xi

}
.

The topology given rise to by this basis is called the box topology. Evidently, this is
finer than the product topology.

128. However, the product topology on X is the smallest topology which makes all the
projection maps πi continuous. We shall always use this topology on the product sets.

129. We also saw how to draw pictures for arbitrary product spaces to gain some geometric
intuition.

130. To have a feeling for the product topology, we looked at the following results/questions:

(a) The product of hausdorff spaces is hausdorff.

(b) A sequence (xk) in the product space is convergent to an element x iff it converges
coordinate-wise, that is, iff πi(xk)→ πi(x) for each i ∈ I.

(c) Let Ai ⊂ Xi and A :=
∏
i∈I Ai. Then A =

∏
i∈I Ai. In particular, if each Ai is

closed, then the product A :=
∏
i∈I Ai is closed in the product space X. Contrast

this with Item 125.
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(d) Let Di be dense in Xi for each i. Then D :=
∏
i∈I Di is dense in X.

(e) Let Xi be a discrete space for each i. When is
∏
i∈I Xi is discrete?

(f) Let X,Y be metric spaces. We have a product metric on the product X ×Y given
by δ((x1, y1), (x2, y2)) := max{d(x1, x2), d(y1, y2)}. Thus we have two topologies
on X×Y , namely, the topology induced by the metric δ and the product topology
(got out of the metric topologies on X and Y ). We saw that these two topologies
are the same. Later, we shall see an easy proof.

Investigate whether the converses (wherever applicable) are true.

Optional: Investigate how many of them are true if we equip X with the box topology.
Note that if D is dense in (X, T2) and if T1 is another topology on X with T1 weaker
than T2, then D is dense in (X, T1).

Remark 19. In most of the examples above, we looked at subsets of the product set X
which are of the form

∏
i∈Ai

, where Ai ⊂ Xi. You should be aware that not all subsets
of X are of this form. For example, S := {(x, y) ∈ R×R : x2 + y2 = 1} is not a product
of subsets of R.

131. A problem similar to Item 130a: Let X be any set and F be a collection of real valued
functions on X with the property that for any pair of distinct points x, y ∈ X, there
exists f ∈ F such that f(x) 6= f(y). Then the smallest topology on X which makes all
the functions in F continuous is hausdorff.

132. Let X be a topological space and ∼ is an equivalence relation on X. Let Y := X/ ∼
be the quotient set, that is, the set of all equivalence classes. Let π : X → Y be the
quotient map π(x) := [x], the equivalence class of x. The largest topology on Y with
respect to which π is continuous is called the quotient topology on Y . It is given by{

V : π−1(V ) is open in X
}
.

133. It is equally important to recognize product spaces in disguise. The following are very
typical of this situation.

(a) Define a topology on the set S of all real sequences such that a sequence (xk)
in S converges to x ∈ S iff the xkn → xn as n → ∞ for all k where xk =
(xk1, xk2, . . . , xkn, . . .). (Convergence = Coordinatewise convergence).

(b) Let X denote the set of all real valued functions on R. Define a topology on
X such that a sequence (fn) of functions in X converge to a function f ∈ X iff
fn(x)→ f(x) for all x ∈ R. (Convergence = pointwise convergence of functions.)

(c) Let I = N and Xi = {0, 1} for i ∈ N. Then the product space X :=
∏
i∈NXi “is

isomorphic to” the Cantor set. We have to introduce concepts and develop some
more theory to explain this satisfactorily.

134. Contrast Item 133b with the following. Let E be any set and let B(E,R) denote the set
of all bounded real valued functions on E. If we endow this vector space with the norm
‖f ‖∞ := supx∈E |f(x)|, then fn → f in this NLS iff fn → f uniformly on E. (This is
Item 73b.)
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135. The analogue of isomorphism in algebra for topological spaces is the concept of homeo-
morphism. A homeomorphism f : X → Y between two topological spaces is a bijection
such that f : X → Y and f−1 : Y → X are continuous.

Remember that this definition was arrived at by one of you and was not given by me!

Contrast this with the isomorphisms in algebra!

Items 124–135 were done on November 3-4, 2004.

136. We studied part of my article “Generation Topologies — A Unified View of Subspace,
Product and Quotient Topologies”. We also did the Universal mapping properties for
Cases (i) & (ii) of the article.

Only Item 136 was done on November 5, 2004! The main purpose of today’s work
was to train you to learn from a book some mathematics taught in the class as well
as something new, not done in the class.

137. Universal mapping properties were done in the general case and applied to concrete
situations and interpreted.

(a) Universal mapping property for subspace topology.

(b) Universal mapping property for quotient topology.

(c) Universal mapping property for product topology.

Remark 20. The students had difficulty in the last item in describing f−1(V )
where f : Y → X =

∏
j∈I Xj and V :=

∏
j∈I Vj , a subbasic open set.

138. Examples of applications of universal mapping property:

(a) The continuity of the map [0, 2π]/ ∼ to S1.

(b) The continuity of Sn → Pn(R). (This cannot be done using UMP.)

139. We showed that
∏
t∈RR is not first countable. We interpreted this space as the space of

functions and used geometric way of looking at basic open sets in the product topology
and solved the problem.

Items 137–139 were done on November 6, 2004. Wish you a Happy Diwali!

140. We recalled the product topology on X × Y as well as some of the results which was
done during the special sessions in the vacation.

(a) LetX,Y be topological spaces. Let A ⊂ X and B ⊂ Y . Let TA denote the subspace
topology on A induced from the topology on X etc. Let TA × TB (respectively,
TX×TY ) denote the product topology on A×B, (respectively, the product topology
on X×Y ). Let TA×B denote the subspace topology on A×B considered as a subset
of X × Y . Then TA × TB = TX×Y .

(b) Let f : Y → X1 × X2 be a map from a topological space Y to the topological
space X1×X2 with product topology. Then f is continuous iff each fi, i = 1, 2, is
continuous, where f = (f1, f2) (or, fi = πi ◦ f).

(c) Let ∆(X) denote the diagonal {(x, x) : x ∈ X×X} ⊂ X×X. Then X is hausdorff
iff ∆(X) is closed in X ×X.
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Definition 21. A map f : X → Y between two topological spaces is a homeomorphism
if (i) f is bijective, (ii) f is continuous and (iii) f−1 : Y → X is continuous.

141. Examples

(a) Any f : R→ R of the form f(x) = ax for a nonzero a ∈ R is a homeomorphism.

(b) f : R→ R given by f(x) = x3 is a homeomorphism.

(c) Any linear isomorphism of Rn is a homeomorphism.

(d) [a, b] ' [0, 1]. More generally, [a, b] ' [c, d].

(e) (−1, 1) ' R.

(f) (0, 1] ' [1,∞).

(g) [0, 1) ' (0, 1].

(h) Any two discrete spaces are homeomorphic iff they have the same cardinality.

(i) Can Q be homeomorphic to Z with the subspace topologies (induced from R)?

(j) Is N ' Z with the subspace topologies (induced from R)?

(k) If two metric spaces are isometric, then they are homeomorphic.

(l) B(0, 1) ' Rn.

(m) Sn \ {en+1} ' Rn. (We investigated this in detail!)

(n) f : X → Y continuous. Then the graph of f with the subspace topology of X × Y
is homeomorphic to X. Applications:

i. R is homeomorphic to the parabola y = x2.

ii. R∗ is homeomorphic to the hyperbola xy = 1.

(o) The product space [−1, 1]× S1 is homeomorphic to a cylinder.

(p) The annulus {p ∈ R2 : 1 ≤ ‖p‖ ≤ 2} is homeomorphic to the cylinder {(x, y, z) ∈
R3 : x2 + y2 = 1, 1 ≤ z ≤ 2}.

(q) Let f : X → Y be a homeomorphism and let A ⊂ X. Then f induces homeomor-
phism between A and f(A) (and between X \A and f(X \A)).

This is a very useful fact. Typical ways of applying this are:

i. [0, 1) is not homeomorphic to (0, 1).

ii. R is not homeomorphic to R2.
Both these results need connectedness at least in disguise, but can be proved
at this stage using the intermediate value theorem.

(r) Homeomorphism between conic sections:

i. A circle is homeomorphic to an ellipse.

ii. A parabola is homeomorphic to a line.

iii. A (rectangular) hyperbola is homeomorphic to R∗.
iv. A pair of intersecting lines is not homeomorphic to any of the other conic

sections. More generally, a circle, a parabola, a hyperbola and a pair of in-
tersecting lines are mutually non-homeomorphic. (We shall see a proof of this
later. Meanwhile you may try to prove along this along the lines of a proof of
Item 141(q)i.)
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(s) A bijective continuous map need not be a homeomorphism. Examples and a non-
example:

i. R with discrete topology and R with indiscrete topology.

ii. f : [0, 2π)→ S1 ⊂ C given by f(t) = eit. (A more instructive exercise.)

iii. Any bijective continuous map of a finite topological sapce X to itself is a
homeomorphism.

(t) The map x 7→ (x, y0) of X into X × Y is a homeomorphism of X with X × {y0}
with the subspace topology.

(u) In any NLS, any two open balls are homeomorphic.

(v) In any NLS, any open ball is homeomorphic to the entire space.

(w) In Rn, we have B∞[0, 1] ' B2[0, 1].

(x) Rm ' Rn iff m = n. This is a highly nontrivial result and we shall not prove this
is our course!

(y) Another most important way of proving that a map is a homeomorphism is to use
the following result which you might have seen in TYBsc.

A bijective continuous map from a compact metric space to another metric space
is a closed map and hence is a homeomorphism.

(z) The spaces (R,VIP) and (R,Outcast) are not homeomorphic.

142. Definitions of open and closed maps: A map f : X → Y is said to be open if f(U) is
open in Y for every U open in X. A closed map is defined similarly.

(a) A bijective continuous map is a homeomorphism iff it is an open map.

Application: The map f : R→ R given by f(x) = x3 is a homeomorphism.

(b) A bijective continuous map is a homeomorphism iff it is an closed map.

Application: Item 141y is proved using the closed map criterion.

143. We say that property of a topological space is a topological property if every space Y
homeomorphic to X also has the property. Examples:

(a) The space being hausdorff is a topological property.

(b) The space being first countable is a topological property.

(c) The space being second countable is a topological property.

(d) The space being separable is a topological property.

(e) Existence of a nonempty, proper subset which is both pen and closed is a topological
property.

(f) Two metric spaces can be homeomorphic, but one of them could be bounded while
the other is not. Hence ‘being bounded’ is not a topological property among metric
spaces.

(g) Similarly, completeness is not a topological property among the metric spaces.

We shall see later a lot of examples of topological properties.

Items 140–142 were done on November 16, 18 and 20, 2004.

The study of topology is mainly understanding topological properties and using
them to assert whether given two spaces are homeomorphic or not.
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144. Definition of an open cover, of a subcover.

Definition 22. Let X be a topological space and A ⊂ X. We say that a collection
{Ui : i ∈ I} of subsets of X is an open cover of A if (i) each Ui is an open subset of X
and (ii) A ⊆ ∪i∈IUi.
Given an open cover {Ui : i ∈ I} of A, by a subcover of A, we mean a subfamily
{Ui : i ∈ J} for some subset J ⊂ I such that {Ui : i ∈ J} is an open cover of A.

We say that the given open cover admits a finite subcover, if J (in the notation above)
is a finite set.

145. Examples of open covers:

(a) “Non trivial” open covers of R:

i. {(−n, n) : n ∈ N}.
ii. {(−∞, n) : n ∈ N}.
iii. {(−r, 2r) : r ∈ Q+}.
Do they admit finite subcovers?

(b) Nontrivial open covers of (−1, 1).

(c) In any metric space, {B(x, rx) : x ∈ X} is an open cover where rx > 0 is pre-
assigned for x ∈ X. Such a cover arises “naturally” in the following way: Let
f : X → R be a continuous function. Let ε > 0 be given. Given x ∈ X, by the
continuity of f at x, there exists rx > 0 such that for all y with d(x, y) < rx, we
have |f(x)− f(y)| < ε. The collection {B(x, rx) : x ∈ X} is an open cover of X.

(d) Given a hausdorff space with at least two elements, think of a nontrivial open
cover.

(e) Can you say something specific about any open cover of R with outcast topology?

(f) Give a “non-trivial” open cover of R with VIP topology.

(g) Open covers of Sn:

i. Rn+1 \ {0}. (This is a trivial open cover!)

ii. U = Rn+1 \ {N} and V := Sn \ {S}, where N,S are north and south poles
respectively.

iii. U±i := {x ∈ Rn+1 : xi ≶ 0}, 1 ≤ i ≤ n+ 1.

(h) Open cover for a discrete space.

(i) Open cover for an uncountable space with cocountable topology.

(j) Open cover for a set with cofinite topology.

146. Given an open cover {Ui : i ∈ I} of A ⊂ X by means of open subsets of X, then we
have a “natural” open cover {Vi : i ∈ I} by means of subsets of A which are open in A
and conversely. (Note the indices. “Naturality” does not mean that given Vi’s, the Ui’s
are unique!)

Definition 23. A subset A of a topological space X is said to be compact if given any
open cover of A, we can find a finite subcover. We say that X is a compact space if X
is a compact subset of X.
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147. Compact spaces and compact sets in a space; a set is compact iff it is a compact space
with subspace topology.

148. Examples of compact sets.

(a) A finite set is compact. In particular, the empty set is compact.

(b) An indiscrete space is compact.

(c) A discrete space is compact iff it is finite.

(d) R, Q and Z are not compact.

(e) Any open ball in Rn (or in any NLS) is not compact.

(f) Rn is not compact.

(g) Any closed and bounded interval [a, b] ⊂ R is compact.

(h) Any cube [−R,R]n ⊂ Rn is compact.

(i) R with VIP topology is not compact.

(j) R with outcast topology is compact.

(k) Any set with cofinite topology is compact.

(l) An uncountable set with cocountable topology is not compact.

(m) If X is compact and Y ' X, then Y is compact. Thus compactness is a topological
property.

(n) A finite union of compact sets is compact.

(o) The intersection of two compact sets need not be compact. See, however, Item 148q.

(p) A closed subset of a compact space is compact.

(q) In a hausdorff space a compact subset is closed and hence the intersection of
compact sets is compact in a hausdorff space.

149. Let (X, d) be a metric space. We say that A ⊂ X is bounded if there exist x0 ∈ X and
r > 0 such that A ⊂ B(x0, r). The following are easily seen results about this concept:

(a) A is bounded iff for every x ∈ X, there exists R > 0 such that A ⊂ B(x,R).

(b) Let (X, ‖ ‖) be an NLS. Show that A ⊂ X is bounded iff there exists M > 0 such
that ‖x‖ ≤M for all x ∈ A.

(c) Any finite set is bounded.

(d) Any open or closed ball is bounded.

(e) A is bounded iff there exists M > 0 such that d(x, y) ≤M for all x, y ∈ A.

(f) If A 6= ∅ and if we set diam (A) := sup{d(x, y) : x, y ∈ A}, then A is bounded iff
diam (A) <∞. The extended real number diam (A) is called the diameter of A.

(g) diam (B(x, r)) ≤ 2r and strict inequality can occur.

(h) In an NLS, diam (B(x, r)) = 2r.

(i) Any convergent sequence in a metric space is bounded.

(j) Boundedness is not a topological property.

(k) Which vector subspaces of an NLS are bounded subsets?
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(l) Any convergent sequence in a metric space is bounded.

(m) The set O(n) of all orthogonal matrices (that is, the set of matrices satisfying
AAt = I = AtA) is a bounded subset of M(n,R). Here M(n,R) is considered as
an NLS as in Ex. 46c.

(n) The set SL(n,R) of all n× n real matrices with determinant 1 is not bounded in
M(n,R). (The metric is as in Ex. 46c.)

(o) The set of all nilpotent matrices in M(n,R) is not a bounded set.

(p) Let G be a subgroup of the multiplicative group C∗ of the non-zero complex num-
bers. Assume that as a subset of C it is bounded. Then |g| = 1 for all g ∈ G.

150. In a metric space any compact set is bounded. Applications:

(a) SL(n,R) is not a compact subset of M(n,R).

(b) The set of symmetric (respectively, the skew-symmetric) matrices is not compact
in M(n,R). So is the set of matrices with trace zero.

(c) The set of nilpotent matrices in M(n,R) is not compact.

151. In any topological space, any convergent sequence along with its limit is a compact
subset.

152. If A is a nonempty compact subset of R, then supA and inf A exist and they belong to
A.

153. The product of two compact spaces is compact. Statement of Tychonoff’s theorem with
reference to my article for a proof.

Items 144–153 were done on November 23, 25, 30 and December 2, 2004.

154. Heine-Borel theorem (in Rn): A subset K ⊂ Rn is compact iff K is closed and bounded.
Applications:

(a) Among the non-degenerate conics in R2, only circles and ellipses are compact.

(b) The unit sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is compact.

(c) O(n,R), the set of orthogonal matrices is compact subset of M(n,R).

(d) The subgroup SL(n,R) is closed and unbounded. It is not a compact subset of
M(n,R).

(e) The set of nilpotent matrices in M(n,R) is closed and unbounded. It is not a
compact subset of M(n,R).

(f) All norms on Rn are equivalent. Application: Any finite dimensional vector sub-
space of an NLS is always closed. Hints: If two equivalent norms ‖ ‖1 and ‖ ‖2
are given on a vector space X, then (X, ‖ ‖1) is complete iff (X, ‖ ‖2) is complete.

155. In general, a closed and bounded subset of a metric space need not be compact. (Stan-
dard example. For another, see Item 165h.)

156. Compact sets and maps:
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(a) Assume that f : X → Y is continuous and that X is compact. Then f(X) is
compact. In particular, compactness is a topological property.

(b) X × Y is compact iff X and Y are compact.

(c) Let X be compact and Y be hausdorff. Then any continuous bijection f : X → Y
is compact. Applications:

i. Typical applications arise in the theory of quotient spaces: The quotient space
[0, 2π]/ ∼ is homeomorphic to S1.

ii. Let f be any map (not assumed to be continuous) from a compact hausdorff
space X to another such space Y . Assume that the graph of f is closed as a
subset of the product space X × Y . Then f is continuous.

iii. Let X be a set with two distinct topologies T1 and T2. Assume that T1 ⊂ T2
and further that (X, T2) is compact hausdorff. Then (X, T1) is compact but
not hausdorff.

(d) Let X be compact and Y be a metric space. Then any continuous map f : X → Y
is bounded. The converse is not true, in general. See Item 27. For metric spaces,
the converse is true. (For a proof, see my article on Compact Spaces.)

(e) Let X be compact. Then any continuous function f : X → R attains its bounds.
Applications:

i. Let X be compact and f : X → R be continuous. Assume that f(x) > 0 for
all x ∈ X. Then there is a δ > 0 such that f(x) ≥ δ for all x ∈ X.

ii. Let K be a compact and C a closed subsets of a metric space X such that
K ∩ C = ∅. Then d(K,C) > 0.

iii. Let K be a nonmepty compact subset of an NLS X. Then there exists x ∈ K
such that ‖y‖ ≤ ‖x‖ for all y ∈ K.

(f) Let X and Y be metric spaces. Assume that X is compact. Then any continuous
map f : X → Y is uniformly continuous.

Definition 24. Given an open cover {Ui : i ∈ I} of a metric space (X, d), we say that
a positive number δ is a Lebesgue number of the cover, if for any subset A ⊂ X whose
diameter is less than δ, there exists i ∈ I such that A ⊂ Ui.

Remark 25. If δ is a Lebesgue number of the cover and 0 < δ′ ≤ δ, then δ′ is also a
Lebesgue number of the given open cover.

157. In general, an open cover may not have a Lebesgue number. Let X = (0, 1) with the
usual metric. Let Un := (1/n, 1). Then {Un : n ∈ N} is an open cover of X. Does there
exist a Lebesgue number for this cover?

Theorem 26 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space. Let
{Ui : i ∈ I} be an open cover of X. Then a Lebesgue number exists for this cover.

158. Use the last theorem to prove Item 156f. Note that the proofs of Item 156f and Lebesgue
covering lema are also similar.

159. Definition of FIP: A family of subsets {Fi : i ∈ I} of a set X is said to have the finite
intersection property, (FIP, in short), if every finite collection of members of the family
has a nonempty intersection. Examples:
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(a) Let X be any set and (Fn) be a decreasing sequence of nonempty subsets of X.
Then {Fn : n ∈ N} enjoys FIP.

(b) Let X be noncompact. Then there exists an open cover {Ui : i ∈ I} of X which
does not admit a subcover. Consider the family of closed sets {Fi : i ∈ I} where
Fi := X \ Ui. This family of closed sets has F.I.P.

160. A topological space is compact iff every family of closed sets with FIP has a nonempty
intersection.

161. Cantor intersection theorem: Let X be any topological space. Let (Kn) be a decreasing
sequence of nonempty compact subsets of X. Then ∩nKn 6= ∅.

Definition 27. A subset A of a metric space (X, d) is said to be totally bounded if
for any given ε > 0, there exist a finite number of points x1, . . . , xn ∈ X such that
A ⊂ ∪nk=1B(xk, ε).

162. Examples, non-examples and properties of totally bounded sets.

(a) Any compact subset of a metric space is totally bounded.

(b) If B is totally bounded and A ⊂ B, then A is totally bounded.

(c) If A is totally bounded, so is its closure A.

(d) Any totally bounded subset is bounded. The converse is not true. (Standard
example!)

(e) Any bounded subset of R is totally bounded. In fact, any bounded subset of Rn is
totally bounded.

Items 154–162 were done on December 7 and 9, 2004.

163. Characterization of compact metric spaces.

Theorem 28. Let X be a metric space. Then the following are equivalent.
1. X is compact.
2. X is complete and totally bounded.
3. (Bolzano-Weierstrass property.) Every infinite subset of X has a cluster point in X.
4. (Sequential compactness.) Every sequence in X has a convergent subsequence.

164. *Applications of 2nd characterization:

(a) Arzela-Ascoli theorem as a characterization of compact subsets of (C(X), ‖ ‖∞),
where X is a compact metric space. (Perhaps statement only.)

(b) A subset A ⊂ `1 is compact iff A is closed, bounded and is such that for every
ε > 0, there exists N ∈ N such that

∑
n≥N |xn| < ε for all x ∈ A.

165. Applications of (perhaps the most useful) 4th characterization.

(a) Any continuous map from a compact metric space to another metric space is
bounded.

(b) Any continuous real valued function on a compact metric space attains its bounds.
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(c) Let K be a nonempty compact subset of R. Show that supK, inf K ∈ K. Deduce
the last item from this.

(d) Let A,B be disjoint compact subsets of a metric space. Then there exist a ∈ A, b ∈
B such that d(A,B) = d(a, b), and hence d(A,B) > 0. (This result is false, if we
assume that A and B closed.)

(e) Let K be a compact subset and C a closed set in Rn. If K ∩ C = ∅, then there
exist x ∈ K and y ∈ C such that d(x, y) = d(K,C).

(f) Let K,C be as in the last item. Then K + C is closed in Rn.

(g) Let X,Y be compact metric spaces. Then X × Y is compact.

(h) Let X denote the NLS of all bounded real valued functions on [0, 1] under the
sup norm ‖ ‖∞. Then the closed unit ball in X is closed and bounded but not
compact.

Items 163–165 were done on December 13 and 14, 2004.

166. Connected Spaces. Look at

(a) R, an interval,

(b) a circle, a parabola, an ellipse, two intersecting lines, a disk, a circle, a parabola
or an ellipse along with a tangent line at one of its points in R2,

(c) a plane, a sphere, a ball in R3.

All of them seem to be in a “single piece.” Consider now

(a) {−1, 1}, Z, (−1, 0) ∪ (0, 1) in R,

(b) two (distinct) parallel lines, a hyperbola, two disjoint open disks in R2,

(c) two distinct parallel planes, the set consisting of the unit ball B(0, 1) along with
the plane x = 2.

All of these seem to have more than one piece.

Definition 29. A topological space X is said to be connected if the only subsets of X
which are both open and closed are ∅ and X. If there exists a subset ∅ 6= A 6= X which
is both open and closed, then the space is said to be disconnected or not connected.

We say that a subset A of a topological space X is connected (or a connected subset of
X), if A is a connected space with the subspace topology.

167. If X is not connected, say ∅ 6= A 6= X is both open and closed, then B := X \A is such
that ∅ 6= B 6= X and it is both open and closed. Hence, X is disconnected iff there exist
. . .. (Complete this sentence.) Thus X has two “pieces” A and B!

168. A topological space X is connected iff it has the following property: If U and V are
nonempty open sets such that X = U ∪ V , then U ∩ V 6= ∅.

169. * A subset A is connected iff the following condition is satisfied: If U and V are open
subsets of X such that U∩A and V ∩A are nonempty and A ⊂ U∪V , then U∩V ∩A 6= ∅.

29



170. We now give some examples. (More examples will follow once we prove a powerful
characterization of connected spaces. See Items 171–172.)

(a) R is connected. See Item 48f. Similar proof shows that any interval is connected.

(b) Q and R \Q are not connected. See Item 116b.

(c) Any discrete space with more than one element is disconnected.

(d) Any indiscrete space is connected.

(e) Is the empty set connected?

171. The following theorem is a powerful characterization of connected spaces. The theorem
remain true if we take Z to be any discrete space with at least two elements, for instance,
Z itself.

Theorem 30. Consider Z := {±1} ⊂ R with subspace topology. A topological space is
connected iff any continuous map f : X → Z is a constant.

172. Applications of the last theorem.

(a) Any interval is connected. Use intermediate value theorem.

(b) A subset of R is connected iff it is an interval. As one can give a direct proof of
this, we have the intermediate value theorem as a corollary.

(c) Let M(n,R) denote the set of all n×n matrices of real numbers. Then GL(n,R) :=
{A ∈M(n,R) : det(A) 6= 0} is not connected.

(d) O(n,R) := {A ∈ GL(n,R) : AAt = I} is not connected.

(e) Let X be a topological space. Let A and B be two connected subsets of X such
that A ∩B 6= ∅. Then A ∪B is connected. Generalize this.

(f) Let X be a connected topological space and g : X → Y be a continuous map. Then
g(X) is connected. Applications:

i. Any line segment in an NLS is connected.

ii. The circle {(x, y) ∈ R2 : x2 + y2 = 1} is connected. Similarly, the ellipse and
parabola are connected.

iii. GL(n,R) is not connected.

iv. O(n,R) is not connected.

v. SO(2,R) := {A ∈ O(2,R) : detA = 1} is connected.

vi. A convex set, more generally any star-shaped set, in an NLS is connected.

(g) Let X be such that every pair of points of X lies in a connected subset. Then X
is connected. Applications:

i. R2 \ {0} is connected.

ii. R2 \ {(n, 0) : n ∈ Z} is connected.

(h) Let A be a connected subset of a space X. Let A ⊂ B ⊂ A. Then B is connected.
Application:

i. Consider the set L := {(t, 0) : t ∈ [0, 1]}, An := {(1/n, y) : y ∈ [0, 1]} for
n ∈ N and A0 := {(0, y) : y ∈ [0, 1]}. Then E := L ∪ (∪nAn) is connected and
so its closure, E ∪ A0 is connected. Hence the set E ∪ {(0, 1)} is connected.
(X := E ∪A0 is known as the comb space.)
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(i) Let X be the union of open disk in R2 along with the tangent line x = 1. It is
connected.

(j) The open unit disk in R2 along with any subset of its boundary is connected. (This
is geometrically ‘obvious’.)

(k) Let {Ai : i ∈ I} be a collection of connected subsets of a space X with the
property that for all i, j ∈ I we have Ai ∩ Aj 6= ∅. Then A := ∪iAi is connected.
Applications:

i. B(0, 1) in in any NLS is connected.

ii. Any vector subspace in an NLS (in particular Rn) is connected.

iii. Any hyperplane in an NLS (or Rn) is connected.

(l) Let X and Y be topological spaces. Then the product space X × Y is connected
iff both X and Y are connected.

(m) The sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is connected. Applications:

i. * Rn \ {0} is connected.

ii. A cylinder in R3 is connected.

iii. An annular region {x ∈ Rn : r < ‖x‖ < R} is connected.

173. The set of two distinct parallel lines in R2 is not connected.

174. Connectedness can be used to settle questions on homeomorphisms:

(a) The set of irrational numbers in R with subspace topology is not homeomorphic
to R.

(b) A hyperbola cannot be homeomorphic to R.

(c) R cannot be homeomorphic to R2.

(d) A pair of intersecting lines cannot be homomorphic to a parabola.

175. A finite metric space is connected iff is a singleton.

176. Let X be connected and f : X → R be a continuous non-constant function. Show that
f(X) is uncountable.

177. Let X be a connected metric space with at least two elements. There X “has at least
as many elements as R.” In particular, X is uncountable.

178. What are all the continuous functions from f : R→ R that take only rational values?

179. Are there continuous functions f : R→ R that take irrational values at rational numbers
and rational values at irrational numbers?

180. Let f : [a, b]→ R be continuous. “Identify” the image f([a, b]).

181. * Let f be a one-one continuous function on an interval. Then f is monotone.

182. What are all the continuous functions from a connected space to (i) a discrete space,
(ii) a finite hausdorff space?
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183. Let f : X → Y be a continuous map from a connected space X onto a finite hausdorff
space? What can you conlcude about Y ?

184. Let X be a topological space. Assume that {Ai : i ∈ I} is a family of connected subsets
of X. Let L be another connected subset such that L ∩Ai 6= ∅ for all i ∈ I. Show that
L ∪ (∪i∈IAi) is a connected subset of X.

Definition 31. Let X and Y be topological spaces and f : X → Y be a map. We say
that f is locally constant if for each x ∈ X, there exists an open set Ux containing x
with the property that f is a constant on Ux.

185. Show that any locally constant function is continuous.

186. Let U ⊂ Rn be a nonempty open set. Let f : U → R be a differentiable function with
derivative 0. Then f is locally constant. (It need NOT be a constant function!)

187. Let X be connected and Y be hausdorff. Then any locally constant function f : X → Y
is a constant function on X. (This is a typical way in which connectedness hypothesis
is used. Learn this proof well.)

188. In Item 186, if we further assume that U is connected, then f is a constant.

Items 166–188 were done on December 15 and 16, 2004.

Definition 32. A continuous map α : [a, b] → X to a topological space X is called a
path. Since any two intervals are homeomorphic, it is a standard practice to assume
that a = 0 and b = 1. The point p := α(0) is called the initial point and q := α(1) is
called the terminal point of the path α. We also say that p is path connected to q by
the path α.

189. It is important not to identify the path α with its image α([0, 1]) in X. (It is called the
trace of α. Mnemonic: the trains could be different but the tracks may be the same.)
The paths α, β : [0, 1]→ R2 given by α(t) = (t, 0) and β(t) = (t3, 0) have the same trace.

190. Two point p and q may be connected by more than one path. Think of at least 3
different paths connecting (−1, 0) to (0, 1) in R2.

191. If α : [0, 1]→ X is a path connecting p to q, then β : [0, 1]→ X given by β(t) = α(1− t)
is a path connecting q to p. It is called the reverse of α.

192. A set theoretic exercise: Let X := ∪i∈IAi. Let f : X → Y be any map. Let V ⊂ Y .
Let fi denote the restriction of f to Ai: fi := f |Ai . Then

f−1(V ) = ∪i∈If−1i (V ) ∩Ai.

193. Gluing Lemma: (There are two different ways of looking at this.)

Lemma 33. Let X,Y be topological spaces. Assume that {Ai : i ∈ I} is a family of
subsets of X whose union is X. Assume further that fi := f |Ai : Ai → Y is continuous
for each i ∈ I. Then

1. f is continuous if each Ai is open.
2. f is continuous if each Ai is closed and I is finite.
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194. If x and y are path-connected and y and z are path-connected in a space, then x and z
are path connected.

195. X is path connected iff there exists p ∈ X such that any point x ∈ X is path connected
to p.

196. Any path connected space is connected.

197. The converse is not true. Two examples:

(a) Comb space: Let L := {(x, 0) : 0 ≤ x ≤ 1} and An := {(1/n, y) : 0 ≤ y ≤ 1}, for
n ∈ N. Let P : {(0, 1)}. Then L ∪ (∪n∈NAn) is connected and its closure contains
X := L ∪ (∪n∈NAn) ∪ {P}. Hence Xis connected. It is not path connected. If
possible, let γ be path joining P to Q = (1, 0) ∈ X. Let t0 := sup{t ∈ [0, 1] : γ(t) =
P}. Note that γ1(t0) = 0 and γ1((t0, 1]) ⊂ {1/n : n ∈ N}. Hence γ1((t0, 1]) = 1,
by connectedness. Thus γ1(t0) = 1, a contradiction.

(b) * Topologist’s sine curve. (See my book ‘Topology of Metric Spaces’.)

198. Any open subset of an NLS is connected iff it is path connected.

Going through this proof, we are led to the concept of locally path connected spaces.
First of all a definition.

Definition 34. Let X be a topological space and x ∈ X. A subset U is called a
neighbourhood of x in X if there exists an open set G such that x ∈ G ⊂ U . Example:
[0, 1) is a neighbourhood of any x ∈ (0, 1) but not of x = 0.

199. A set in a topological space is open iff it is a neighbourhood of each of its points.

200.

Locally P spaces

General Philosophy: Let P be a topological property. We say that a space X is
locally P (or enjoys P locally) if for each x ∈ X and an open set U 3 x, there exists
a neighbourhood N of x where N has the property P .

Definition 35. LetX be a topological space. ThenX is said to be locally path connected
if for each x ∈ X and an open set U 3 x, there exists a path connected neighbourhood
N of x such that N ⊂ U .

Now you can similarly define locally connected and locally compact spaces.

201. The proof of Item 198 yields the following result: An open set in a locally path connected
space is connected iff it is path-connected.

202. An important remark: In general X may have property P but it may not be locally P .
For instance, the complete comb space is connected but not locally connected. (Look
for a connected neighbourhood of the point (0, 1).) Similarly, there exists a compact
space (Item 213c) which is not locally compact. (Do NOT get confused with the ‘bad’
definition of Munkres and hence his “note” that any compact space is locally compact!)

203. (Connected) Components. In a topological space X, the relation x ∼ y if there exists
a connected set A with x, y ∈ A is an equivalence relation. The equivalence classes are
called the connected components or components of X. The following are immediate:
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(a) If C is a component, then C is a closed connected set.

(b) Any component C is a maximal connected set in the sense that if A is connected
and C ⊂ A, then C = A.

(c) If C is a component, x ∈ C and if A is a connected set with x ∈ A, then A ⊂ C.

204. Examples of components:

(a) The only component of a connected space X is X.

(b) The components of a discrete space are the singleton sets.

(c) The components of Q are the singleton sets. (Note that the topology on Q is
not discrete topology. We gave two proofs of this. One is direct use of subspace
topology and another used existence of non trivial convergent sequences.)

(d) What are the components of R with VIP topology? with outcast topology?

205. If f : X → Y is a homeomorphism, then f induces a natural bijective correspondence
between the components of X and those of Y : If C is a component of X, then f(C)
is a component of Y . Application: The pair of intersecting lines is not homeomorphic
to R. (If they are, remove a point from R and its image in the other set. Count the
components.)

206. Path components are defined in an obvious way. If Px (resp. Cx) is the path component
containing x ∈ X, then Px ⊆ Cx.

207. A space X is locally connected iff the components of any open subset (with subspace
topology) are open in X. In particular, the components of X are open.

208. The components in a locally path connected space are open.

209. Let U be an open subset of a locally path connected space. Then U is connected iff it
is path-connected.

210. In a locally path connected space, the components and path components are the same.

211. Locally Compact Spaces:

212. The following are descendants of Item 148q.

(a) Let K be a compact subset of a hausdorff space X and x /∈ K. Then there exist
disjoint open sets U and V such that x ∈ U and K ⊂ V .

(b) Let A and B be disjoint compact subsets of a hausdorff space. Then there exist
disjoint open sets U and V such that A ⊂ U and B ⊂ V .

(c) Let X be a compact hausdorff space. Let A and B be disjoint closed subsets of X.
Then there exist disjoint open sets U and V such that A ⊂ U and B ⊂ V . (Thus
a compact hausdorff space is normal.) Another example of a normal space is any
metric space.

213. Examples of locally compact spaces:

(a) R, Rn are locally compact.
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(b) Q is not locally compact.

(c) A compact space need not be locally compact. Example: Consider Q with the
usual topology, adjoin an extra element, say ∞. The neighbourhoods of x ∈ Q are
either the neighbourhoods of x in Q or ∞ added to the standard neighbourhoods.
The neighbourhoods of ∞ are complements in Q of a finite subset of F along with
∞.

(d) An NLS is locally compact iff it is finite dimensional. (One way is easy; the proof
of the other is omitted.)

(e) A locally compact metric space need not b complete. (A trivial example is (0, 1)!
I took quite sometime to think of this!

Theorem 36. The following are equivalent for a hausdorff space:
1. X is locally compact.
2. For every x ∈ X and a neighbourhood U of x, there exists an open set V such that

x ∈ V , V is compact and V ⊂ U .
3. Each x ∈ X has a compact neighbourhood.

See Figure 1 for an idea to prove (3) implies (1).

X

U

K

V

x

W

t1

t2

Figure 1: Locally Compact Space

Since locally compact spaces such as Rn arise quite often, whenever we say X is locally
compact, we shall assume that X is hausdorff also.

214. Local compactness is a topological property. In fact, more is true: Let f : X → Y be a
continuous open map of a locally compact space X onto Y . Then Y is locally compact.

215. A closed (respectively open) subspace of a locally compact space is locally compact.

216. One point compactification: Given a locally compact noncompact hausdorff space X,
let X∞ := X ∪ {∞} where ∞ /∈ X. Let T denote the topology on X. Consider

T∞ := T ∪ {V ⊂ X∞ : X∞ \ V is compact. }.

Then
(i) T∞ is a hausdorff topology on X∞.
(ii) The subspace topology on X is T .
(iii) (X∞, T∞) is compact.
(iv) X is dense in X∞.
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217. Let X be noncompact, locally compact hausdorff space. Let Y be a compact hausdorff
space. Assume that there exists pq ∈ Y and a homeomorphism f : X → Y \ {q}. Then
the one point compactification X∞ of X is homeomorphic to Y .

218. Examples:

(a) Rn ∪ {∞} = Sn.

(b) Let x : N → X be a sequence in X. Then xn → x∞ iff the function x : N∞X
defined by x(n) = xn and x(∞) = x∞ is continuous at ∞.

Application: Use this to give another solution of Item 130b.

Items 189–218a were done on December 17–18 and 21–24, 2004. Wish you a Very Happy
New Year!

219. * Functions vanishing at infinity: Let X be a locally compact hausdorff space. A
continuous function f : X → R is said to vanish at infinity if for any given ε > 0 there
exists a compact set K ⊂ X such that |f(x)| < ε for x /∈ K. (We can also define
continuous function vanishing at∞ for functions taking values in an NLS in an obvious
way.)

A continuous function f : X → R vanishes at infinity iff it extends to a continuous
function f∞ : X∞ → R with f∞(∞) = 0.

(a) Let f : X → R be given. Its support is by definition the closure of the set {x ∈
X : f(x) 6= 0}, that is,

supp (f) := {x ∈ X : f(x) 6= 0}.

We say that f has compact support if the support of f is compact. Evidently, any
continuous function with compact support vanishes at infinity.

(b) What are the entire functions f : C→ C which vanish at infinity?

Definition 37. A subset A ⊂ X of a topological space is said to be nowhere dense in
X, if given any nonempty open set U , we can find a nonempty open subset V ⊂ U such
that A ∩ V = ∅.
This definition is equivalent to the standard one found in all text-books: A is nowhere
dense in X iff the interior of the closure of A in X is empty: Int (A) = ∅.

220. Examples of nowhere dense sets:

(a) Let V be any proper vector subspace of Rn. More generally,

(b) Any proper vector subspace of an NLS.

(c) * The set of zeros of any polynomial map Rn → R.

221. Baire Category theorem:

Theorem 38 (Baire Category Theorem). Let (X, d) be a complete metric space.
(1) Let Un be open dense subsets of X, for n ∈ N. Then ∩nUn is dense in X.
(2) Let Fn be nonempty closed subsets of X such that X = ∪nFn. Then at least one

of Fn’s has nonempty interior. In other words, a complete metric space cannot be a
countable union of nowhere dense closed subsets.

36



(A complete set of notes was given for this. Also, refer to my article “Applications of
Baire Category Theorem” in MTTS-notes.)

222. Applications:

(a) Rn cannot written as the union of a countable family of its proper vector subspaces.
In particular, R2is not the union of a countable family of lines through the origin.

(b) No infinite dimensional complete normed linear space can be countable dimen-
sional. (Algebraic sense!)

(c) There can exist no metric d on Q such that d induces the usual topology on Q and
(Q, d) is complete.

(d) Let (X, d) be complete and fn : X → R be a sequence of continuous functions. As-
sume that fn → f pointwise onX. Then the setA := {x ∈ X : f is continuous at x}
is dense in X. (Our proof given in the notes distributed was a beautiful application
of both the versions of Baire’s theorem.)

223. An amusing exercise: Let (xn) be any sequence of real numbers. Show that the set
{x ∈ R : x 6= xn, n ∈ N} is dense in R. Hence conclude that R is uncountable.

224. Show that Q cannot be written as the intersection of a countable family of open subsets
of R.

225. Locally closed sets: A subset A of a topological space is locally closed if for every a ∈ A,
there exists an open set Ua in X such that a ∈ Ua and Ua ∩A is closed in Ua.

(a) A characterization of locally closed sets: A ⊂ X is locally closed iff there exist an
open set U and a closed set C such that A = U ∩ C.

(b) The characterizations gives us easy examples of locally closed sets: [0, 1) is neither
closed nor open in R but is locally closed in R.

226. Separation axioms. They deal with separating various kinds of disjoint objects by means
of disjoint open sets that contain the given objects. The prominent ones are given below.

(a) Hausdorff spaces: Given two distinct points x 6= y, if we can find open sets U and
V such that x ∈ U , y ∈ V and U ∩ V = ∅.

(b) Regular spaces: Given a point x and a closed set F with x /∈ F , there exist open
sets U and V such that x ∈ U and V ⊂ V with U ∩ V = ∅.

(c) Normal spaces: Given two disjoint closed sets A,B, there exist open sets U, V such
that A ⊂ U and B ⊂ V with U ∩ V = ∅.

(d) Completely regular spaces: Given two disjoint (nonempty) closed sets, we can find
disjoint a continuous function f : X → R such that f = 0 on A and f = 1 on B.

(e) Clearly, a completely regular space is regular. How about completely hausdorff
and completely normal spaces? These could be the spaces the objects under ques-
tion are separated by means of continuous real valued functions. Make precise
definitions.

These spaces will be useful for analysts since they assure that there is an ‘abundant’
supply of real valued continuous functions on the given space!
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227. Some standard examples and facts concerning the above concepts:

(a) Examples of regular spaces.

i. Any metric space is regular.

ii. Any locally compact hausdorff space is regular.

(b) Examples of normal spaces.

i. Any metric space is normal. We gave two proofs of this. One of them is based
on Urysohn’s lemma for metric spaces. See Item 227e.

ii. Any compact hausdorff space is normal.

(c) A normal space in which all singleton sets are closed is regular.

(d) * The most important result about normal spaces is the Urysohn’s lemma.

Theorem 39 (Urysohn’s Lemma). Let A,B be disjoint non-empty closed subsets
of a normal space. Then there exists a continuous function f : X → [0, 1] such that
f = 0 on A and f = 1 on B.

(e) We proved Urysohn’s lemma in the case of a metric space. Look at f(x) :=
d(x,A)

d(x,A)+d(x,B) .

(f) Note that Urysohn’s lemma says that a space is normal iff it is completely normal.

(g) * A key fact needed for Urysohn’s lemma is the following observation.

Proposition 40. Let X be a normal space. Assume that a closed subset A is
contained in an open set U . Then there exists an open set V such that A ⊂ V ⊂
V ⊂ U .

228. Quotient spaces. A complete set of notes is available in the form of an article in MTTS
Notes.

(a) We recalled concept of quotient topology. Let X be a set and ∼ be an equivalence
relation on X. Let X/∼ be the quotient set or the set of equivalence classes of ∼.
Let π : X → X/∼ be the quotient map defined by π(x) = [x], the equivalence class
of x. The quotient topology on X/∼ is the set of V ⊂ X/∼ such that π−1(V ) is
open in X.

(b) Let X be a topological space and ∼ an equivalence relation on X. Then the
quotient topology on X/∼ is the largest topology for which the natural quotient
map π : X → X/∼ is continuous.

(c) The theorem below, though easy, is the ‘only’ result needed to check the continuity
of maps from quotient spaces to others.

Theorem 41 ( Universal Mapping Property). Let π : X → X/∼ be a quotient
map. A map f : X/∼→ Y is continuous iff f ◦ π is continuous.

(d) The next theorem tells us how to generate quotient spaces.

Theorem 42. Let f : X → Y be continuous. Let ∼ be the equivalence relation on
X defined by x1 ∼ x2 iff f(x1) = f(x2). Then there exists a continuous function
g : X/∼→ Y such that f = g ◦ π.
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(e) The next result is the most important tool we employ to identify the quotient
spaces. If we have some guess that the quotient space X/∼ is homeomorphic to Y ,
we try to find a surjective continuous map f : X → Y such that the equivalence
relation defined by f is ∼ and such that f is either open or closed.

Theorem 43. Let f : X → Y be an open (or closed) continuous surjective map.
Then Y is homeomorphic to the quotient space of X obtained by identifying each
level set of f to a point.

(f) Illustrations of the use of the above result.

i. The quotient space obtained from [0, 1] got by identifying the end points 0 and
1 is S1.

ii. The quotient space got by identifying two of the opposite sides of a rectangle
is homeomorphic to a cylinder.

iii. The quotient space of S1 obtained by identifying the diametrically opposite
points is again S1!

iv. The quotient space of the unit square identifying the corresponding points on
the vertical sides is homeomorphic to the cylinder {(x, y, z) ∈ R3 : x2+y2 = 1}.

v. The quotient space of the unit square identifying the corresponding points of
the horizontal sides as well as the points on the vertical sides is homeomorphic
to S1 × S1, a torus (a vada or a cycle tube).

vi. For any space X and a subset A of X, the space X/A stands for the quotient
space of X with respect to the equivalence: x1 ∼ x2 iff x1 = x2 or x1, x2 ∈ A.
Thus X/A is the space obtained from X by collapsing A to a single point.
Example: Dn := B[0, 1] ⊂ Rn. Then Dn/Sn−1 ' Sn.

vii. Let F be a closed subset of a compact Hausdorff space X. The quotient space
obtained from X by identifying F to a single point is homeomorphic to the
one-point compactification of X \ F .

viii. The last item may be used to prove that Dn/Sn−1 ' Sn.

ix. If X = S1 × [0, 1] is the cylinder and A = S1 × {0} is the bottom circle, then
X/A ' D2.

(g) We say that an equivalence relation ∼ on X is open if whenever U ⊂ X is open in
X so is its saturation [U ] := {x′ ∈ X : x′ ∼ x for some x ∈ U}.
Proposition 44. An equivalence relation ∼ on X is open iff the quotient map
π : X → X/∼ is open.

(h) Hausdorffness of quotient spaces. The following result is the most useful (sufficient)
condition on ∼ that ensures the quotient space is hausdorff.

Theorem 45. Let ∼ be an open equivalence relation on X. Assume that the
relation R := {(x, y) ∈ X ×X : x ∼ y} is closed as a subset of X ×X. Then X/∼
is hausdorff.

(i) Projective spaces over R. Let X := Rn+1\{0}. The relation on X defined by x ∼ y
iff x = ty for some nonzero t ∈ R is a equivalence. The quotient X/∼ is known
as the n-dimensional projective space over the reals. It is denoted by Pn(R). The
following are some of the properties of Pn(R).

i. Pn(R) is a compact Hausdorff space.

39



ii. Pn(R) is homeomorphic to the quotient of Sn with respect to the relation on
Sn: x ∼ y iff x = ±y.
In this we had to deal with the continuity of a map into the quotient space.
Go through the proof again. It shows the typical way in which the continuity
of a map f : Y → X/∼ into a quotient space is dealt with. (Universal map-
ping property cannot deal with this situation.) The trick was to write f as
the composite of a continuous map g : Y → X followed by the quotient map
π : X → X/∼.

iii. The one dimensional projective space is homeomorphic to S1.

(j) Two very popular and important examples of quotient spaces.

i. Möbius Strip. On the unit square X we define the equivalence relation as
follows:

(x, y) ∼ (x′, y′) ⇐⇒ (x, y) = (x′, y′) or {x, x′} = {0, 1} and y = 1− y′.

Thus two points of opposite vertical sides are identified cross-wise. The quo-
tient space is known as the Möbius strip.

ii. Klein’s bottle. Let X be the unit square. Define an equivalence relation on X
whose nontrivial relations are given by

(0, y) ∼ (1, y) and (x, 0) ∼ (1− x, 1).

The quotient space is called the Klein’s bottle.

Definition 46. Let X be a topological space. A loop in X is a path α : [0, 1]→ X with
α(0) = α(1). We say that α s a loop based at α(0).

Recall that if α, β : [0, 1]→ X are paths such that α(1) = β(0), then their join α ∗ β is
defined by

α ∗ β(t) :=

{
α(2t) for 0 ≤ t ≤ 1/2

β(2t− 1) for 1/2 ≤ t ≤ 1.

Then, α ∗β is continuous (by gluing lemma) and we say that it is got by concatenation.

Standard Notation in homotopy theory: Let I = [0, 1].

Definition 47. Let X,Y be topological spaces. Let f, g : X → Y be continuous maps.
We say that they are homotopic if there exists a continuous map F : X × I → Y such
that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X. We say that ft(x) := F (x, t) for
t ∈ I and x ∈ X.

The map F is called a homotopy from f to g and we write f
F' g.

If f(a) = g(a) for all a ∈ A ⊂ X and if the homotopy F is such that F (a, t) = f(a) for
all t ∈ I and a ∈ A, we say that f is homotopic to to g relative to A. We denote this

by f
F' g rel A.

If α and β are paths in X with the same initial and terminal points, then saying that
α is homotopic to β relative to {0, 1} is the same as saying that all the intermediate
paths αt(s) := F (s, t) have the same initial and terminal points, that is, they satisfy
F (0, t) = α(0) and F (1, t) = α(1).
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229. Examples:

(a) Let C ⊂ Rn be convex. Let f, g : X → C be continuous maps. Then the map
F (x, t) := (1− t)f(x) + tg(x) is a homotopy from f to g. If f ad g agree on a set
A ⊂ X, then F is a homotopy relative to A.

(b) Let f, g : X → Sn be continuous maps such that f(x) 6= −g(x) for x ∈ X. Then
the map

F (x, t) :=
(1− t)f(x) + tg(x)

‖(1− t)f(x) + tg(x)‖
is a homotopy from f to g.

(c) The map f : S1 := {z ∈ C : |z| = 1} → S1 defined by f(z) = −z is homotopic to
the identity map g(z) = z.

(d) Let f : X → Sn be a continuous map which is not onto. Then it is null-homotopic,
that is, homotopic to a constant map.

(e) Consider X := {p ∈ R2 : 1 ≤ ‖p‖ ≤ 2}. Let α be ‘the inner circle’ and β be the
ellipse lying in X and circumscribing α. Assume that they both start and end at
(0, 1). They are homotopic in X. (Note that X is not convex.)

230. The relation of homotopy between the continuous maps from a space X to another
space Y is an equivalence relation.

For, if f
F' g and g

G' h, then

H(x, t) :=

{
F (x, 2t) 0 ≤ t ≤ 1/2

G(x, 2t− 1) 1/2 ≤ t ≤ 1,

is a homotopy from f to h.

231. The relation of homotopy between the continuous maps from a space X to another
space Y relative to a subset A ⊂ X is an equivalence relation among maps that agree
on A.

232. Homotopy behaves well with respect to composition of maps.

(a) Let f, g : X → Y be homotopic relative to a set A ⊂ X via the homotopy F . Let

h : Y → Z be a map. Then h ◦ f h◦F' h ◦ g relative to A.

(b) Let f : X → Y be a map. Assume that g, h : Y → Z are homotopic relative

to B ⊂ Y via a homotopy G. Then g ◦ f F' h ◦ f relative to f−1(B), where
F (x, t) := G(f(x), t).

Definition 48. Fix a base point p ∈ X. Let α be a loop at p. The equivalence class
〈α〉 of all loops based at p homotopic to α relative to {0, 1} is called a homotopy class.
The collection of homotopoy classes of loops at p is denoted by π1(X, p).

233. Construction of the fundamental group. We make π1(X, p) into a group as follows. For
〈α〉 , 〈β〉 ∈ π1(X, p), we let 〈α〉 ∗ 〈β〉 := 〈α ∗ β〉.
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(a) The above multiplication is well-defined.

For, α
F' and β

G' β′, then α∗β H' α∗β′ whereH(s, t) :=

{
F (2s, t) 0 ≤ s ≤ 1/2

G(2s− 1, t) 1/2 ≤ s ≤ 1.

(b) The multiplication is associative.

First of all, we compute

((α ∗ β) ∗ γ)(s) =


α(4s) 0 ≤ s ≤ 1/4

β(4s− 1) 1/4 ≤ s ≤ 1/2

γ(2s− 1) 1/2 ≤ s ≤ 1

(α ∗ (β ∗ γ))(s) =


α(2s) 0 ≤ s ≤ 1/2

β(4s− 2) 1/2 ≤ s ≤ 3/4

γ(4s− 3) 3/4 ≤ s ≤ 1

.

Define f : I → I by setting

f(s) :=


2s 0 ≤ s ≤ 1/4

s+
1

4
1/4 ≤ s ≤ 1/2

(s+ 1)/2 1/2 ≤ s ≤ 1

.

Since f(0) = 0 and f(1) = 1, we see that f ' 1I , that is, f is homotopic to the
identity map 1I of I relative to {0, 1}. We have

(α ∗ β) ∗ γ = (α ∗ (β ∗ γ)) ◦ f
' (α ∗ (β ∗ γ)) ◦ 1I

= α ∗ (β ∗ γ).

(c) Existence of the identity. Let e = ep denote the constant loop at p: e(t) = p for
0 ≤ t ≤ 1. Then 〈e〉 serves as the identity for the multiplication. Again, proceeding
as earlier, we have

e ∗ α(s) =

{
e(2s) 0 ≤ s ≤ 1/2

α(2s− 1) 1/2 ≤ s ≤ 1

e ∗ α = α ◦ f

where f(s) =

{
0 0 ≤ s ≤ 1/2

2s− 1 1/2 ≤ s ≤ 1.

Thus we have
e ∗ α = α ◦ f ' α ◦ 1I rel I = α.

Similarly, one shows that α ∗ e ' α.

(d) Existence of inverse. The inverse of 〈α〉 is
〈
α−1

〉
, where α−1 is the reverse path

defined by α−1(s) := α(1− s).

i. The inverse s well-defined. If α
F' β relative to {0, 1}, then α−1

G' β−1 relative
to {0, 1} where G(s, t) := F (1− s, t).
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ii. We show that α ∗ α−1 = α ◦ f where

f(s) =

{
2s 0 ≤ s ≤ 1/2

2− 2s 1/2 ≤ s ≤ 1.

Now, f ' g relative to {0, 1} where g(s) = 0 for 0 ≤ s ≤ 1. Hence,

α ∗ α−1 = α ◦ f ' α ◦ g rel {0, 1} = e.

One similarly, shows that α−1 ◦ α ' e.
(e) Explicit homotopies can also be given. (Of what use?)

i. Existence of identity.

• α ∗ e ' α via

H(s, t) :=

{
α( 2t

s+1) s ≥ 2t− 1

p s ≤ 2t− 1.

• e ∗ α ' α via

H(s, t) =

{
p s ≥ 2t

α(2t−s2−s ) s ≤ 2t

ii. Existence of inverse. α ∗ α−1 ' e via

H(s, t) =


α(2t) s ≥ 2t

α(s) s ≤ 2t and s ≤ 2− 2t

α(2− 2t) s ≥ 2− 2t

iii. Associativity. (α ∗ β) ∗ γ ' α ∗ (β ∗ γ) via

H(s, t) =


α( 4t

s+1) 4t− 1 ≤ s
β(4t− s− 1) 4t− 2 ≤ s ≤ 4t− 1

γ(4t−2s2−s − 1) s ≤ 4t− 2.

I have not verified these, simply copied from a book!

234. Let α, β be two paths such that α(1) = β(0). Then proceeding as in the last item, we
show the following, as the same homotpies work as they take care of the end points!

(a) If α′ ' α relative to {0, 1} and If β′ ' β relative to {0, 1}, then α ∗ β ' α′ ∗ β′
relative to {0, 1}.

(b) If α, β, γ are paths such that α ∗ (β ∗ γ) and (α ∗ β) ∗ γ make sense, then

α ∗ (β ∗ γ) ' (α ∗ β) ∗ g relative to {0, 1}.

(c) We have α ◦ α−1 ' eα(0) relative to {0, 1} and α−1 ◦ α ' eα(1) relative to {0, 1}.

235. If X is path connected, then π1(X, p) is isomorphic to π1(X, q) for p, q ∈ X. This
isomorphism depends on the choice of path joining p and q.
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Definition 49. Let p : E → B be a continuous map. An open subset U ⊂ B is said to
be evenly covered by p if p−1(U) is the union ∪iVi of disjoint open subsets Vi of E such
that the restriction pi of p to Vi is a homeomorphism of Vi onto U .

We say that p is a covering map if (i) p is onto and (ii) each b ∈ B has an open
neighbourhood Ub which is evenly covered by p.

The set p−1(b) is called the fibre over b.

The sets Vi are called sheets of p−1(U).

E is called the total space and B, the base of the covering map p.

236. Properties of a covering map.

(a) Any covering map is open.

(b) Each of the fibres p−1(b) is discrete.

(c) Each b ∈ B has an open neighbourhood U such that p−1(U) is homeomorphic to
p−1(b)× U .

237. Examples.

(a) The exponential map p : R→ S1 := {z ∈ C : |z| = 1} is a covering.

(b) The quotient map π : Sn → Pn(R) is a covering.

(c) Products of covering maps is again a covering map. (precise statement?)

(d) Consider the exponential map exp: C → C∗. The open set U := C∗ is not evenly
covered by exp.

In fact, an open set U ⊂ C∗ is evenly covered by the exponential map iff there
exists a continuous logarithm L on U , that is, a continuous map L : U → C such
that exp(L(z)) = z for all z ∈ U .

Note however that exp: C→ C∗ is a covering map.

Definition 50. Let p : E → B a covering map. Let f : X → B be continuous map.
Then a map g : X → E such that p ◦ g = f is called a lift of f . One has the following
commutative diagram. (Figure?)

238. Uniqueness of lifts.

Theorem 51. Let p : E → B be a covering map and X a connected space. Let f : X →
B be a map. If g, h : X → E are lifts of f such that g(x) = h(x) for some x ∈ X, then
g = h.

239. Path lifting lemma.

Theorem 52. Let p : E → B be a covering map. Let c : I → B be a path. Let e0 ∈ E
be such that p(e0) = c(0). then there exists a unique path γ : I → E such that γ(0) = e0
and p : γ = c.

240. A Version of homotopy lifting lemma:
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Theorem 53. Let p : E → B be a covering map. Let F : I × I → B be a continuous
map. Let e0 ∈ p−1(F (0, 0)). Then there exists a unique lift G : I × I → E of F such
that G(0, 0) = e0.

241. Let (E, e) and (B, b) be topological spaces with base points e and b respectively. Let
p : E → B be a covering map. If c is a loop at b and γ is its lift through e, we cannot
conclude that γ is a loop at e but p(γ(1)) = b, that is, γ(1) ∈ p−1(b). Example: Consider
the spaces (R, 0) and (S1, 1). A lift of c(t) = e2πit is γ(t) = t in R.

242. Let c0 and c1 be homotopic loops at b with F as a a homotopy. We thus get a lift
G : I × I → E of F such that G(0, 0) = e and p(G(s, t)) = ct(s), for (s, t) ∈ I × I. Let
γt(s) := G(s, t). Then all these paths start at e and have the same end point γ0(1).

As a corollary, if 〈c〉 ∈ π1(B, b) and γ is a lift of c through e, then

π1(B, b)→ π−1(b) defined by ϕ : 〈c〉 7→ γ(1) (1)

is well-defined.

243. Simply connected space. We say a path-connected topological space X is simply con-
nected if π1(X,x) is trivial for some (and hence for any) x ∈ X. Examples:

(a) Any convex subset of Rn is simply connected.

(b) The parabola {(x, y) ∈ R2 : y = x2} is not convex but simply connected.

(c) We shall show below (Item 246) that Sn for n ≥ 2 is simply connected.

244. Let p : (E, e) → (B, b) be a covering map. Assume that E is simply connected. Then
the map defined in (1) is a bijection of π1(B, b) with π−1(b).

As a corollary (under the above hypothesis), for any q ∈ π−1(b), if we let γy be a path
joining e to y, then given a loop c at p, we have a unique q ∈ π−1(b) such that c is
homotopic to p ◦ γy.

245. Applications.

(a) Fundamental group of Pn(R) (n ≥ 2). For n ≥ 2, π1(Pn(R), [e1]) is isomorphic to
Z2.

(b) Fundamental group of S1 is isomorphic to Z. The following are the main steps.

i. Given 〈c〉 ∈ π1(S1, 1), ϕ(〈c〉) ∈ Z. We call the integer the index of c.

ii. The map 〈c〉 7→ ϕ(〈c〉) is a group homomorphism of π1(S
1, 1) to Z.

246. Let X be a space, U, V be simply connected open subsets of X such that (i) X = U ∪V
and (ii) U ∩ V is path connected. Then X is simply connected.

Application. Sn is simply connected for n ≥ 2.

247. Applications of the index of loops in S1.

(a) No retraction theorem. There is no continuous map f : B2 → S1 such that f(z) = z
for z ∈ S1.
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(b) Brouwer fixed point theorem. Any continuous map of B2 to itself has a fixed
point.

(c) Borsuk-Ulam theorem. Let f : S2 → R2 be a continuous map. Then there exist
antipodal points ±v ∈ S2 such that f(v) = f(−v).

This has a physical interpretation.

(d) Ham-Sandwich theorem. Let A,B,C be bounded connected open subsets of R3.
Then there exists a plane in R3 that divides each of the sets into two subsets of
equal volume.

Proof of this relied on some intuitively obvious facts on volumes.

(e) Fundamental theorem of algebra.

For proofs, you may refer to my relevant articles in Expository Articles.
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