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Abstract

This is a summary of courses on General Topology, offered by me at the Department
of Mathematics, University of Mumbai during the academic year 2004-2005 and at the
Department of Mathematics and Statistics, University of Hyderabad in Jan-April 2012.
There are minimal number of proofs in this set of notes. Its merit, if any, lies in the choice
of topics, their development and the emphasis on concrete and geometric examples and
exercises. I plan to add a bit more material so that it could serve as a skeleton of a course
in General Topology. Later I plan to develop this into a text-book. (So, please do not
plagiarize!) I would appreciate receiving your comments and views.

This set may be used in conjunction with the following articles of mine on Topology:

1. Subspace Topology
2. Quotient Topology
3. Existence of Continuous Functions
4. Compact Spaces
5. Connected Spaces
6. Generating Topologies — A Unified View of Subspace, Product and Quotient Topolo-

gies.

Topology of Metric Spaces, 2nd edition, by S. Kumaresan is published by Narosa. The
books Topology by Munkres and Topology by Armstrong are available in Indian edition.
These three books may be used to fill in the details of my outline. My book is strongly
recommended for pictures, geometric insights and developing a taste for topology.

1. Finite sets. Let X be a set. We say that it is finite if X = ∅ or if there exists a
bijective map of X into an initial segment In := {k ∈ N : 1 ≤ k ≤ n} of N.

Using induction/well-ordering principle, one can show that if X has a bijection with Im
and In, then m = n. The unique n is called the number of elements in X. (For a proof,
see my article on Finite sets.) The number of elements in the emptyset is 0.

2. Countable and uncountable sets. We say that a set X is countable if either X = ∅
or if either of the equivalent conditions are satisfied:

(a) There is a one-one map f : X → N.

(b) There exists an onto map g : N→ X.

1



Applications: Countability of N × N, Q+, Q, countable union of countable sets, finite
product of countable sets. (See my article on Countable and Uncountable sets, also
Munkres.)

3. Uncountability of 2N: Cantor’s theorem: there exists no onto map from X to P (X).

We prove this by contradiction. Assume f : P (X) → X be onto. Consider the set
S := {x ∈ X : x /∈ f(x)}. Since f is onto there exists a ∈ X such that f(a) ∈ S. Now
exactly one of the following must happen: (i) a ∈ S or (ii) a /∈ S. If a ∈ S, by the very
definition of S, a /∈ f(a) = S, contradiction. Similarly (ii) cannot happen. Hence we
conclude that no such f exists.

4. Metric Spaces: In most of a first course in real analysis, we just needed the notion of
a distance between two real numbers to define the concept of convergent sequences or
the concept of continuous functions. Motivated by this we define a metric or a distance
function on a (nonempty) set X as a function d : X×X → R which satisfies the following
properties:

(a) For all x, y ∈ X, we have d(x, y) ≥ 0 and d(x, y) = 0 iff x = y.

(b) d(x, y) = d(y, x) for all x, y ∈ X.

(c) For all x, y, z ∈ X, we have the traingle inequality:

d(x, z) ≤ d(x, y) + d(y, z).

5. Metrics in R2: L1 and L∞ metrics, called the sum and max metrics:

d1(x, y) :=
n∑
k=1

|xk − yk|

dmax(x, y) ≡ d∞(x, y) := max{|xk − yk| : 1 ≤ k ≤ n}.

6. Generalizations of these metrics to function spaces.

7. Normed linear spaces. A norm on a vector space V over R (or over C) is a function
‖ ‖ : V → R satisfying the following conditions:
(i) For x ∈ V , ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0.
(ii) For x ∈ V and λ ∈ R (or λ ∈ C if X is vector space over C) , we have ‖λx‖ =
‖λ‖ ‖x‖.
(iii) For x, y ∈ V , we have the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

8. Examples of normed linear spaces:

(a) Finite dimensional normed linear spaces: On Rn, we have the following norms:

‖x‖1 :=

n∑
k=1

|xk| and ‖x‖∞ := max{|xk| : 1 ≤ k ≤ n}.

That these are norms is easily verified.

Another norm is the standard/Euclidean norm: ‖x‖2 :=
(∑n

k=1 |xk|2
)1/2

. We need
Cauchy-Schwarz inequality to verify that this is a norm.
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9. Function spaces.

(a) Let X be any nonempty set. Let B(X,R) denote the real vector space of all
bounded real valued functions on X. Then ‖f ‖∞ := sup{|f(x)| : x ∈ X} is a
norm on B(X,R).

(b) Let X = [0, 1]. Let V := C(X,R) the vector space of all continuous real valued

functions on X. Then ‖f ‖1 :=
∫ 1
0 |f(t)| dt defines a norm on V .

(c) Since C([0, 1],R) ⊂ B([0, 1],R), we have another norm on V , namely, ‖f ‖∞.

10. `1, the space of sequences whose associated series are absolutely summable is defined as
follows:

`1 :=

{
(zn) : zn ∈ R;

∑
n

|zn| is convergent.

}
Then ‖z‖ = ‖(zn)‖ :=

∑
n |zn| is a norm on `1.

11. Open balls. Let (X, d) be a metric space. Fix a ∈ X and r > 0. The open ball B(a, r)
and the closed ball B[a, r] centred at a and radius r are defined by

B(a, r) := {x ∈ X : d(x, a) < r} & B[a, r] := {x ∈ X : d(x, a) ≤ r}.

We now look at some examples.

(a) in R: B(p, r) = (p− r, p+ r).

(b) B(0, 1) in R2 with ‖ ‖1, ‖ ‖2 and ‖ ‖∞. Picture!

Look at the pictures. How do we arrive at them? The “boundary” of B(0, 1) is
identified. In the case of ‖ ‖1, the boundary is defined by |x| + |y| = 1. Hence
B(0, 1) in this space is the ‘region’ enclosed by lines x + y = 1, −(x + y) = 1,
x − y = 1 and y − x = 1. In the case of ‖ ‖∞, the bounding lines are x = 1,
−x = 1, y = 1 and −y = 1.

(c) in Z with the induced metric. Identify all open balls. Answer: Any set of 2n + 1
consecutive integers.

(d) Relations between B(x, r) and B(y, s).

If x = y and r < s, then B(x, r) ⊆ B(x, s). Equality can occur. Consider the
discrete metric and r = 1/2 and s = 3/4.

If d is discrete, and if r > 1 and s > 1, then for any x, y, we have B(x, r) = B(y, s).

(e) Visualizing the open balls in C[0, 1] under ‖ ‖∞.

(f) In an normed linear space , B(x, r) = x+ rB(0, 1).

12. Open sets in a metric space. A subset U of a metric space is said to be open or
d-open if for each x ∈ U , there exists rx > 0 such that B(x, rx) ⊂ U . We now look at
lots of examples to build our intuition. In each of the examples, draw pictures of the sets
and see whether you can enclose each of the points x in an open ball B(x, rx) contained
in the given set. In most of the cases, the geometry will lead you to the ‘best possible’
radius rx. This will develop your intuition to ‘identify’ the open sets “instantly”. Pictures!

(a) in R: various examples such as open intervals, union of open intervals and non-
examples such as Z, Q, R \Q,
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(b) {(x, y) ∈ R2 : x > 0, y > 0} in R2.

(c) {(x, y) ∈ R2 : x ≥ 0, y > 0} in R2.

(d) {(x, y) ∈ R2 : x2 + y2 > 1} in R2.

(e) {(x, y) ∈ R2 : x2 + y2 < 1} in R2.

(f) {(x, y) ∈ R2 : x2 + y2 ≤ 1} in R2.

(g) Various conic sections in R2.

(h) In an normed linear space V , if any vector subspace W is open, then W = V .
Application: Is C[0, 1] open in BF [0, 1], the set of bounded functions?

(i) Is R \ Z open in R?

(j) The open ball B(x, r) is open in any metric space.

Draw picture. If y ∈ B(x, r), we need to find s > 0 such that B(y, s) ⊂ B(x, r).
Let us find such an s. Let z ∈ B(y, s). We need to show z ∈ B(x, r). That is we
need an estimate for d(z, x). The obvious estimate is d(z, x) ≤ d(z, y) + d(y, x) <
s+d(y, x). If we can show s+d(y, x) < r, we are through. This suggest we choose
0 < s < r − d(x, y).

(k) {y ∈ X : d(x, y) > r} is open. Hint: Modify the idea of the last sub-item.

(l) What are the open sets in a finite metric space?

(m) Can {h ∈ C[0, 1] : f(x) < h(x) < g(x)} for some f, g ∈ C[0, 1] be an open ball? Is
it an open set?

(n) Is the open unit ball in (C[0, 1], ‖ ‖∞) open in (C[0, 1], ‖ ‖1)?
(o) If U is an open subset in an normed linear space , (X, ‖ ‖), then

i. x+ U is open for any x ∈ X
ii. A+ U is open for any A ⊂ X
iii. αU is open for any nonzero scaler α.

(p) Is the set U := {f ∈ C[0, 1] : f(1/2) 6= 0} open in (C[0, 1], ‖ ‖∞)?

(q) Any open subgroup G of R is R.

For, 0 ∈ G and hence (−ε, ε) ⊂ G for some ε > 0. Since G is group, for all x, y ∈
(−ε, ε) we have x+y ∈ G, that is, (−2ε, 2ε) ⊂ G. By induction, (−nε, nε) ⊂ G for
n ∈ N.. Now let x ∈ R be nonzero. By Archimedean property, there exists N ∈ N
such that Nε > |x|. Hence x ∈ (−Nε,Nε). It follows that R = ∪n∈N(−nε, nε) ⊂
G.

(r) A subset U of a metric space is open iff it is the union of a family of open balls.
For, if x ∈ U , there exists rx > 0 such that B(x, rx) ⊂ U . We then have an indexed
family {B(x, rx) : x ∈ U} of open balls. Clearly, U = ∪x∈UB(x, rx).

(s) A subset U ⊂ R is open iff it is the union of a countable family of pair-wise disjoint
open intervals. (See Lemma 1.2.42 on Page 23 of my book on Metric spaces.)

13. The class T of open subsets of a metric space (X, d) have the following properties:

(a) ∅, X ∈ T .

(b) If {Ui : i ∈ I} is any collection of elements in T , then U := ∪i∈IUi ∈ T .

(c) If Uk, 1 ≤ k ≤ n are in T , then U1 ∩ U2 ∩ · · · ∩ Un ∈ T .
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14. Topology: Definition and Examples. A topology on a set X is a collection T of
subsets of X which satisfies the three conditions (a)–(c) of the last item. Elements of
T are called open sets, to be precise T -open.

(a) Metric topology: Let (X, d) be a metric space. Then the collection of (d-) open
subsets is a topology on the metric space. This topology is called the metric
topology on the metric space.

(b) Discrete topology: Here T = P (X), the power set of X. Thus, every subset is
open.

(c) The topology on a finite metric space is discrete.

(d) Indiscrete topology: U is open iff U = ∅ or U = X, that is, T = {∅, X}.
(e) Co-finite topology: U is open iff U = ∅ or X \ U is finite, that is ,

T = {U ⊂ X : Either U = ∅ or X \ U is finite.}

(f) Co-countable topology: U is open iff U = ∅ or X \ U is countable, that is,

T = {U ⊂ X : Either U = ∅ or X \ U is countable.}

(g) VIP topology: Fix p ∈ X. U is open iff U = ∅ or p ∈ U .

(h) Outcast topology: Fix p ∈ X. U is open iff U = X or p /∈ U .

(i) Outcast + co-finite topology: U is open iff either p /∈ U or U c is finite.

15. A topology on Z. Let B be the set of arithmetic progressions in Z. Any element B ∈ B
is of the form a+ Zb for some nonzero b. Note that B is nothing other than the set of
cosets of all additive (non-trivial) subgroups of Z. An example: 2 + 5Z. We define a
topology T on Z as follows: a subset U ⊂ Z is open iff for each x ∈ U , a coset of the
from x + Zb ⊂ U . Clearly, ∅,Z ∈ T . If {Ui} is a collection of sets in T and x ∈ ∪iUi,
then x ∈ Uj for some j and hence there is a b 6= 0 such that x ∈ x+Zb ⊂ Uj ⊂ ∪iUi. If
x ∈ U ∩V for some U, V ∈ T , then there exist b, c such that x+Zb ⊂ U and x+Zc ⊂ V .
Clearly, x+ Z lcm (b, c) ⊂ U ∩ V . Hence T is a topology on Z.

(1) Observe that any element of B can be written in the form r + Zb where b > 0 and
0 ≤ r < b− 1. Hence in view of Z = ∪0≤r<b−1r+ Zb, we see that any element of B and
its complement are both open!

(2) Another observation is that no nonempty finite set can be open.

As an application of these observations, we now give a topological proof of Eulcid’s
theorem on the infinitude of primes in Z. We prove this by contradiction. Assume that
p1, . . . , pn are the set of all primes. Now the only integers that are not divisible by any
prime are ±1. Hence

Z \ {±1} = ∪nk=1Zpk = ∪kUk, say.

Let us take the complements on both sides of the above equality. The complement of
left side is ∩kU ck , a finite intersection of open sets (in view of Observation 1) and hence
is open. Hence the left side, a finite set is open, a contradiction to observation 2).
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16. Basis of a topological space and basis for a topology on a set.

Basis for a topological space. Let (X, T ) be a topological space. A subset B ⊂ T of
open sets is said to be a basis for T if every element in T is a union of elements from
B. In other words, B is a basis for T if for any U ∈ T and x ∈ U , there exists B ∈ B
such that x ∈ B ⊂ U . The typical example of a basis is the set of all open balls for the
topology on a metric space.

17. Examples of bases:

(a) {B(x, r) : x ∈ X, r > 0} is a basis for the metric topology on any metric space.
The indexing set is X × (0,∞).

(b) {B(x, 1/n) : x ∈ X,n ∈ N} is a basis for the metric topology on any metric space.
The indexing set is X × N.

(c) When X = R, we can do better than the last two bases. Consider B := {(a, b) :
a, b ∈ Q} is a basis for the standard topology on R. Note that this basis is
countable, as it is indexed by Q×Q+. (Why? (a, b) = B(c, r) where c = (a+b)/2 ∈
Q and r = (b− a)/2 ∈ Q+.)

(d) A basis for the VIP topology is {p} ∪ {{p, q} : q ∈ X, q 6= p}.
(e) A basis for outcast topology is {X} ∪ {{q} : q ∈ X, q 6= p}.
(f) B := {{x} : x ∈ X} is a basis for the discrete topology on a set X.

(g) B := {X} is a basis for the indiscrete topology on a set X.

(h) Note that (0, 1) = (0, 1/2) ∪ (1/4, 1) = ∪n≥n(0, (n − 1)/n). Hence there is no
uniqueness while expressing an open set as a union of some elements from the
basis.

18. The second notion is a basis for a topology on a set X. The question here is: given
a set X and a subset B ⊂ P (X) of subsets of X, does there exist a topology T on X
for which B is a basis? Suppose such a topology T exists. Then X ∈ T so that a first
requirement is (1) ∪B∈BB = X. Also, since any B ∈ B must be in T , B1 ∩B2 ∈ T for
any B1, B2 ∈ B. Hence the second condition: (2) for any B1, B2 ∈ B and x ∈ B1 ∩ B2,
there exists B ∈ B such that x ∈ B ⊂ B1 ∩B2. If these two conditions are satisfied, we
define a topology T on X as follows:

T := {U ⊂ X : ∀x ∈ U, ∃B ∈ B such that x ∈ B ⊂ U}.

It is easy to verify that T is a topology on X and that B is a basis for this topology.

19. Order Topology: partial and total orders, dictionary order on products, C is totally
ordered but is not an ordered field. Intervals of the form (a, b) and rays of the form
(−∞, a) and (b,∞). Examples in R2: the rays (−∞, (1, 2)), ((−1, 1),∞) and the inter-
vals ((−1, 1), (3,−2)) and ((0, 0), (0, 10)). Basis for order topology. What is the order Pictures!

topology on R, on Z, on N and on a finite totally ordered set? Details!

20. Lower Limit Topology: Consider B := {[a, b) : a, b ∈ R, a < b}. It is easy to see that
B satisfies both the conditions laid out in Item 18. The topology associated with this
basis is known as the lower limit topology on R, denoted by TL.
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When is a subset U ⊂ R open in TL? If for x ∈ U , we can find [a, b) ∈ B such that
x ∈ [a, b) ⊂ U . A picture will immediately lead you to a ‘better’ condition: for x ∈ U ,
we can find b > x such that [x, b) ⊂ U . In particular, any interval (a, b) ∈ TL. Hence
the lower limit topology is finer than the standard topology on R. In fact, it is strictly
finer, since [a, b) is open In TL but not in the standard topology.

Note that no countable sub-collection of {[a, b) : a, b ∈ R, a < b} will serve as a basis
for the lower limit topology. For, if {[an, bn) : n ∈ N} is one such, then choose a ∈ R
such that a 6= an for n ∈ N. Then the open set [a, a+ 1) cannot be written as a union
of any such elements. Why? For, a has to be in one of them, say, [ak, bk) Since ak 6= a,
it follows that ak < a < bk so that the union will have elements from [ak, a) which are
not in [a, a+ 1).

Question: How about the collection B = {(a, b] : a, b ∈ R, a < b}? Is it a basis for some
topology on R? If so,what will you call it?

21. The class of all topologies on a given set is a partially ordered set: if T1 and T2 are
topologies on X, we define T1 ≤ T2 iff T1 ⊂ T2, as subsets of P (X). The indiscrete
topology is the smallest element and the discrete topology is the largest element of the
class of topologies on X.

The union of topologies on X need not be topology. Let X = {a, b, c} be a three element
set. Let T1 := {∅, {a}, X} and T2 := {∅, {b}, X}. These are two topologies on X but
their union is not a topology.

However, the intersection of a (nonempty) family of topologies on X is again a topology,
as can be easily verified.

Compare this with analogous results from algebra: intersections of subgroups of a group
is again a group, intersection of vector subspaces of a vector spaces a vector subspace,
intersection of ideas in a ring is again an ideal and so on. Associated with this phe-
nomenon is the concept of subgroup (a vector subspace, an ideal, or a submodule)
generated by subset S in a group (in a vector space, in a ring, or in a module over a
ring).

These motivate us to define the following: if A is an arbitrary collection of subsets of a
set X, there exists a unique smallest topology on X which contains A and is called the
topology generated by A. We shall later see a practical way of looking at this topology.
See Item 142. For the time being, let us work out two examples.

• Let X be a nonempty set with at least three elements. Let S be the collection of
all two element subsets of X. What is the smallest topology T containing S? Fix
a ∈ X. We can find two distinct elements, say, x, y ∈ X none of which is a. Then
{a, x} and {a, y} lie in S and hence in T . It follows that {a} ∈ T . Thus,every
singleton subset is in T and hence T is the discrete topology on X.

Question: What is T if X has only two elements?

• Let S consist of single element A ⊂ X. Then T = {∅, A,X}.

22. Let X be a set and Tc and Tf be respectively co-countable and co-finite topologies on
X. Then the co-countable topology is finer than the co-finite topology.
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They are the same iff X is finite. If X is finite, then the two topologies are the same.
To see the converse, we need a result form set theory: If X is an infinite set, then there
exists a set A such that X \A is infinite and countable.

23. We can use bases to say something about the topologies on a set.

Theorem 1. Let X be any set. Let Bi be a basis for some topology Ti on X, for i = 1, 2.
Then T1 ≤ T2 iff the following holds: if B1 ∈ B1, then B1 ∈ T2. In particular, T1 = T2
iff every B1 ∈ B1 is in T2 and every B2 ∈ B2 is in T1.

24. Continuity: Let (X, TX) and (Y, TY ) be topological spaces. Let f : (X, TX) → (Y, TY )
be a map and x0 ∈ X. We say that f is continuous at x0 if for any given open set V
containing f(x0), there exists an open set U containing x0 such that f(U) ⊂ V . This
definition is an abstraction of the standard ε-δ definition of continuity, say, of functions
f : R→ R. In this context, V = (f(x0)− ε, f(x0) + ε) and U = (x0− δ, x0 + δ). In fact,
we have the following theorem:

Theorem 2. Let f : (X, d)→ (Y, d) be a map between metric spaces. Let x0 ∈ X. Let
TX and TY be the topologies on X and Y induced buy their respective metrics. Then
f : (X, TX)→ (Y, TY ) is continuous at x0 iff for every ε > 0 there exists δ > 0 such that
whenever d(x, x0) < δ, we have d(f(x), f(x0)) < ε.

Proof. Let us assume that f : (X, TX) → (Y, TY ) is continuous at x0. Let ε > 0 be
given. Then V := B(f(x0), ε) is an open set containing f(x0). Hence there exists an
open set U 3 x0 such that for all x ∈ U we have f(x) ∈ V . Since U is open there exists
δ > 0 such that B(x0, δ) ⊂ U . Hence it follows d(x, x0) < δ =⇒ d(f(x), f(x0)) < ε,
that is, f : (X, d)→ (Y, d) is continuous at x0. Pictures!

The converse is similar. Let f : (X, d) → (Y, d) is continuous at x0. Assume that an
open V 3 f(x0) is given. Then we can find ε > 0 such that B(f(x0), ε) ⊂ V . For this
ε > 0 by the definition of continuity in metric space context, there exists δ > 0 such
that d(x, x0) < δ =⇒ d(f(x), f(x0)) < ε. If we let U := B(x0, δ), then U is open,
x0 ∈ U , and for x ∈ U , we have f(x) ∈ B(f(x0 < ε) ⊂ V .

25. Let f : X → Y be any map between two sets. Let B ⊂ Y . The set f−1(B) := {x ∈ X :
f(x) ∈ B} is called the inverse image of B under f . The following are well-known facts:

(a) If {Bi : i ∈ I} is a family of subsets of Y , then

i. f−1 (∪i∈IBi) = ∪i∈If−1(Bi).
ii. f−1 (∩i∈IBi) = ∩i∈If−1(Bi).

(b) For any set B ⊂ Y , we have X \ f−1(B) = f−1 (Y \B).

Thus, “the inverse images behave well under set-theoretic operations.“

26. Let X and Y be topological spaces. Then a map f : X → Y is said to be continuous on
X iff it is continuous at each point x ∈ X.

Let X and Y be topological spaces and f : X → Y be continuous at each point x ∈ X.
Let V ⊂ Y be any open subset of Y . Let U := f−1(V ) = {x ∈ X : f(x) ∈ V }. Let
a ∈ U . By the definition of U , f(a) ∈ V . Since f is continuous at a and V 3 f(a) is an
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open set, there exists an open set Ua 3 a such that for all x ∈ Ua, we have f(x) ∈ V .
This implies Ua ⊂ U . Since a ∈ U was arbitrary, what we have shown is that for
each a ∈ U , there exists an open set Ua such that a ∈ Ua and Ua ⊂ U . In particular,
U = ∪a∈UUa is open. (The argument of this paragraph teaches an algorithm: in the
case of a topological space if we want to show that a set U is open , we need to find
an open set Ua for each a ∈ U such that a ∈ Ua and Ua ⊂ U . Compare this with the
algorithm to show a subset of a metric space is open, Item 12r.)

We have thus shown that f−1(V ) is open in X for each open subset V ⊂ Y of Y .

Is the converse true? That is, if f−1(V ) is open in X for each open subset V ⊂ Y of
Y , is f continuous on X? This is easy. Let a ∈ X and V 3 f(a) be open in Y . Then
U := f−1(V ) is open by hypothesis . Clearly a ∈ U . Also, for each x ∈ U , f(x) ∈ V ,
that is, f is continuous at a. Since a is arbitrary, it follows that f is continuous on X.

We have thus arrived at the following result.

Theorem 3. Let X and Y be topological spaces. Then a map f : X → Y is continuous
on X iff for every open subset V ⊂ Y , the inverse image f−1(V ) is open in X.

27. The theorem of the last item leads us to the following result:

Let T1 and T2 be two topologies on the same set X. Then T1 ≤ T2 iff the identity
map I : (X, T2) → (X, T1) is continuous. In particular, T1 = T2 iff the identity maps
I : (X, T1) → (X, T2) and I : (X, T2) → (X, T1) are continuous. (This is same as saying
that the identity map is a homeomorphism, a concept to be defined in Item 136.)

28. We looked at the following examples:

(a) Any constant map from a topological space to another is continuous.

(b) The identity map from (X, TX) to itself is continuous.

(c) If T1 and T2 are topologies on a set X, then the identity map I : (X, T1)→ (X, T2)
is continuous iff T1 is finer than T2.

(d) Let (X, TX) be a topological space with the property that any map f : (X, TX)→
(Y, TY ) is continuous. Then TX is discrete and conversely.

(e) Let (Y, TY ) be a topological space with the property that any map f : (X, TX) →
(Y, TY ) is continuous. Then TY is indiscrete and conversely.

(f) The identity map from X with co-countable topology to X with co-finite topology
is continuous. The other way map is continuous iff X is finite.

(g) Let X be a set with at least two elements and p ∈ X. Let V (resp. O) denote the
VIP topology (resp. the outcast topology) on X with respect to p. Then

i. The identity map I : (X,V )→ (X,O) is not continuous. However it is contin-
uous at x = 0 and at no other point.

ii. The identity map I : (X,O)→ (X,V ) is not continuous at any point.

29. The identity map from R with the lower limit topology is continuous to R with the
usual topology.

30. Let ‖ ‖k, k = 1, 2, be two norms on a vector space V . Then they are equivalent iff the
identity map I : (V, ‖ ‖1)→ (V, ‖ ‖2) and I : (V, ‖ ‖2)→ (V, ‖ ‖1) are continuous.
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31. Let X be an uncountable set with co-countable topology Tc. Then the only continuous
functions f : (X, Tc)→ R are constants.

32. We discussed the set of points of continuity of all real valued functions on the following
spaces.

(i) R with VIP topology with 0 as the VIP.
(ii) R with outcast topology with 0 as the outcast.
(iii) N with the topology T := {∅,N} ∪ {In : n ∈ N} where In = {1, 2, . . . , n}.

33. On any metric space X, we have lots of real valued continuous functions: f(x) := d(x, p)
for any fixed p ∈ X. In particular, given p 6= q in X, there exists a real valued continuous
function f on X such that f(p) 6= f(q).

34. Let A be a nonempty subset of a metric space X. We defined dA(x) ≡ d(x,A) :=
inf{d(x, a) : a ∈ A}. Identify as much as possible dA for the subsets below and draw
their graphs. Picture!

(a) X = R and A = [−1, 1].

(b) X = R and A = Q.

(c) X = R and A = Z.

(d) X = R2 and A is the x-axis.

(e) X = R2 and A = {(x, y) : x2 + y2 = 1}.
(f) W is a vector subspace of Rn. Hint: If Rn = W ⊕W⊥, and if x = w + w′, then

dW (x) = ‖w′‖ = ‖x− pW (x)‖, where pW : Rn →W is the orthogonal projection.

35. We claim that for any nonempty subset A of a metric space X, the function dA : X → R
is continuous.

dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a), for a ∈ A. Hence dA(x) is a lower bound for the set
{d(x, y) + d(y, a) : a ∈ A}. But then inf{d(x, y) + d(y, a) : a ∈ A} = d(x, y) + dA(y).

36. The function x 7→ ‖x‖ is continuous on an normed linear space (V, ‖ ‖). Note that
‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖ + ‖y‖ so that ‖x‖ − ‖y‖ ≤ ‖x− y‖. Interchanging x
and y we get

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ .

This establishes the (uniform) continuity of the norm function. Note that this has the
continuity of modulus/absolute value as a special case.

37. The functions πj : x 7→ xj , the coordinate projections are continuous on Rn (with respect
to any of the norms ‖ ‖i, i = 1, 2,∞):

|πj(x)− πj(a)| = |xj − aj | ≤ ‖x− a‖ , 1 ≤ j ≤ n.

38. Composite of continuous functions is continuous: Let X,Y, Z be topological spaces. Let
f : X → Y be continuous at p ∈ X and g : Y → Z be continuous at q := f(p) ∈ Y .
Then g ◦ f : X → Z is continuous at p.

Let W ⊂ Z be an open set such that (g ◦ f)(p) = g(q) ∈ W . Since g is continuous at
q, there exists an open V 3 q such that g(V ) ⊂ W . Since f is continuous at p and
V 3 f(p) =, there exists an open U 3 x such that f(U) ⊂ V . Clearly, (g ◦ f)(U) ⊂W .
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39. Let f : X → R be a continuous function. Then |f | : X → Y defined by |f |(x) := |f(x)|
is continuous on X. For, it is the composite of two continuous functions |f | = | | ◦ f ,
where | | : R→ R is the modulus function, | |(x) := |x|.

40. Let X be a topological space. Let Rn be given the metric topology arising form the stan-
dard Euclidean metric. Let f : X → Rn. Then we can write f(x) = (f1(x), . . . , fn(x)).
Note that fj(x) = πj ◦ f where πj is the projection as in Item 37.

We claim that f is continuous iff each fj : X → R, 1 ≤ j ≤ n, is continuous. Assume
that f is continuous. Since fj = πj ◦f , it follows from Items 37–38 that fj is continuous.

Now the converse. Fix a ∈ X. Let V ⊂ Rn be open containing f(a). Let ε > 0 be such
that B(f(a), ε) ⊂ V . By continuity of fj at a, there exists an open set Uj ⊂ X such
that a ∈ Uj and fj(Uj) ⊂ B(fj(a), ε/

√
n), 1 ≤ j ≤ n. Then U := ∩nj=1Uj is an open set

which contains a and is such that f(x) ∈ B(f(a), ε) for all x ∈ U :

d(f(x), f(a))2 =
n∑
j=1

(fj(x)− fj(a))2 < n(ε2/n) = ε2.

Hence for x ∈ U , we have f(x) ∈ B(f(a), ε) ⊂ V , that is, f is continuous at a.

41. Let f, g : X → R be continuous functions. Consider R2 with ‖ ‖ being one of the three
norms: ‖ ‖1 , ‖ ‖2 , ‖ ‖max. Then the function ϕ : X → R2 given by ϕ(x) = (f(x), g(x))
is continuous.

This is a special case of the last item.

42. The functions R2 → R given by α : (x, y) 7→ x+ y and µ : (x, y) 7→ xy are continuous.

To establish the continuity of these function we use Theorem 2 in Item 24.

Let (a, b) ∈ R2. Let ε > 0 be given. Assume δ > 0 serves. We estimate

|α(x, y)− α(a, b)| = |(x+ y)− (a+ b)| = |(x− a) + (y − b)|
≤ |x− a|+ |y − b|
≤ d((x, y), (a, b)) + d((x, y), (a, b)).

If d((x, y), (a, b)) < δ, the above estimate suggests that we take 2δ < ε.

Let ε > 0 be given. Assume δ > 0 serves. We may assume that 0 < δ < 1. If
d((x, y), (a, b)) < δ, then |x− a| < δ < 1 and |y− b| < δ < 1. Hence |y| ≤ |y− b|+ |b| <
1 + |b|. We now estimate

|µ(x, y)− µ(a, b)| = |xy − ab| = |xy − ay + ay − ab| ≤ |y||x− a|+ |a||y − b|
≤ (1 + |b|)|x− a|+ |a||y − b|
< M2δ,

where M = max{1+ |b|, |a|}. If we choose δ < ε
2M , as well as δ < 1, the estimates above

establish |µ(x, y)− µ(a, b)| < ε.

43. If f, g are continuous functions from a topological space to R and if a, b ∈ R, then the
functions af + bg and fg are continuous. Hint: Use Items 38–42.

Thus the set C(X,R) of all real valued continuous functions on a topological space is
a vector space over R. It is also a commutative ring with identity, in fact, an algebra
over R.
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44. Given two real numbers a, b we wish to find a “formula” for max{a, b} and min{a, b}.
Given a, b, their mid point is (a+ b)/2. To reach the maximum of these two, we need to
move to the right for half of the distance between them, that is, we need to add |a−b|/2
to their mid point. Similar analysis can be done for minimum. Hence we arrive at the
following formulas:

max{a, b} =
(a+ b) + |a− b|

2
and min{a, b} =

(a+ b)− |a− b|
2

.

45. If f, g : X → R are two continuous functions on a topological space X, then max{f, g}
and min{f, g} are continuous. This follows from Items 44, 39 and 43.

46. Any polynomial function f : Rn → R is continuous. This follows from Item 37 and 45.
Examples of polynomial functions on R2 and R3 are p(x, y) = 3x2+y2−xy2+6x−7y+10,
q(x, y, z) = z10 − 9y2 + 17xyz3 + 2012 etc.

47. The map ρ : R∗ → R∗ given by ρ(x) = 1/x is continuous. Look at the estimate:

|ρ(x)− ρ(y)| ≤ |x− y|
|xy|

≤ 2|x− y|
|x2|

,

if we restrict y in such a way that |x− y| < |x|/2.

48. Let f : X → R be continuous and assume that f(x) 6= 0 for all x ∈ X. Then 1/f : X → R
is continuous. For, 1/f is the composition ρ ◦ f , where ρ is as in the last item.

49. Any linear map from Rn with any one of our three standard norms to any normed linear
space is continuous. In particular, any linear map from Rm to Rn is continuous.

More generally, any linear map T : Rn → X, where X is any normed linear space is
(uniformly) continuous.

For let {ei : 1 ≤ i ≤ n} be the standard basis of Rn. Then for any x = (x1, . . . , xn) =∑
i xiei ∈ Rn we have

‖Tx‖ =

∥∥∥∥∥T
(

n∑
i=1

xiei

)∥∥∥∥∥ ≤
n∑
i=1

|xi| ‖Tei‖

≤ M
n∑
i=1

‖x‖ , where M := max{‖Tei‖ : 1 ≤ i ≤ n}

= Mn ‖x‖ .

Note that |xi| ≤ ‖x‖ where ‖ ‖ could be either ‖ ‖1, ‖ ‖2 or ‖ ‖max. Hence ‖Tx− Ty‖ =
‖T (x− y)‖ ≤Mn ‖x− y‖ so that T is Lipschitz and hence uniformly continuous.

50. Let Mm×n(R) denote the set of all m×n matrices with real entries. We identify it with
Rmn using an obvious linear isomorphism:

X = (xij) 7→ (x11, . . . , x1n, x21, . . . , x2n, . . . , xm1, . . . , xmn).

We use any one of the standard norms on Mm×n(R). We let M(n,R) := Mn×n(R).
Then we have
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(a) The ‘transpose’ map X 7→ XT from M(n,R) to itself is continuous. For, the map
is (x11, x12, . . . , xn1, . . . , xnn) → (x11, x21, . . . , x1n, . . . , xnn). The coordinate maps
are fij(X) = xji and hence are continuous. (See Item 40.)

(b) The ‘trace’ map X 7→ Tr(X) is continuous from M(n,R) to R. Observe that it is
a linear map.

(c) The determinant map det : M(n,R) → R, defined by X 7→ det(X), is a “poly-
nomial function” and hence is continuous. When n = 2 and the matrix is X =(
a b
c d

)
, then det(X) = ad− bc. For general n, recall the formula for the determi-

nant (Laplace expansion) as an alternating sum, det(X) :=
∑

σ∈Sn
sign(σ)x1σ(1) · · ·xnσ(n).

(d) One can use functions whose continuity are known to assert that certain subsets
are open.

i. Since polynomial functions from Rn to R are continuous

A. The subsets {(x, y) ∈ R2 : xy 6= 0}, {(x, y) ∈ R2 : x2 + y2 6= 1} and
{(x, y) ∈ R2 : xy 6= 1} are all open.

B. The subset {(x, y) ∈ R2 : x3 − 34x2y − 28xy2 − y3 + 7xy − 19y + 125 6= 0}
is open in R2.

C. R3 \ P , where P := {(x, y, z) : ax+ by + cz = d} is a plane, is open in R3.

D. The rectangle R := (a, b)× (c, d) is open in R2: R = p−11 (a, b) ∩ p−12 (c, d),
where p1(x, y) = x etc.

E. The set {f ∈ C[0, 1] : f(1/2) 6= 0} in X := (C[0, 1], ‖ ‖∞) is open. Hint:
Consider T : X → R given by T (f) := f(1/2).

ii. Let W be a vector subspace of Rn. Then Rn \W is open in Rn. Hint: Write
Rn = W ⊕ W⊥ and let u1, . . . , uk be an orthonormal basis of W⊥. Then
x ∈ Rn lies in W iff 〈x, ui〉 = 0 for all 1 ≤ i ≤ k.
Alternately, consider the orthogonal projection π : Rn →W⊥. Then Rn \W =
π−1(W⊥ \ {0}).

iii. GL(n,R), the set of all invertible matrices is open in M(n,R).

iv. The set of symmetric matrices, being a vector subspace, cannot be open in
M(n,R). Hint: See Item 12h.

v. Same holds true for the set of skew symmetric matrices.

51. To check continuity, it suffices to show that the inverse images of basic elements in the
codomain are open in the domain:

Lemma 4. Let (Xi, Ti) be topological spaces i = 1, 2 and let B2 be a basis for T2. Then
f : (X1, T1)→ (X2, T2) is continuous iff f−1(B2) ∈ T1 for all B2 ∈ B2.

Item 29 is an immediate consequence of this.

52. Consider M(n,R) the set of all n× n real matrices. Then the map Repetition: Item 50

ϕ : A 7→ (a11, . . . , a1n, a21, . . . , an1, . . . , ann)

is a linear isomorphism of M(n,R) onto Rn2
. We use this to transfer the Euclidean

norm on Rn2
to M(n,R) as follows: ‖A‖2 := ‖ϕ(A)‖2 =

∑n
i,j=1 |aij |2.

Show that the map M(n,R)×M(n,R)→M(n,R) given by µ(X,Y ) = XY , the matrix
product is continuous.
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53. Let X and Y be normed linear spaces. A linear map T : X → Y is continuous at 0 ∈ X
iff there exists a positive constant C such that ‖Tx‖ ≤ C ‖x‖ for all x ∈ X. Hint: Use
ε-δ definition of continuity at 0.

Deduce that a linear map between two normed linear space ’s is continuous iff it is
continuous at 0.

54. When do two norms ‖ ‖j , j = 1, 2 generate the same topology on a vector space X?
They do iff the identity maps I : (X, ‖ ‖1) → (X, ‖ ‖2) and I : (X, ‖ ‖2) → (X, ‖ ‖1)
are continuous. (Why?) By the last item, this means that we can find positive constants
C1 and C2 such that C1 ‖x‖1 ≤ ‖x‖2 ≤ C2 ‖x‖1 for all x ∈ X. We thus arrive at the
following result.

Two norms ‖ ‖j , j = 1, 2 generate the same topology on a vector space X iff positive
constants C1 and C2 such that C1 ‖x‖1 ≤ ‖x‖2 ≤ C2 ‖x‖1 for all x ∈ X. We then say
that the two norms ‖ ‖1 and ‖ ‖2 are equivalent.

55. In Rn, the three norms ‖ ‖1, ‖ ‖2 and ‖ ‖∞ are equivalent. This follows from Item 49.
It follows also from the observation:

1

n
‖x‖1 ≤

1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 .

Later, we shall show that all norms on Rn induce the same topology, that is, they are
all equivalent.

56. Closed Sets: Let (X, T ) be a topological space. A set F ⊂ X is called a closed set (or
said to be closed) in X if X \F is open in X. Let C be the class of all closed subsets in
X. The following are more or less immediate:

(a) ∅, X ∈ C.
(b) If {Fi : i ∈ I} is a family of closed sets, then their intersection ∩i∈IFi is again

closed.

(c) If F1 and F2 are closed, then so is F1 ∪ F2.

57. Examples of Closed Sets:

(a) ∅ and X are both open and closed in any topological space.

(b) Z is closed in R.

(c) There exist sets which are neither open nor closed: [0, 1), Q, R \Q in R with usual
topology,

(d) Any finite subset of a metric space is closed.

(e) Any closed ball B[x, r] in a metric space is closed. Hence any closed interval [a, b]
is closed in R.

(f) Any sphere S(x, r) := {y ∈ X : d(x, y) = r} in a metric space is closed.

(g) The set {1/n : n ∈ N} ∪ {0} is closed in R.

(h) The set (−∞, 0)∪ [1,∞) is closed in R with lower limit topology but not closed in
R with the usual topology.
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(i) The only subsets of R which are both open and closed are ∅ and R.

Let A be both open and closed in R. Assume that A is not empty. We need to prove
A = R. Let a ∈ A. Since a is open there exists r > 0 such that (a− r, a+ r) ⊂ A.
Consider

E := {c ∈ R : c > a, (a− ε, c) ⊂ A}.

Then a + ε ∈ E . If supE = ∞, then it follows that (a − ε,∞) ⊂ A. Assume
supE = α ∈ R. Now either α ∈ A or α /∈ A.

If α ∈ A, since A is open there exists δ > 0 such that (α − δ, α + δ) ⊂ A.
Since α − δ < α = supE, there exists c ∈ E such that (a − ε, c) ⊂ A. Clearly,
(a− ε, α+ δ) = (a− ε, c)∪ (α− δ, α+ δ) ⊂ A. Hence α+ (δ/2) ∈ E, contradiction
to α = supE.

If α /∈ A, then α ∈ R \ A, an open set. Hence there exists δ > 0 such that
(α − δ, α + δ) ⊂ R \ A. As earlier, there exists c ∈ E such that α − δ < c. Hence
the interval (α − δ, c) lies in both A and its complement, a contradiction. Thus
we conclude that supE = ∞ so that (a − ε,∞) ⊂ A. Similarly, we can conclude
(−∞, a+ ε) ⊂ A and hence A = R.

(j) The set [0, 1) is neither closed nor open in R.

(k) Any subset of a discrete space is open as well as closed.

(l) Any subset A ⊂ R∗ is closed in R with VIP topology with 0 as the VIP.

(m) What are the sets which are both open and closed in R with VIP topology with 0
as the VIP?

(n) Any subset of R containing 0 is closed in R with the outcast topology with 0 as
the outcast.

(o) What are the sets which are both open and closed in R with the outcast topology
with 0 as the outcast?

(p) Any vector subspace of Rn is closed. So are its translates.

Let V be a vector subspace of Rn. Let Rn = V ⊕ V ⊥ be the orthogonal decom-
position. Then x ∈ Rn lies in V iff v · u ≡ 〈x, u〉 = 0 for all u ∈ V ⊥. The map
fu : Rn → R given by fu(x) := x ·u is linear and hence by Item 49, it is continuous.
Hence the kernel f−1u (0) is a closed subset of Rn. Since V = ∩u∈V ⊥f−1u (0) is the
intersection of closed sets, V is closed.

(q) The set of n×n symmetric matrices and the set of n×n skew-symmetric matrices
are closed in M(n,R).

(r) The set GL(n,R) is not closed in M(n,R).

(s) The set of singular matrices in M(n,R) is closed.

(t) The set {f ∈ C[0, 1] : f(1/2) = 0} in X := (C[0, 1], ‖ ‖∞) is closed.

(u) The sets Q and R \Q are neither closed nor open in R.

58. We have the following characterization of continuity in terms of closed sets.

Theorem 5. Let f : X → Y be a map between topological spaces. Then f is continuous
iff f−1(B) is closed in X for every closed set B ⊂ Y .
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59. As we did earlier in the case of continuity and open sets, we may use the above theorem
to assert that certain subsets are closed.

(a) The set {(x, y) ∈ R2 : xy = 0}, {(x, y) ∈ R2 : xy = 1}, {(x, y) ∈ R2 : x2 + y2 = 1}
are closed in R2.

(b) The closed rectangle R := [a, b]× [c, d] is closed in R2.

(c) The unit n-dimensional sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is closed in Rn+1.

(d) The set SL(n,R) of matrices A ∈M(n,R) with determinant 1 is closed in M(n,R).

(e) The subset of matrices whose trace is 0 is closed in M(n,R). (Also follows from
Item 57p.)

(f) The set O(n) of orthogonal matrices is closed in M(n,R). Hint: The maps
M(n,R) → R given by A 7→ Ri(A) · Rj(A) ≡

∑n
k=1 aikajk are continuous. Here

Ri(A) denotes the i-th row of A.

Or, use the fact that the map F : A 7→ (A,AT ) composed with (A,B) → AB is
continuous. Then O(n,R) is the inverse image F−1(I).

(g) The set of singular matrices in M(n,R) is closed.

(h) The set of nilpotent matrices in M(n,R) is closed.

60. Let A be a subset of a topological space. The characteristic function χA of A is defined
by

χA(x) :=

{
1 if x ∈ A
0 if x /∈ A

.

What can you conclude about A if the function χA is continuous on X?

61. Go back to Item 21. If you understand the principle in work in it, you would have
foreseen what follows. For any set A of a topological space (X, T ), the smallest closed
set containing A exists. It is denoted by A and called the closure of A in X. (Compare
this with the existence of the smallest topology containing a family {Ai : i ∈ I} of
subsets of a set X.) Note that A ⊂ A.

62. Examples of closures:

(a) The closure of (a, b) ⊂ R is [a, b].

(b) The closure of Q in R is R.

(c) The closure of an open ball B(x, r) in Rn is the closed ball B[x, r]. In a general
metric space, this need not be true. Consider B(x, 1) and B[x, 1] in a discrete
metric space with at least two points.

(d) Let R be given the VIP topology with 0 as the VIP. Then the closure of A = {0}
is R. The closure of R \Q is itself. The closure of {a} is itself if a 6= 0.

(e) Investigate the case of R with outcast topology.

63. Let (X, T ) be a topological space and A ⊂ X. Then x /∈ A iff there exists an open set
U 3 x with U ∩ A = ∅. Hence, x ∈ A iff for every open set U 3 x, we have U ∩ A 6= ∅.
This suggests the following definition.
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64. x ∈ X is said to be a limit point of A if for every open set U 3 x, we have U ∩A 6= ∅.
This is NOT the standard definition and hence should not be confused with the notion
of cluster or an accumulation point which we shall see below. We shall follow our
nomenclature only.

65. Consider the lower limit topology TL on R. Let A = [a, b). Is b in the closure of A?

66. Consider R2 with order topology. Let Q := {(x, y) ∈ R2 : x > 0 & y > 0} be the first
quadrant. What is Q? Points of the other three quadrants are not in the closure. Any
point (a, 0) with a > 0 is in Q while (0, 0) is not.

67. Every point of A is a limit point of A.

68. x ∈ A iff x is a limit point of A. (This is true because of our definition of a limit point.
See Item 75.)

For, let x ∈ A and U 3 x be open. If U ∩A = ∅, then A ⊂ X \U , a closed set and hence
A ⊂ X \ U . But x ∈ A and x /∈ X \ U , a contradiction. Hence x is a limit point of A.

Conversely, if x is a limit point of A and x /∈ A, then x ∈ U := X \A, an open set. But
U ∩A ⊂ U ∩A = ∅. Hence x is a not a limit point of A, a contradiction.

69. Let (X, d) be a metric space, A ⊂ X. Then x ∈ X is a limit point of A iff there exists
a sequence (an) in A such that an → x.

70. With the notation as in the last item, x ∈ A or x is a limit point of A iff dA(x) = 0.

71. In any normed linear space (X, ‖ ‖), the closure of an open ball B(p, r) is B[p, r]. Thus,
q ∈ X is a limit point of B(p, r) iff d(p, q) ≤ r. In particular, B(p, r) = B[p, r].

If q ∈ B[p, r], consider the line segment (1 − t)p + tq, 0 ≤ t ≤ 1. Draw picture. All
points with 0 ≤ t < 1 are in B(p, r). From this line segment, you can find a sequence
pk ∈ B(p, r) which converges to q. Or, consider B(q, ε) for ε > 0. Then for any
0 < t < 1, we have

d(q, (1− t)p+ tq) = ‖(1− t)(q − p)‖ = (1− t)r < ε,

if t is near to 1. Thus, any open set containing q contains points of B(p, r) other than
q,

72. The set theoretic results about the closure operation:

(a) If A ⊂ B, then A ⊂ B.

(b) A ∪B = A ∪B.

(c) A ∩B ⊂ A ∩B. Strict containment can occur.

(d) ∪i∈IAi ⊂ ∪i∈IA. Strict containment can occur.

(a) follows from the fact that any closed set that contains B will contain A. In particular,
the smallest closed set B that contains B will contain A. Hence A, the smallest closed
set containing A will be contained in B.

(b). Since LHS is the smallest closed set containing A∪B, and since A|cupB is a closed
set containing A ∪ B, it follows that A ∪B ⊂ A ∪ B. Let x ∈ A ∪ B. Assume WLOG
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that x ∈ B. Then for any open set U 3 x, we have ∅ 6= U ∩B ⊂ U ∩ (A ∪B). That is,
x is a limit point A ∪B and hence x ∈ A ∪B.

(c) Since A ∩ B is a closed set containing A ∩ B, it follows that A ∩B ⊂ A ∩ B. An
instance of the strict containment, consider A = Q and B = R \Q in R.

(d) Consider Q = ∪x∈Q{x}.

73. x ∈ X is a cluster or an accumulation point of A iff for every open set U 3 x, the set
(U \ {x}) ∩A 6= ∅, that is, any open set U ∈ x contains a point of A other than x.

74. Intuitively, A accumulates or clusters around x. (They are like celebrities of A!) Obvi-
ously, any cluster point of A is a limit point of A, but not conversely. The notion of a
cluster point is much stronger and more stringent than that of a limit point.

75. Let (X, T ) be any topological space and A ⊂ X. Then A is the union of A and the
cluster points of A. (Compare and contrast this with Item 68.)

76. Every point of A = Z ⊂ R is a limit point of A but there exists no cluster point of A in
R.

Since Z = Z, this examples also shows that ‘limit point’ cannot be replaced by ‘cluster
point’ in Item 68.

77. Consider R with VIP topology with 0 as the VIP. Then any nonzero real number is a
cluster point of A = {0}. Zero is obviously a limit point of A but not a cluster point of
A.

78. The last example also shows that the following can occur. x may be a cluster point of
A, but there may exist open sets U 3 x with U ∩A is finite!

79. Any point in any ball (open or closed) in an normed linear space is a cluster point of
the ball. The idea in Item 71 proves this.

80. Analyze the situation in a metric space. In a metric space, if x is a cluster point of A,
then every open set U 3 x will contain infinitely many points of A. The proof suggested
the following definition.

81. A topological space X is said to be Hausdorff iff for every pair x, y ∈ X of distinct
points, there exist open set U, V such that x ∈ U and y ∈ V and U ∩ V = ∅. That is,
any two distinct points can be “separated by open sets.”

We also say that a topology T on a set X is Hausdorff if the space (X, T ) is Hausdorff.

82. Let (X, T ) be a Hausdorff (topological) space and A ⊂ X. Then x ∈ X is a cluster
point of A iff for every open set U 3 x, the set U ∩A is infinite.

We prove this by contradiction. Let x be a cluster point of A and assume that there
exists an open set U such that x ∈ U and U∩A is finite. Let (U \ {x})∩A = {a1, . . . , an}.
Since X is Hausdorff, for each j, 1 ≤ j ≤ n, the exists an open set Uj 3 x and Vj 3 aj
such that Uj ∩ Vj = ∅, 1 ≤ j ≤ n. Then U = ∩nj=1Uj is an open set such that U ∩ A is
at most {x}.
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83. A finite set in a Hausdorff space cannot have a cluster point. (Hausdorff condition is
required. Look at R with VIP topology with zero as the VIP and A = {0}.) If a subset
A of a Hausdorff space X has a cluster point, then A is infinite.

But there exists an infinite set in a Hausdorff space which has no cluster point. Look
at Z in R.

84. Let us now look at some examples of Hausdorff spaces.

(a) Any metric space is Hausdorff. For if x1, x2 ∈ (X, d) are distinct, then d(x1, x2) >
0. Let r = d(x1, x2)/2. Then B(xj , r) is an open set containing xj and B(x1, r) ∩
B(x2, r) = ∅. For, x is a common point, then

d(x1, x2) ≤ d(x1, x) + d(x, x2) < r + r < d(x1, x2),

a contradiction. In particular, Rn with the standard metric and normed linear
spaces are Hausdorff.

(b) Any discrete topology is Hausdorff.

(c) The indiscrete topology on a set X with at least two elements is not Hausdorff.

(d) (R, TV ) with 0 VIP is not Hausdorff.

(e) If we have T1 ≤ T2 and T1 is Hausdorff, so is T2. As special cases, we have the
following.

i. The order topology on R2 with dictionary order is Hausdorff.

ii. The lower limit topology on R is Hausdorff.

(f) Let f : X → Y be a 1-1 continuous function. If Y is Hausdorff, so is X. Let x1, x2
be distinct elements of X. Then f(x1) and f(x2) are distinct elements of Y and
hence there exist disjoint open sets Vj 3 f(xj). Consider Uj := f−1(Vj), j = 1, 2.

85. We now give an example of a Hausdorff space in which two disjoint closed sets cannot
be separated by open sets.

Let X = R. For any fixed p ∈ R and m ∈ N, let Bp,m := {p + km : k ∈ Z+}. Let T
be the set of all subsets U ⊂ R such that for any p ∈ U , there exists m ∈ N such that
Bp,m ⊂ U . Then it is easy to check that T is a topology on R.

We claim that it is Hausdorff. Consider p 6= q in R. If p − q is not an integer, then
Bp,m ∩ Bq,m = ∅ for any m ∈ N. For, otherwise, if z is a common element, then
z = p+ km = q + kn. It follows that p− q = k(n−m), an integer — a contradiction.

If p−q = m ∈ Z,say, then the basic open sets Bp,2m abd Bq,2m separate p and q. (Verify
this.)

Fix p ∈ R and m ∈ N. We claim that each element of {p − km : k ∈ N} is a cluster
point of Bp,m. Let q = p − km. Consider a basic open set Bq,n 3 q. The element
q +mkn ∈ Bq,n. Since

q + kmn = p− km+ kmn = p+mk(n− 1) ∈ Bp,m,

the claim follows.
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Consider now the two disjoint sets F1 := {1} and F2 := {x ∈ R : x ≤ 0}. F1 is closed
since the space is Hausdorff. F2 is also closed, since its complement is open. For, note
that for any p > 0 and m ∈ N, Up,m ⊂ (0,∞).

We claim that they cannot be separated by open sets. Assume the contrary. Let
U1 ⊃ F1 and U2 ⊃ F2 be open sets separating them. Then there exists a basic open set
B1,m ⊂ U1. Now 1 − 2m is a cluster point of B1,m. But no point of F2 can be cluster
point of U1 since F2 ⊂ U2 and U2 ∩ F1 ⊂ U2 ∩ U1 = ∅.
Thus we have an example of a Hausdorff space in which two distinct points can be
separated by open sets but not any two disjoint closed sets.

86. This examples is from Munkres. Consider R with the topology TK whose basic open
sets are open intervals (a, b) and open intervals (a, b) \K where K := {1/n : n ∈ N}.
Then {0} and K are disjoint closed subsets which cannot be separated by open sets.

87. We say that a sequence (xn) in a topological space (X, T ) converges to a point x ∈ X,
if for every open set U 3 x, there exists n0 ∈ N such that xn ∈ U for all n ≥ n0. The
point x is called the limit of the sequence and (xn) is said to be convergent.

88. If (X, T ) is a Hausdorff (topological) space, then any convergent sequence has a unique
limit.

This need not be true in a general space. For instance, if we consider R with indiscrete
topology, any sequence is convergent to any point of R!

89. Consider the sequence (1/n) in R with co-finite topology. Then 1/n→ x, for any x ∈ R!
(Co-finite topology on R is not the discrete topology.)

90. In any Hausdorff space, any finite set is closed. Details!

This need not be true in an arbitrary topological space. For instance, consider the
indiscrete topology on R. Or, the set {x, 0}, x 6= 0, in R with VIP topology with
VIP=0.

Hence conclude: The topology of any finite Hausdorff is discrete. (See also Item 12l.)

91. Examples of Convergent sequences:

(a) The only convergent sequences in any discrete space are eventually constant se-
quences.

For, let xn → x. Then {x} 3 x is open so there exists N ∈ N such that ≥ N =⇒
xk ∈ {x}. Thus xk = x for k ≥ N .

(b) In the normed linear space (B(X,R), ‖ ‖∞), a sequence (fn) converges to f ∈
B(X,R) iff fn converges to f uniformly on X.

Assume that fn → f uniformly on X. Let ε > 0 be given. Choose N such that for
all k ≥ N , and x ∈ X, we have |f(x)−fk(x)| < ε/2. Hence supx∈X |f(x)−fk(x)| ≤
ε/2 < ε. That is, ‖fk − f ‖∞ < ε for k ≥ N and hence fk converge to f in the
norm. Other way implication is easier.

(c) A sequence (xk) in Rn converges to x ∈ Rn iff xkj → xj as k →∞ for 1 ≤ j ≤ n.

92. We analyzed the proof of Item 69 and arrived at the following conclusion:
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Let (X, T ) be a space with the following property: For every x ∈ X, there
exists a countable collection of open sets {Un,x : n ∈ N} such that

(a) For every open set U 3 x, there exists n such that x ∈ Un,x ⊂ U
(b) ∩nUn,x = {x}.
Then, x ∈ X is a limit point of A ⊂ X iff there exists a sequence (an) in A
such that an → x.

93. The foregoing item led us to the following concepts.

94. Let (X, T ) be a topological space and p ∈ X. Then by a local base at p, we mean a
family {Up,i : i ∈ I} of open sets containing p with the property that if U is an open
set containing p, then there exists i ∈ I such that x ∈ Up,i ⊂ U .

A typical example to keep in mind: {B(p, r) : r > 0} is a local base at p in a metric
space X.

95. A space is said to be first countable if there exists a countable local base at every point
p ∈ X.

96. Observe that if (X, T ) is first countable, then we may assume that a local base {Up,n :
n ∈ N} at p is decreasing sequence. For, if {Vp,n} is a local base at p, consider Up,n :=
Vp,1 ∩ · · · ∩ Vp,n.

97. We look at some examples:

(a) In R with standard topology, {(p− 1
n , p + 1

n) : n ∈ N} is a local base at p. Hence
R is first countable. More generally, {B(p, 1/n) : n ∈ N} is a local base at p in any
metric space. Hence any metric is first countable.

(b) If R is endowed with the discrete topology, then a local base at x can be taken as
{x}. Hence R with discrete topology is first countable.

(c) Consider R with VIP topology. (Convention: VIP is always 0.) Then the set {p, 0}
is a local base at any p ∈ R. (If p = 0, then the set {p, 0} = {0}!) Hence R with
VIP topology is first countable.

(d) Any indiscrete topology is first countable.

98. Let (X, T ) be a Hausdorff, first countable space. Let {Up,n : n ∈ N} be a countable
local base. Then ∩nUn,p = {p}. (We do not need the full power of Hausdorff condition.
We could have achieved the same result with less stringent hypothesis, but we shall not
worry about this!)

99. In view of Item 92 and Item 98, we have the following.

Theorem 6. Let (X, T ) be first countable and Hausdorff. Then x is a limit point of A
iff there exists a sequence (an) in such that an → x.

100. We say that a topological space (X, T ) is second countable if there exists a countable
basis for T .

101. Clearly, any second countable space is first countable.
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102. Examples and non-examples:

(a) R with the standard topology is second countable. (See Item 17c.)

(b) A discrete space X is second countable iff the set X is countable.

(c) R with VIP topology is first countable but not second countable. Why? Consider
the basis {{x, 0} : x ∈ R}. If {Bn : n ∈ N} is a countable basis, then for x ∈ {x, 0}
there will be n(x) ∈ N such that x ∈ Bn(x) ⊂ {x, 0}. Since Bn(x) will always
contain {0, x}, it follows that Bn(x) = {0, x}. But the family {{x, 0} : x ∈ R} is
uncountable where as {Bn : n ∈ N} is countable.

(d) The outcast topology on R is first countable but not second countable.

(e) Any indiscrete space is second countable.

103. Think over this: What will be the counter part (in terms of open sets) of the smallest
closed set containing A? It is the largest open set contained in A. It is called the
interior of A and is denoted by Int (A).

104. Examples of interior of a set:

(a) The interior of an open set is itself.

(b) The interior of [a, b] ⊂ R is (a, b).

(c) The interior of Q ⊂ R is the empty set. What is Int (R \Q)?

(d) The interior of a proper vector subspace of Rn is empty. Does this generalize to
any normed linear space ?

(e) The interior of a closed ball B[p, r] in any normed linear space is the open ball
B(p, r). In a general metric space, such a result is not true.

(f) Let (X, T ) be a discrete space. Then Int (A) = A for any A ⊂ X.

(g) Let (X, T ) be an indiscrete space. Then Int (A) = ∅ for any A ⊂ X, A 6= X.

(h) Consider R with the VIP topology (VIP is 0). The interior of R∗ is the empty set.
What is Int (Q) and Int (R \ Q) in this topology? More generally, if 0 ∈ A, then
Int (A) = A and if 0 /∈ A, then Int (A) = ∅.

(i) Consider R with the outcast topology (outcast is 0). The interior of any set A is
A \ {0}.

105. A is open iff A = Int (A).

106. Set theoretic results about the interior operation:

(a) If A ⊂ B, then Int (A) ⊂ Int (B).

(b) Int (A) ∪ Int (B) ⊂ Int (A ∪B).

(c) Int (A ∩B) = Int (A) ∩ Int (B).

(d) ∪i∈IInt (Ai) ⊂ Int (∪i∈IAi).

107. Let X be a (metric) space and A ⊂ X. A point x ∈ X is said to be a boundary point
of A in X if every open set that contains x intersects both A and X \ A non-trivially.
The boundary of A in X is the set of boundary points of A in X. We denote it by ∂A.
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108. Find the boundaries of each of the following sets:

(a) A1 = (a, b] ⊂ R with the standard topology.

(b) A2 = R \ {0} ⊂ R with the standard topology.

(c) A = Q ⊂ R with the standard topology.

(d) ∂∅ = ∅ = ∂X for any topological space X.

(e) The boundary of an open or closed ball in Rn is the sphere: ∂B(x, r) = ∂B[x, r] =
S(x, r) := {y ∈ Rn : d(x, y) = r}. Is this true in an normed linear space ? in an
arbitrary metric space?

(f) In R with VIP topology and R with outcast topology, find ∂A, where A =
{0}, {x},Q and R \Q. (x is a nonzero real number.)

(g) Let B be an open ball in Rn. Find the boundary of B minus a finite number of
points.

(h) Let A := {z ∈ C : z = reit, r ∈ [0, 1], t ∈ (0, 2π)}. (Draw a picture.) Find the
boundary of A.

109. A few more examples to sharpen our geometric intuition.

(a) Consider A = R× {0} ⊂ R2. What is the boundary of A in R2?

(b) A = U1 ∪ U2 ∪ U3 is the subset of R2 where U1 := {x2 + y2 < 1, y > 0}, U2 :=
{−1 ≤ x ≤ 1, y = 0} and U3 := {x2 + y2 = 1, y < 0}.

(c) A = {(x, y) : x2 + y2 = 1}.

110. Show that for any subset A of a topological space (X, T ), ∂A = A∩X \A. (This is the
standard definition.)

111. While trying to prove the equivalence of the definition of continuity at a point (of a
function between two metric spaces) with the sequential definition, we established the
following.

Theorem 7. Let X and Y be arbitrary topological spaces and p ∈ X. Let f : X → Y
be a map.

1. If f is continuous at p, then for every sequence (xn) in X converging to p, we have
f(xn)→ f(p).

2. Assume that X is first countable and Hausdorff. Assume further that f has the
property that for every sequence (xn) converging to p, the sequence (f(xn)) converges to
f(p) in Y . Then f is continuous at p.

Proof. 1. Let V ⊂ Y be open with f(p) ∈ V . By continuity of f at p, there exists an
open set U 3 p such that for x ∈ U , we have f(x) ∈ V . Since xn → p, for this U , there
exists N ∈ N such that k ≥ N =⇒ xk ∈ U . Hence for k ≥ N , we see that f(xk) ∈ V ,
that is, f(xk)→ f(x).

2. We prove this by contradiction. Assume that (Bn) is a local base at p such that
Bn+1 ⊂ Bn and ∩nBn = {p}. Since f is not continuous at p, there exists an open set
V 3 f(p) such that given any open set U 3 p, there exists x ∈ U such that f(x) /∈ V .
In particular, for each n ∈ N, there exists xn ∈ Bn such that f(xn) /∈ V . Clearly,
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xn → p. For, let W 3 p be an open set. Then there exists N such that p ∈ BN ⊂ W .
If k ≥ N , then xk ∈ Bk ⊂ BN ⊂ W . Thus, we conclude xn → p. Now by hypothesis,
f(xn) → f(p). If we apply the definition of convergence to the set V , we find that
f(xn) /∈ V for any n.

112. A subset D ⊂ X of a topological space is dense in X if for every nonempty open set
U ⊂ X, we have D ∩ U 6= ∅, that is U intersects D non-trivially.

113. Examples of dense sets:

(a) Q is dense in R. Is R \Q dense in R? Can you think of a countable dense subset
in R2? in Rn?

(b) In R, with the lower limit topology, the sets Q and R \Q are dense.

(c) The set A := {x ∈ `1 : xn = 0 for all n ≥ N for some N} is dense in `1.

(d) The set Dn of all sequences x = (xm) ∈ `1 whose terms are rational and xk = 0
for k > n. Let D := ∪n∈NDn. Then D is a countable dense subset of `1.

(e) The only dense subset of a discrete space X is X itself.

(f) In an indiscrete space, any nonempty subset is dense.

(g) The set {0} is dense in R with the VIP topology. The set R \Q is not dense.

(h) The set R \ {0} is dense in R with the outcast topology. This space cannot have a
countable dense set.

(i) S := {n + m
√

2 : n,m ∈ Z} is dense in R. (Did you notice that Z and
√

2Z are
closed and S is a sum of two closed sets? If the result is true, then S cannot be
closed in R. Why? If S is closed and dense, then S = R, but S is countable!
Hence we have an example of two closed sets in R whose sum is not closed.) See
Lemma 2.5.7/Page 52 of my book on Metric spaces..

(j) Is Q2 dense in R2 with the order topology?

(k) Weierstrass approximation theorem says that the vector subspace of polynomials
in the normed linear space (C[0, 1], ‖ ‖∞) is dense. (This should be a topic for
Student Seminar!)

(l) A dyadic rational is a real number of the form m/2n where m is an integer and
n ∈ N. Let D denote the set of dyadic rationals. Then D is dense in R. Consider
an open interval of the form (a − ε, a + ε). Choose n so that 1/2n < ε. If there
is no dyadic rational in this interval, then there exists an odd integer m such that
m/2n < a− ε and (m+ 2)/2n > a+ ε. (Why?) But then

2/2n = 2−n((m+ 2)−m) > a+ ε− (a− ε) = 2ε, a contradiction.

114. D ⊂ X is dense in a space (X, d) iff every point of X is a limit point of D.

Let D be dense in X. Let x ∈ X and U 3 x be open. Then U ∩D 6= ∅. Thus x is a
limit point of D.

Conversely, if every x ∈ X is a limit point of D, we claim that D is dense in X. For,
if not, there exists a nonempty open set U such that U ∩D = ∅. Since U is nonempty,
choose x ∈ U . Then x is not a limit point of D as U 3 x is open but U ∩D = ∅.
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115. D ⊂ X is dense in the space X iff its closure D = X. (This is the standard definition.)

Recall (from Item 68) that the closure of any set A is the set of limit points of A. The
result now follows from the last item.

116. In a metric space (X, d), a set A is dense in X iff for every x ∈ X and ε > 0, there
exists an a ∈ A such that d(x, a) < ε. (Thus, A is dense in X, if we can “approximate”
any point x ∈ X to “any level of approximation” by an element of A. See Item 113k to
understand this vague remark. Also recall that Q is dense in R, which means that any
real number can be approximated to any level of accuracy by a rational number.)

117. Let (X, d) be a metric space. Assume that the only dense subset is X itself. Can we
say something about the topology? Hint: What are the maximal proper subsets of X?

118. Let A,B be two dense subsets of a space X. Is A ∪B dense? Is A ∩B dense?

119. If A,B are open dense subsets of a space X, is A ∩B dense in X?

120. Give an example of a proper open dense subset of R.

121. Continuation of the last item. If we write an open set U = ∪̇Jk, as the disjoint union of
open intervals (Item 12s), then we say that the “measure” or “length” of U is

∑
k `(Jk),

the sum of lengths of the intervals Jk. Given ε > 0, can you find an open dense subset
of R whose length is less than or equal to ε?

122. Let D be dense in (X, T1). Is D (necessarily) dense in (X, T2) where T2 is finer (respec-
tively, coarser) than T1?

123. Let X,Y be topological spaces. Assume that A is dense in X and f : X → Y is
continuous and onto. Then f(A) is dense in Y .

124. The set of matrices in M(n,C) with distinct eigenvalues is dense. In particular, the
set of all diagonalizable matrices in M(n,C) is dense. This exercise requires a good
background in Linear Algebra.

It is well-known fact in linear algebra that any A ∈ M(n,C) can be brought to upper
triangular form, say T , via conjugation by a unitary matrix U such that T = UAU−1.
The eigenvalues are the diagonal entries, say, dj . We can find very small εj ’s so that
dj + εj ’s are all distinct. We thus get a new upper triangular matrix, say T1 whose
entries are the same as that of T except dj is replaced by dj +εj . Again it is well known
that T1 is diagonalizable. The matrix A1 := UT1U

−1 has distinct eigenvalues and hence
is diagonalizable. It is close to A if εj ’s are small. This follows from the observation
‖A‖ on M(n,C) comes from the inner product (X,Y ) 7→ TrXY ∗ and the inner product
is invariant under conjugation by unitary matrices. The reader is encouraged to work
out the details and submit it as an assignment to the instructor. Details!

125. A topological space is separable if there exists a countable dense subset.

126. Examples and non-examples of separable spaces:

(a) Rn is separable. Consider {x = (x1, . . . , xn) ∈ Rn : xj ∈ Q}.
(b) A discrete space X is separable iff X is countable.
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(c) `1 is separable.

(d) R with VIP topology is separable.

(e) R with outcast topology is not separable.

(f) Any second countable space is separable. If {Bn} is any countable basis, choose
one element, say, xn ∈ Bn. Then D := {xn} is a countable dense set.

(g) Let X be infinite with co-finite topology and let A be any infinite subset of X.
Then any x ∈ X is a limit point of A. In particular, X with co-finite topology is
separable.

(h) Is R2 with the order topology separable? (Recall the geometric description of basic
open sets in this space. See Item 19.)

127. Let X be uncountable with co-finite topology. Then X is not first countable but sepa-
rable by Item 126g.

128. Let X be uncountable with co-countable topology. No countable set can have a cluster
limit point and hence X is not separable.

129. Let `∞ denote the set of all bounded real sequences. It is a normed linear space with
respect to the norm ‖x‖∞ := sup{|xn| : n ∈ N}. The space (`∞, ‖ ‖∞) is not separable.
Hint: Consider the uncountable subset {x : N→ {0, 1}} of `∞.

130. A metric space is separable iff it is second countable.

131. R`, the space R with lower limit topology, is first countable but not second countable.

132. Let f, g : X → Y be continuous and Y be Hausdorff. Then the set A := {x ∈ X :
f(x) = g(x)} is closed in X.

We show that B := X \ A is open. Let b ∈ B. Then f(b) 6= g(b) and hence there
exist open sets V1 3 f(b) and V2 3 g(b) with V1 ∩ V2 = ∅. By continuity of f and g
at b, there exist open sets U1 3 b and U2 3 b such that f(U1) ⊂ V1 and g(U2) ⊂ V2.
Then Ub := U1 ∩ U2 is an open set containing b and we have for x ∈ Ub, f(x) ∈ V1 and
g(x) ∈ V2. Hence f(x) 6= g(x) for x ∈ Ub. That is, Ub ⊂ B. Hence B = ∪b∈BUb is open.

133. Let the hypothesis be as in the last item. Assume that D is dense in X and that
f(x) = g(x) for all x ∈ D. Then f(x) = g(x) for all x ∈ X.

Let the notation be as in the last item. Then A is a closed set containing D. Since D
is dense D = X ⊂ A. That is, A = X.

134. Let X,Y be sets. Suppose f : X → Y is a bijection. Assume further that one of the
sets has an extra mathematical structure such as a group, vector space, metric or a
topology. Then we can transfer the structure to the other set using the bijection. We
look at some specific instances.

(a) Let X be a group. Then we define y1 ·y2 to be f(x1 ·x2) where f(xi) = yi, i = 1, 2.
It turns out that Y is group and that f : X → Y , by virtue of the very definition
of group law on Y , is a group homomorphism (and hence an isomorphism.)

(b) Let Y be a metric space. Then we set d(x1, x2) := d(f(x1), f(x2)). Then the
metric space (X, d) is isometric to (Y, d).
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(c) Let X be a topological space. Let TX be the topology on X. We then define a
topology TY on Y be declaring that V ∈ TY iff there exists U ∈ TX such that
V = f(U). Then the map f : (X, TX)→ (Y, TY ) is a homeomorphism, a term not
yet defined!

135. To illustrate this principle, we use the bijection t 7→ et from X := R to Y := (0,∞) to
make Y into a vector space over R. Given y1, y2 ∈ Y , we look at their (unique) pre-
images xj = log yj , carry out the vector addition in X, obtain x1+x2 = log y1+log y2 =
log(y1y2) and map it by the bijection. The result is y1y2. Similarly, the scalar multiple
of y by α ∈ R is α log y 7→ eα log y = yα. Thus the vector addition of y1 and y2 is y1y2
and the scalar multiple α ·y is yα. The ‘additive identity’ is 1. Note that the map t 7→ et

is a linear isomorphism.

136. A map f : X → Y between two topological spaces is a homeomorphism if (i) f is
bijective, (ii) f is continuous and (iii) f−1 : Y → X is continuous.

This is the analogue of isomorphisms in Algebra. Note that there also one requires
a bijective map f such that f and its inverse f−1 preserve the ‘algebraic structures’
such as group, ring, vector space structures. It turns out in the context of algebra, if f
preserves the structure, then f−1 does automatically.

We say that two topological spaces X and Y are homeomorphic if there exists a home-
omorphism f : X → Y .

137. The relation of being homeomorphic is an equivalence relation among topological spaces.

138. Examples of homeomorphisms.

(a) Any f : R→ R of the form f(x) = ax+b for a nonzero a ∈ R is a homeomorphism.

(b) f : R→ R given by f(x) = x3 is a homeomorphism.

(c) Any linear isomorphism of Rn is a homeomorphism.

More generally, any linear isomorphism from (Rn, ‖ ‖) to (Rn, ‖ ‖′), where ‖ ‖
and ‖ ‖′ are any of the norms ‖ ‖1, ‖ ‖2 and ‖ ‖max, is a homeomorphism.

In particular, the identity map is a homeomorphism. As a corollary, we conclude
that the topologies induced by these norms are the same:

T‖ ‖1 = T‖ ‖2 = T‖ ‖max
.

(d) Let us now look at some homeomorphisms of a normed linear space. Let (X, ‖ ‖)
be a normed linear space. Then the maps (a) x 7→ λx for 0 6= λ ∈ R, (b) x 7→ x+v,
where v ∈ X is fixed are homeomorphisms.

(e) Consider M(n,R). Then the maps (a) X 7→ Xt, (b) X 7→ X + A for fixed A ∈
M(n,R) and (c) X 7→ AX for a fixed nonsingular matrix A are homeomorphisms.

(f) Any two discrete spaces are homeomorphic iff they have the same cardinality.

(g) If two metric spaces are isometric, then they are homeomorphic.

(h) In the examples of this item, the subsets are given the metric topology from the
induced metric.

i. [a, b] ' [0, 1]. More generally, [a, b] ' [c, d].
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ii. (−1, 1) ' R.

iii. (0, 1] ' [1,∞).

iv. [0, 1) ' (0, 1].

v. Can Q be homeomorphic to Z?

vi. Is N ' Z?

(i) A bijective continuous map need not be a homeomorphism. Examples and a non-
example:

i. R with discrete topology and R with indiscrete topology.

ii. f : [0, 2π)→ S1 ⊂ C given by f(t) = eit. (A more instructive exercise.)

iii. Any bijective continuous map of a finite topological space X to itself is a
homeomorphism.

(j) The spaces (R,VIP) and (R,Outcast) are not homeomorphic.

We shall see later a lot of examples of homeomorphisms.

139. Open and closed maps. A map f : X → Y is said to be open if f(U) is open in Y
for every U open in X. A closed map is defined similarly.

(a) A bijective continuous map is a homeomorphism iff it is an open map.

Application: The map f : R→ R given by f(x) = x3 is a homeomorphism.

(b) A bijective continuous map is a homeomorphism iff it is an closed map.

Application: Item 206b. We have to wait for this.

140. We say that property of a topological space is a topological property if every space Y
homeomorphic to X also has the property. Examples:

(a) The space being Hausdorff is a topological property.

(b) The space being first countable is a topological property.

(c) The space being second countable is a topological property.

(d) The space being separable is a topological property.

(e) Existence of a nonempty, proper subset which is both open and closed is a topo-
logical property.

(f) Let us say that a topological space X has BCP if every continuous real valued
function is bounded. For example all closed and bounded intervals have this prop-
erty. Is BCP a topological property? Hint: If ϕ : X → Y is a homeomorphism
there is a “natural map” ϕ∗ : C(Y,R)→ C(X,R) where C(X,R) stands for the set
of real valued continuous functions on X etc.

The “adjoint” map ϕ∗ is defined by ϕ∗(g) := g◦ϕ. If ϕ is a bijection, then ϕ∗ is also
a bijection. If ϕ is a homeomorphism, then ϕ∗(g) ∈ C(X,R) for any g ∈ C(Y,R).

(g) Two metric spaces can be homeomorphic, but one of them could be bounded while
the other is not. Hence ‘being bounded’ is not a topological property among metric
spaces.

(h) Similarly, completeness is not a topological property among the metric spaces.
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We shall see later a lot of examples of topological properties.

The study of topology is mainly understanding topological properties and using
them to assert whether given two spaces are homeomorphic or not.

141. We now look at some natural questions which lead us to the generation of new topologies.

142. Given a set X and a collection S of subsets of X, how to we describe the open sets in
the smallest topology, say, TS that contains S? (We assume, as this is the case that
occurs in practice, that for every x ∈ X, there exists S ∈ S such that x ∈ S.) We do
this in two steps.

(a) We wanted a base for some topology on X which will also contain S. Clearly,
B := {S1 ∩ · · · ∩ Sn : Sj ∈ S, n ∈ N} is a base for some topology and S ⊂ B.

(b) The topology TB := {U ⊂ X : ∀x ∈ U,∃B ∈ B such that x ∈ B ⊂ U} is then the
smallest topology that contains S.

(c) Thus, we can rid of the intermediate B and define the topology directly in terms
of S. We say U ∈ TS iff for every x ∈ U , there exists n ∈ N such that we can find
Sj , 1 ≤ j ≤ n with x ∈ S1 ∩ · · · ∩ Sn ⊂ U . One can again show directly that this
is the smallest topology containing S.

(d) S is called a subbase and TS is the topology generated by S.

143. Let us look at some concrete examples:

(a) Consider S := {(−∞, a) : a ∈ R} ∪ {(b,∞) : b ∈ R}. The topology generated by S
on R is the usual topology.

(b) Consider R and S := {{0, x} : x 6= 0, x ∈ R}. What is the topology on R?

(c) Let X be a set with at least 3 elements. Let S be the family of two-element subsets
of X. The topology generated by S is the discrete topology.

(d) What is the topology on R2, if we take the subbase consisting of all straight lines
in R2?

(e) What is the topology on R2, if we take the subbase consisting of all straight lines
parallel to the x-axis in R2? Which of the following sets are open in this topology?
(i) the open unit disk, B(0, 1), (ii) the open vertical band {(x, y) ∈ R2 : 0 < x < 1},
(iii) the open horizontal band {(x, y) ∈ R2 : 0 < y < 1}, (iv) any subset which is
bounded in the Euclidean metric.

(f) What is the topology on R2, if we take the subbase consisting of all circles in R2?

(g) What is the topology on R2, if we take the subbase consisting of all circles, with
centre at the origin, in R2?

(h) Consider S = {X} as a subbase on X. What topology do we get on X?

144. Let f : X → Y be any map between two sets. Assume that one of them is a topological
space. What we wish to do is to endow the other set with an optimal topology in such
a way that f : X → Y becomes a continuous map between the spaces.
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(a) Let Y be a topological space. Then if we endow X with the discrete topology, then
the problem is solved! But this topology has no bearing on Y and/or on the map
f ! So what we require is the smallest topology on X making f continuous.

(b) Let X to be a topological space. Considerations similar to the last item suggest
us that we require the largest topology on Y making f continuous.

145. These problems arise in a very natural way.

(a) Let X be a subset a topological space Y . Then we have an obvious or natural map
i : X → Y , the inclusion of X in Y , that is, the restriction of the identity on Y to
X.

(b) Let X be any topological space and ∼ an equivalence relation on X. Then as Y ,
we take the quotient set X/ ∼, that is, the set of equivalence classes. Once again,
we have a natural map π : X → Y , where π(x) is the equivalence class of x.

146. More general situations may also arise. Let X be a set and Yi be topological spaces,
indexed by a set I. Assume that we are given certain maps fi : X → Yi for each i ∈ I.
We again ask for a single smallest topology on X making all the maps fi continuous.
Or the other way around, we have maps fj : Xj → Y where Xj ’s topological spaces.

Typical instances of this phenomenon are:

(a) Let {Xj : j ∈ I} be an indexed family of (pairwise disjoint) topological spaces.
Let X :=

⊎
j∈I Xj , the disjoint union of Xj ’s. We have natural inclusion maps

ιj : Xj → X. We wish to endow X with the largest topology with respect to which
all ιj ’s are continuous.

(b) Let {Xi : i ∈ I} be an indexed family of topological spaces. Let X :=
∏
i∈I Xi.

We have obvious maps πi(x) = xi, the i-th projection. We wish to equip X with
the smallest topology such that each of the projections becomes continuous.

(c) Let E be a set and let X := F be a family of functions from E to R. Consider the
evaluation maps εx(f) := f(x) for each x ∈ E. Thus, we have a family of maps
εx : X → R and we want the smallest topology which will make all these maps
continuous.

147. Let us deal with various cases. Let X be a set and Y be a topological space and
f : X → Y be a map. Any topology on X which makes f continuous must contain the
set U := {f−1(V ) : V ∈ TY }. It turns out this collection is already a topology and
hence is the smallest topology on X, as required. (We were lucky this time!)

148. Let us look at the concrete case in Item 145a. Then the topology on X is given by

TX := {i−1(V ) : V ∈ TY } = {V ∩A : V ∈ TY }.

The topology TX is called the subspace topology on Y and any U ∈ TX is said to be
open in X. We say that F ⊂ X is closed in X if its complement, X \ F , in X is open
in X.

149. The following are immediate from the definition of subspace topology and are very
useful in ‘identifying’ or visualizing open sets in subspace topology.
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(a) If B is a basis for the topology TY on Y , then BX := {B ∩X : B ∈ B} is a basis
for the subspace topology on X.

(b) If Bx is a local basis at x ∈ Y for the topology TY on Y , then Bx,X := {B ∩X :
B ∈ Bx} is a local basis at x ∈ X for the subspace topology on X.

150. Let us look at some examples to develop our intuition about subspace topology. Use
the last item to identify a local basis at each point of the subset A.

(a) Consider A = [0, 1] ⊂ R. Then the sets [0, 1/2), (1/2, 1] and (1/2, 3/4) are open in
in A.

(b) Consider Y := {(x, y) : xy = 0} ⊂ R2 be the two axes. Then the basic open sets
near (0,0) are crosses (of two line segments along the x and y-axes.) At other
points, just intervals around them.

(c) Let A := {1/n : n ∈ N} ∪ {0}. Then the basic open sets are the singletons {1/n}
for n ∈ N and {1/n : n ≥ n0} ∪ {0}. The latter are basic opens sets near 0 in A.

(d) Let S := {(x, y) ∈ R2 : x2 + y2 = 1} ⊂ R2 be the unit circle in R2. The basic open
sets in S are open arcs of the circle.

(e) Consider A = Q ⊂ R. Then the set {r ∈ Q : −
√

2 ≤ r ≤
√

2} is both open and
closed in Q.

(f) Let X be a metric space and ∅ 6= A ⊂ X. Then we have two topologies on A:
(i) one comes from the induced metric, call it δA, on A and (ii) the other is the
subspace topology. They are the same.

Let TdA denote the metric topology on A and TA denote subspace topology on A.
The local base at a ∈ A for TA is {B(A,dA)(a, r) : r > 0} and the one for TA is
{B(X,d)(a, r) ∩ A : r > 0}. But, B(A,dA)(a, r) = B(X,d)(a, r) ∩ A for each r > 0.
Hence the local bases are the same at each point a ∈ A for both the topologies.

(g) Let A := [0, 1] × [0, 1]. Then A has the order topology as well as the subspace
topology as a subset of R2 with order topology. They are not the same. (Contrast
this with the last item.)

Consider the set V := {(0, y) : 1/2 < y ≤ 1}. Then V is is open in the subspace
topology but not in the order topology on the ordered set A. Draw a picture of A
and use the definitions of subspace topology and order topology. V is open in the
subspace topology, since it is the intersection A with basic open set in R2 with an
interval (in the order topology): V = A ∩ (a, b) where a = (0, 1/2) and b = (0, 2).

Let, if possible, A be open in the order topology on A. Then there exists an
open interval (c, d) such that that point p = (0, 1) ∈ (c, d). Let c = (x1, y1)
and d = (x2, y2). Then x1, x2 ≥ 0 and y1, y2 ≤ 1. Now, (x1, y1) < (0, 1) in the
dictionary order. We conclude that x1 = 0 and y1 < 1. Similarly, x2 > 0 and
y2 ≥ 0. But an element of the form (x2/2, y) with y ≥ 0 lies in the basic open set
but not be in V .

(h) Consider R with VIP topology and A = R∗. Then the subspace topology on R∗ is
the discrete topology. The subspace topology on Q is the VIP topology on Q. (Do
you understand this statement?)

(i) Investigate the subspace topology on Q considered as a subset of R with outcast
topology.
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(j) Let X be a Hausdorff space, A ⊂ X be endowed with the subspace topology. Then
A is Hausdorff.

151. Let A be nonempty and open in X. Then U ⊂ A is open in A iff it is open in X.

152. Let B ⊂ A ⊂ X. Let (X, TX) be a topological space. Let TA denote the subspace
topology on A. Let x ∈ A. Then x ∈ A is a limit point of B in A iff x is a limit point
of B in X.

Let x be a limit point of B in A. Let U ∈ TX such that x ∈ U . Since U ∩A ∈ TA is an
open set containing x, (U ∩A) ∩B 6= ∅. But, (U ∩A) ∩B = U ∩B. Thus, x is a limit
point of B in X.

Conversely, let x ∈ A be a limit point of B in X. Let V be open in A with x ∈ V . We
need to show that V ∩B 6= ∅. There exists U ∈ TX such that V = U ∩A. Then x ∈ U
and since x is a limit point of B in X, we have U ∩B 6= ∅. Since B = B ∩A, it follows
that x ∈ (U ∩A) ∩B 6= ∅, that is, V ∩B 6= ∅, or x is a limit point of B in A.

153. Let A ⊂ X. Then F ⊂ A is closed in A iff there exists a closed set C in X such that
F = A ∩ C.

You may use the last item to prove this. Or, we may proceed directly as follows. (This
is essentially set-theoretic exercise and so the reader should try on his own.)

Let F = A ∩ C. We show that the complement of F in A is open. Let U = X \ C.
Then U is open in X. We claim that U ∩A = A \F . To show (X \C)∩A ⊂ A \F , let
x ∈ (X \ C) ∩A. If x ∈ F , then x ∈ F = C ∩A and hence x ∈ C, a contradiction. For
the reverse inclusion, let x ∈ A \ F . We need to show that x ∈ X \ C./ If false, then
x ∈ C and hence x ∈ A ∩ C = F , that is x ∈ F , a contradiction.

Assume that F is closed in A. Then A \ F is open in A. Let U be open in X such that
A \ F = U ∩ A. Let C := X \ U . Then C is closed in X. We claim that C ∩ A = F .
To show that C ∩ A ⊂ F , let x ∈ C ∩ A. Suppose x /∈ F , then x ∈ (A \ F ) = A ∩ U .
Therefore, x ∈ U or U /∈ C, a contradiction. To prove the reverse inclusion, let x ∈ F .
If x /∈ C, then x ∈ U and hence x ∈ U ∩A = (A \ F ), that is x /∈ F , a contradiction.

As a specific example, the set of Item 150e is open as well as closed in Q. (Contrast
this with Item 57i.)

154. We shall put to use some of the concepts we learned to gain a different perspective of
the limit of a sequence.

Consider X = N ∪ {∞}, where ∞ is just a symbol representing an element not in N.
(We could have used ? in place of∞!) Let ϕ : X → Y := {1/n : n ∈ N}∪{0} be defined
by ϕ(n) = 1/n and ϕ(∞) = 0. Then ϕ is a bijection. We endow Y with the subspace
topology as a subset of R. Using the bijection ϕ, we transfer the topology on Y to X.
The local basic open set in Y at n are {n}, and at ∞ are {k : k ≥ N} for some N ∈ N.
(See Item 150c.)

Now if f : X → R is a function, when is it continuous at ∞? If we restrict f to N ⊂ X,
we can think of f as a real sequence, say, (an), in R. Do you see any relation between
the continuity of f at ∞ and the convergence of (an)? If we replace R by a topological
space Z, do the results (concerning the convergence of sequences in Z) continue to be
true?
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We shall return to this example later when we talk of one point compactifications.

155. Let f : X → Y be a continuous map between two topological spaces. Let A ⊂ X be
a subset endowed with the subspace topology. Then the restriction fA of f to A gives
rise to a map fA : A→ Y . Is it continuous?

If V ⊂ Y is open, then f−1A (V ) = f−1(V ) ∩A is open in A, since f−1(V ) is open in X.

156. A question ‘dual’ to the one in the last item: Let f : X → Y be continuous. Assume
that f(X) ⊂ B ⊂ Y . We then have an induced map g : X → B defined by g(x) = f(x)
for x ∈ X. Let B be given the subspace topology. Is g continuous? The answer is ‘Yes.’

Let W ⊂ B be open in B. Then there exists V , an open subset of Y such that
W = V ∩B. It is easy to check that g−1(W ) = f−1(V ). Since f is continuous, f−1(V )
is open in X and hence g−1(W ). (We shall return to this later when we talk of universal
mapping properties. See???) Reference?

Items 155–156 are most often used when we deal with subspaces without explicit
mention.

157. At this stage we are curious about the following questions.

(a) Let X and Y be topological spaces. Assume that {Ai ∈ I} is a family of subsets
of X such that ∪i∈IAi = X. Further assume that for each i, we have a continuous
function fi : A → Y . (Here Ai’s are given the subspace topology.) Can we get
‘glue’ them together to get a continuous function f : X → Y in such a way that
the restriction f |Ai= fi for i ∈ I?

A necessary condition is that fi(x) = fj(x) for each x ∈ Ai ∩Aj , i, j ∈ I. This will
ensure that we get a function f from the set X to Y whose restrictions to Ai are
as required.

(b) Let X and Y be topological spaces. Let f : X → Y be a map. Assume that
{Ai ∈ I} is a family of subsets of X such that ∪i∈IAi = X and that f |Ai : Ai → Y
is continuous. Can we conclude f is continuous?

158. Let us investigate the situation. Let V ⊂ Y be open. Observe that

f−1(V ) = f−1(V ) ∩X = ∪i∈I
(
f−1(V ) ∩Ai

)
.

Each term in the union, f−1(V )∩Ai = f−1i (V ) is open in Ai. If we can ensure that each
of these open in X then f−1(V ) is open in X. We know a sufficient condition which
will ensure this, namely, we demand each Ai is open.

Let V ⊂ Y be closed. Since each f−1(V ) ∩ Ai = f−1i (V ) is closed in Ai, to ensure
f−1(V ) is closed, we may demand that each Ai is closed. But then f−1(V ) is a union
of closed sets and it is closed if we further assume that I is finite. We have thus arrived
at

159. Gluing Lemma:

Lemma 8. Let X,Y be topological spaces and let f : X → Y be any map. Assume
that {Ai : i ∈ I} is a family of subsets of X whose union is X. Assume further that
fi := f |Ai : Ai → Y is continuous for each i ∈ I. Then

1. f is continuous if each Ai is open.
2. f is continuous if each Ai is closed and I is finite.
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160. Let us consider the general case in Item 146. We want the smallest topology T that
contains all sets of of the form f−1i (Vi) where Vi is open in Xi and i ∈ I. That is T
is the smallest topology containing the family of sets S := {f−1i (Vi) : Vi ∈ Ti; i ∈ I},
where Ti is the topology on Xi.

There is no reason to believe that f−1i (Vi)∩ f−1j (Vj) must be again of the form f−1r (Vr)
for some r ∈ I. Hence S may not be topology on X.

161. We now want to look at the concrete case in Item 146b. As a preliminary, we review
the concept of Cartesian product.

Let {Xi : i ∈ I} be an indexed family of sets. Then the Cartesian product X :=
∏
i∈I Xi

is defined by ∏
i∈I

Xi := {x : I →
⊎
i∈I

Xi : x(i) ∈ Xi for each i ∈ I},

where
⊎
i∈I Xi stands for the disjoint union.

(a) We usually write x ∈
∏
i∈I Xi as x = (xi), where xi := x(i). We shall call xi as the

i-th coordinate of x. Let πi :
∏
j∈I Xi → Xj denote the map πj(x) = x(j) = xj .

This is called the j-th projection of X onto the j-th factor Xj .

(b) As a convention, if I = {1, 2, . . . , n}, we identify X with X1 × · · · × Xn, that is,
with the set of “ordered n-tuples” (x1, . . . , xn). Similarly, if I = N, we identify
X with X1 × X2 × · · · × Xn × · · · , that is the set of ordered infinite tuples x 7→
(x1, x2, . . . , xn, . . .).

(c) If Vj ⊂ Xj , then π−1j (Vj) =
∏
i∈I Ui where Ui = Xi for i 6= j and Uj = Vj . In

particular, π−11 (V1) = V1 ×X2 where X = X1 ×X2 etc.

162. What we requite on X :=
∏
i∈I Xi to make the projections πi (i ∈ I) continuous is the

smallest topology that contains

S := {π−1i (Vi) : Vi ∈ Ti, i ∈ I}.

This is the question we have already answered in Item 142.

163. We apply the process of Item 142.to the problem posed in Item 162. Thus we arrive at
the definition of product topology on

∏
i∈I Xi as follows.

As a subbase for a topology on X, we take the set

S :=

{∏
i∈I

Ui : where Ui = Xi for all but finitely many i and Ui is open in Xi

}
.

The basis for the product topology on X is finite intersections of elements from S.

In particular, G ⊂ X is open iff for every x ∈ G, there exists S1, . . . , Sn ∈ S such that
x ∈ S1 ∩ · · · ∩ Sn ⊂ G.

Thus, G ⊂ X is open in the product topology iff for a given x ∈ G, there exists
a finite subset F ⊂ I and open subsets Uj ⊂ Xj for j ∈ F such that x ∈

∏
i Vi

where Vi = Xi for i /∈ F , Vj = Uj for j ∈ F and x ∈
∏
i∈I Vi ⊂ G.
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164. Let ∅  ∅ 6= Ui  Xi, be open in Xi for i ∈ I. Then U =
∏
i∈I Ui could never be open

in X unless I is finite.

Assume I is infinite. Let x = (xi) ∈ U . If U were open, then there exists a finite set
F ⊂ I, open sets Vj for j ∈ F such that x ∈W =

∏
iWi ⊂ U where Wi = Xi for i /∈ F

and Wj = Vj for j ∈ F . Choose an r ∈ I \ F . Since Vr 6= Xr, there exists yr ∈ Xr \ Vr.
Consider z = (zi) where zi = xi for i 6= r and zr = yr. Then z ∈W but z /∈ U .

165. If I is finite, say, I = {1, 2, . . . , n}, then the basic open sets are of the form U1×· · ·×Un
where Ui is an arbitrary open set in Xi for each 1 ≤ i ≤ n.

166. Warning: If, at first, we defined finite products of topological spaces with basis as
in the last item, we would be tempted to use the following collection as a basis for a
topology on the product

∏
i∈I Xi:

B :=

{∏
i∈I

Ui : where Ui is an arbitrary open set in Xi

}
.

The topology given rise to by this basis is called the box topology. Evidently, this is
finer than the product topology.

The product topology on X is the smallest topology which makes all the pro-
jection maps πi continuous. We shall always use this topology on the product
sets.

167. We shall see how to visualize the subbasic and basic open sets of the product topology.
This will allow us to gain some geometric intuition. Pictures!

(a) Consider X × Y . We visualize this the first quadrant in R2 where X and Y are
represented by [0,∞). Then any subbasic open set if of the form U × Y or X × V
where U ⊂ X and V ⊂ Y are open. We visualize this by a vertical strip of the
from (a, b)× [0,∞) or as a horizontal strip of the from [0,∞)× (c, d). Hence any
basic open set is represented by a rectangle of the from (a, b)× (c, d).

This can be extended to a finite product.

(b) We now consider a countable product, say X =
∏
n∈NXn. We visualize X as

vertical half-lines erected at (n, 0) ∈ R2: A basic open set is therefore of the form
half-lines at all points except at finitely many n1, . . . nk and at nj an interval of
the form (aj , bj).

(c) Consider X :=
∏
t∈RR. The product set can be identified with the set of functions

f : R → R. Each function can be represented by its graph in R × R. Fix a finite
set of points {t1, . . . , tn} and a finite set of intervals (aj , bj), 1 ≤ j ≤ n. Then the
basic open set corresponding to this data is R at all t /∈ {tk : 1 ≤ k ≤ n} and
(ak, bk) if t = tk, 1 ≤ k ≤ n. Thus the elements in this basic set are functions such
that f(tk) ∈ (ak, bk). We can visualize this by means of their graphs.

168. To have a feeling for the product topology, we look at the following results/questions:

(a) The product of Hausdorff spaces is Hausdorff.

Easy. if x = (xi) and y = (yi) are in X =
∏
iXi are distinct elements, then there

exists j ∈ I such that xj 6= yj . Since Xj is Hausdorff, there exist Uj and Vj open
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in Xj with xj ∈ Uj , yj ∈ Vj and Uj ∩ Vj = ∅. Consider the open set U =
∏
Ui and

V =
∏
Vi where Ui = Xi = Vi for i 6= j and at j the disjoint open sets Uj and Vj .

Then U and V separate x and y.

(b) A sequence (xk) in the product space is convergent to an element x iff it converges
coordinate-wise, that is, iff πi(xk)→ πi(x) for each i ∈ I.

To avoid confusion with indices, we use the Greek alphabet to denote elements of
the index set I.

Let xk ∈ X =
∏
α∈I Xα converge to x. Fix β ∈ I. Let xkβ := πβ(xk) and

xβ := πβ(x). Let Uβ 3 xβ be open. Consider the subbasic open set U =
∏
Uα

where Uα = Xα for α 6= β and Uα = Uβ for α = β. Then x ∈ U and since xk → x,
there exists N ∈ N such that xk ∈ U for k ≥ N . It follows that xkβ ∈ Uβ for
k ≥ N . Hence xkβ → xβ.

To prove the converse, let U be a basic open set, say, of the form U =
∏
Uα where

Uα = Xα for α /∈ F ⊂ I, a finite subset and Uβ are open subsets in Xβ, β ∈ F .
Since xkα → xα, it follows that there exists Nβ such that for k ≥ Nβ, we have
xkβ ∈ Uβ for β ∈ F . Let N = max{Nβ : β ∈ F}. We claim that xk ∈ U for
k ≥ N . For, any α /∈ F , πα(xk) = xkα ∈ Uα = Xα and for β ∈ F , since k ≥ N ,
πβ(xk) = xkβ ∈ Uβ.

Thus, the convergence in
∏
i∈I Xi is ”coordinate-wise convergence.”

(c) Let Ai ⊂ Xi and A :=
∏
i∈I Ai. Then A =

∏
i∈I Ai. In particular, if each Ai is

closed, then the product A :=
∏
i∈I Ai is closed in the product space X. Contrast

this with Item 164.

The proofs of this and the next item run almost like the earlier two items. We
leave them for your practice.

(d) Let Di be dense in Xi for each i. Then D :=
∏
i∈I Di is dense in X.

This follows from the last subitem. We encourage the reader to prove it directly.

(e) Let Xi be a discrete space for each i. When is
∏
i∈I Xi is discrete?

(f) Let X,Y be metric spaces. We have a product metric on the product X ×Y given
by δ((x1, y1), (x2, y2)) := max{d(x1, x2), d(y1, y2)}. Thus we have two topologies
on X×Y , namely, the topology induced by the metric δ and the product topology
(got out of the metric topologies on X and Y ). We saw that these two topologies
are the same. Later, we shall see an easy proof.

Investigate whether the converses (wherever applicable) are true.

Optional: Investigate how many of them are true if we equip X with the box topology.
Note that if D is dense in (X, T2) and if T1 is another topology on X with T1 weaker
than T2, then D is dense in (X, T1).

169. This is a continuation the theme of Item 168.

(a) Let f : Y →
∏
i∈I Xi be a map from a topological space Y to the topological space∏

i∈I Xi with product topology. Then f is continuous iff each fi, is continuous,
where fi = πi ◦ f for i ∈ I,

If f is continuous, then fi is the composition of two continuous functions and hence
is continuous.

36



Assume that fi are continuous. To prove that f is continuous, let U be an open
subset of X. Since U is a union of basic open sets, it is enough to show that f−1(B)
is open for any basic open set. But B is of the form ∩j∈Fπ−1j (Uj) where F ⊂ I
is finite, and Uj is open subset of Xj , j ∈ F . Since taking inverse images behaves
well with set-theoretic operations, it suffices to show that f−1(π−1j (Uj)) is open in
Y for any j ∈ I and any Vj open in Xj . But

f−1(π−1j (Uj)) = (πj ◦ f)−1(uj) = f−1j (Uj),

which is open in Y by the continuity of fj .

(b) Let f : X → Y be continuous. Let Graph(f) := {(x, f(x) : x ∈ X} be the graph
of f . Let Graph(f) ⊂ X × Y be endowed with the subspace topology. Then X is
homeomorphic to Graph(f).

Consider ϕ : X → Graph(f) given by ϕ(x) = (x, f(x)). Then ϕ is continuous as
a map from X to X × Y by the last sub-item. By Item 156, ϕ : X → Graph(f)
is also continuous. Clearly ϕ is a bijection and its inverse ϕ−1 : Graph(f) → X
is given by ϕ((x, f(x)) = f(x). That is, ϕ−1 is the restriction of the projection of
X × Y onto its first factor. By the definition of product topology, the projection
map is continuous on X × Y . Its restriction is continuous on Z by Item 155.

(c) The map x 7→ (x, y0) of X into X × Y is a homeomorphism of X with X × {y0}
with the subspace topology inherited from X × Y .

Argue as in the last sub-item.

(d) LetX,Y be topological spaces. Let A ⊂ X and B ⊂ Y . Let TA denote the subspace
topology on A induced from the topology on X etc. Let TA × TB (respectively,
TX×TY ) denote the product topology on A×B, (respectively, the product topology
on X×Y ). Let TA×B denote the subspace topology on A×B considered as a subset
of X × Y . Then TA × TB = TA×B.

Easy if you know how to set up a notation which keeps your head clear. Let
W ∈ TA × TB. Let x = (a, b) ∈ W . There exist Ua ∈ TA and Vb ∈ TB such that
x = (a, b) ∈ Ua×Vb ⊂W . Since Ua ∈ TA, there is a U ∈ TX such that Ua = U ∩A.
Similarly, Vb = V ∩B. Hence

x = (a, b) ∈ (U ∩A)× (V ∩B) = (U × V ) ∩ (A×B) ⊂W.

Since (U × V ) ∩ (A×B) ∈ TA×B, it follows that W ∈ TA×B.

Reverse inclusion is proved similarly. Let W ∈ TA×B. Then there exists W ′ ∈
TX ×TY such that W = W ′∩ (A×B). Let x = (a, b) ∈W so that x ∈W ′. We can
find U ′ ∈ TX and V ′ ∈ TY such that x = (a, b) ∈ U ′ × V ′ ⊂ W ′. Hence it follows
that

x = (a, b) ∈ (U ′ ∩A)× (V ′ ∩B) = (U ′ × V ′) ∩ (A×B) ⊂W ′ ∩ (A×B).

Since (U ′∩A)×(V ′∩B) is a basic open set in TA×TB, it follows that W ∈ TA×TB.

(e) Let ∆(X) denote the diagonal {(x, x) : x ∈ X×X} ⊂ X×X. Then X is Hausdorff
iff ∆(X) is closed in X ×X. (We leave this as a very easy exercise.)
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170. Let X and Y be sets. The set Y X of functions from X to Y can be considered as the
product space

∏
x∈X Yx where Yx = Y for x ∈ X via the map ϕ(f) = (f(x)) ∈

∏
x∈X Yx.

Thus, what the last line of Item 168b says is that the if we use ϕ to transfer the topology
to Y X , then a sequence of functions (fn) in Y X converges to a function f ∈ Y X iff
fn(x) → f(x) for each x ∈ X, that is, convergence in Y X is pointwise convergence.
Because of this, product topology is known as topology of pointwise convergence.

171. Is the product of first/second countable spaces first/second countable? We show that∏
t∈RR is not first countable. Note that R is second countable. The key idea comes

from the last item. It may be worthwhile to review Item 167c.

The product space is the set of functions from R to R and the convergence is pointwise
convergence. How does local base at (the constant function) 0 look like? Fix a finite
subset F ⊂ R and k ∈ N. Then a typical element of the local base is of the form

UF,k := {f : R→ R : f(t) ∈ (−1/k, 1/k), t ∈ F}.

How many such basic open sets are there? As many as in the set F ×N where F is the
set of finite subsets of R, that is, the cardinality of F ×N. It is intuitively clear and we
expect that this space has no countable local base at 0 ∈

∏
t∈R)R.

We would like to translate these ideas into a rigorous argument. An obvious method of
attack is to prove this by contradiction. Consider the set

E := {f ∈ RR : f(t) = 0 or 1 & {t ∈ R : f(t) = 0} is finite .}

We claim the constant function 0 is a limit point of E. For, let UF,k be a basic open
set containing 0. Then the function f(t) = 1 for t /∈ F and f(t) = 0 for t ∈ F lies
in UF,k ∩ E. If the product topology were first countable, then there exists a sequence
(fn) in E such that fn → f in the product topology. Let Fn := {t : fn(t) = 0}. Let
A := ∪nFn. Then A is countable. Observe that for t /∈ A, fn(t) = 1 and therefore
f(t) = lim fn(t) = 1 for t /∈ A. This is a contradiction

172. Contrast Item 175b with the following. Let E be any set and let B(E,R) denote the set
of all bounded real valued functions on E. If we endow this vector space with the norm
‖f ‖∞ := supx∈E |f(x)|, then fn → f in this normed linear space iff fn → f uniformly
on E. (This is Item 91b.)

173. Refer to Item 171. Each of the factors in RR is a metric space. But the topology on RR
is not first countable and hence there cannot be any metric d on the product RR which
will induce the product topology.

174. In most of the examples above, we looked at subsets of the product setX which are of the
form

∏
i∈I Ai, where Ai ⊂ Xi. You should be aware that not all subsets of X are of this

form. For example, S := {(x, y) ∈ R×R : x2 + y2 = 1}, D := {(x, x) ∈ R2 : x ∈ R×R}
are not a product of subsets of R.

For, if D = A×B, then (1, 1), (2, 2) ∈ D = A×B. Hence 1, 2 ∈ A, 1, 2 ∈ B and hence
(1, 2) ∈ A×B = D!

175. It is equally important to recognize product spaces in disguise. The following are very
typical of this situation.
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(a) Define a topology on the set S of all real sequences such that a sequence (xk)
in S converges to x ∈ S iff the xkn → xn as n → ∞ for all k where xk =
(xk1, xk2, . . . , xkn, . . .). (Convergence = Coordinate-wise convergence).

(b) Let X denote the set of all real valued functions on R. Define a topology on
X such that a sequence (fn) of functions in X converge to a function f ∈ X iff
fn(x)→ f(x) for all x ∈ R. (Convergence = point-wise convergence of functions.)

(c) Let I = N and Xi = {0, 1} for i ∈ N. Then the product space X :=
∏
i∈NXi “is

isomorphic to” the Cantor set. We have to introduce concepts and develop some
more theory to explain this satisfactorily.

176. A problem similar to Item 168a: Let X be any set and F be a collection of real valued
functions on X with the property that for any pair of distinct points x, y ∈ X, there
exists f ∈ F such that f(x) 6= f(y). Then the smallest topology on X which makes all
the functions in F continuous is Hausdorff.

177. Let X be a topological space and ∼ is an equivalence relation on X. Let Y := X/ ∼
be the quotient set, that is, the set of all equivalence classes. Let π : X → Y be the
quotient map π(x) := [x], the equivalence class of x. The largest topology on Y with
respect to which π is continuous is called the quotient topology on Y . It is given by{

V : π−1(V ) is open in X
}
.

178. We studied part of my article “Generation Topologies — A Unified View of Subspace,
Product and Quotient Topologies”. We also did the Universal mapping properties for
Cases (i) & (ii) of the article.

179. Universal mapping properties were done in the general case and applied to concrete
situations and interpreted.

(a) Universal mapping property for subspace topology.

(b) Universal mapping property for quotient topology.

(c) Universal mapping property for product topology.

180. Examples of applications of universal mapping property:

(a) The continuity of the map [0, 2π]/ ∼ to S1.

(b) The continuity of Sn → Pn(R). (This cannot be done using UMP.)

181. More examples of homeomorphisms. Recall that a map f : X → Y between two
topological spaces is a homeomorphism if (i) f is bijective, (ii) f is continuous and (iii)
f−1 : Y → X is continuous.

(a) B(0, 1) ' Rn.

(b) Sn \ {en+1} ' Rn. (We investigated this in detail!)

(c) f : X → Y continuous. Then the graph of f with the subspace topology of X × Y
is homeomorphic to X. Applications:

i. R is homeomorphic to the parabola y = x2.
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ii. R∗ is homeomorphic to the hyperbola xy = 1.

(d) The product space [−1, 1]× S1 is homeomorphic to a cylinder.

(e) The annulus {p ∈ R2 : 1 ≤ ‖p‖ ≤ 2} is homeomorphic to the cylinder {(x, y, z) ∈
R3 : x2 + y2 = 1, 1 ≤ z ≤ 2}.

(f) Let f : X → Y be a homeomorphism and let A ⊂ X. Then f induces homeomor-
phism between A and f(A) (and between X \A and f(X \A)).

This is a very useful fact. Typical ways of applying this are:

i. [0, 1) is not homeomorphic to (0, 1).

ii. R is not homeomorphic to R2.

Both these results need connectedness at least in disguise, but can be proved at
this stage using the intermediate value theorem.

For example, let, if possible, ϕ : [0, 1)→ (0, 1) be a homeomorphism. Then we have
a homeomorphism, again denoted by ϕ : (0, 1) → (0, 1) \ {ϕ(0)}. Let f : (0, 1) \
{ϕ(0)} → R defined f(x) = x is a continuous function. Let c, d ∈ (0, 1) be such
that c < ϕ(0) < d. Let ϕ(a) = c and ϕ(b) = d. Then a, b ∈ (0, 1). The function
f ◦ ϕ : (0, 1) → R is continuous on the interval (0, 1) such that f ◦ ϕ(a) = c,
f◦ϕ(b) = d. But it misses the point ϕ(0) ∈ (c, d). This contradicts the intermediate
value theorem.

(g) Homeomorphism between conic sections:

i. A circle is homeomorphic to an ellipse.

ii. A parabola is homeomorphic to a line.

iii. A (rectangular) hyperbola is homeomorphic to R∗.
iv. A pair of intersecting lines is not homeomorphic to any of the other conic

sections. More generally, a circle, a parabola, a hyperbola and a pair of in-
tersecting lines are mutually non-homeomorphic. (We shall see a proof of this
later. Meanwhile you may try to prove along this along the lines of a proof of
Item 181(f)i.)

182. In any normed linear space , any two open balls are homeomorphic. Recall that
B(x, r) = x+ rB(0, 1) and B(y, s) = y + sB(0, 1).

183. In any normed linear space , any open ball is homeomorphic to the entire space. Enough
to show that B(0, 1) is homeomorphic to the normed linear space X. Any nonzero x is
of the from x = tu, 0 ≤ t < 1. Can we map [0, 1) to [0,∞) homeomorphically? If yes,
then the finite radial line tu, 0 ≤ t < 1 will be mapped to the line segment emanating
from 0 in the direction of u.

184. In Rn, we have B∞[0, 1] ' B2[0, 1]. For a complete proof, see Example 3.3.6 on Page 73
of my book on Metric Spaces.

185. Rm ' Rn iff m = n. This is a highly nontrivial result and we shall not prove this is our
course!

186. Another most important way of proving that a map is a homeomorphism is to use the
following result which you might have seen in TYBSc.
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A bijective continuous map from a compact metric space to another metric space is a
closed map and hence is a homeomorphism.

We shall see a more general result later in Item 206b.

187. Let X be a topological space and A ⊂ X. We say that a collection {Ui : i ∈ I} of subsets
of X is an open cover of A if (i) each Ui is an open subset of X and (ii) A ⊆ ∪i∈IUi.
Given an open cover {Ui : i ∈ I} of A, by a subcover of A, we mean a subfamily
{Ui : i ∈ J} for some subset J ⊂ I such that {Ui : i ∈ J} is an open cover of A. We
say that the given open cover admits a finite subcover, if J (in the notation above) is a
finite set.

For example, {(a, b) : a, b ∈ R, a < b} is an open cover of R. The collection {(a, b) :
a, b ∈ Q, a < b} is a subcover of R.

Let X be a space with discrete topology. The family {A,X \A} is an open cover for X
where A is a nonempty proper subset of X with no proper subcover.

188. Examples of open covers:

(a) “Non trivial” open covers of R:

i. {(−n, n) : n ∈ N}.
ii. {(−∞, n) : n ∈ N}.

iii. {(−r, 2r) : r ∈ Q+}.
Do they admit finite subcovers? proper subcover?

(b) Nontrivial open covers of (−1, 1).

(c) In any metric space, {B(x, rx) : x ∈ X} is an open cover where rx > 0 is pre-
assigned for x ∈ X. Such a cover arises “naturally” in the following way: Let
f : X → R be a continuous function. Let ε > 0 be given. Given x ∈ X, by the
continuity of f at x, there exists rx > 0 such that for all y with d(x, y) < rx, we
have |f(x)− f(y)| < ε. The collection {B(x, rx) : x ∈ X} is an open cover of X.

(d) Given a Hausdorff space with at least two elements, think of a nontrivial open
cover.

(e) Can you say something specific about any open cover of R with outcast topology?

(f) Give an open cover of R with VIP topology which has no proper subcover. For
example, {[a, b) : a < b}. Think of a non-trivial open cover which does not admit
any proper subcover.

(g) Give a non-trivial open cover of R with lower limit topology.

(h) Open covers of Sn:

i. Rn+1 \ {0}. (This is a trivial open cover!)

ii. U = Rn+1 \ {N} and V := Rn+1 \ {S}, where N,S are north and south poles
of the sphere Sn respectively.

iii. U±i := {x ∈ Rn+1 : xi ≶ 0}, 1 ≤ i ≤ n+ 1.

(i) Open cover for a discrete space X. Let A ⊂ X. Look at {A}∪{{x} : x /∈ A}. This
is an open cover of X. What if A = ∅?
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(j) Open cover for an uncountable space with co-countable topology. If X = R with
co-countable topology and U = R \ N, I would think of defining Un := U ∪ {n} or
Vn := U ∪ {k : 1 ≤ k ≤ n}. Then {Un : n ∈ N} and {Vn : n ∈ N} are open covers
of R. Do they admit any proper subcovers of R?

What will you do for an countable set X with co-countable topology?

(k) Open cover for a set with co-finite topology.

189. A subset A of a topological space X is said to be compact if given any open cover
{Vi : i ∈ I} of A where each Vi is open in A, we can find a finite subcover. We say that
X is a compact space if X is a compact subset of X.

190. Given an open cover {Ui : i ∈ I} of A by means of open subsets of X, then we have a
“natural” open cover {Vi : i ∈ I} of a subset A ⊂ X by means of subsets of A which are
open in A and conversely. (Note the indices. “Naturality” does not mean that given
Vi’s, the Ui’s are unique!)

The significance of this observation is that when dealing with compactness of a subset
K ⊂ X we may either work an open cover of K by means of open subsets in X or by
sets open in K. See Items 193, 196, 196 where this observation is exploited.

191. Examples of compact sets.

(a) A finite subset of any space is compact. In particular, the empty set is compact.

(b) An indiscrete space is compact.

(c) A discrete space is compact iff it is finite.

(d) R, Q and Z are not compact.

(e) The intervals of the form (a, b), [a, b), (a, b], any infinite interval are not compact.

(f) R with lower limit topology TL is not compact. Go through the proof. Can you
make a general principle of which this is a special case?

Let T1 and T2 are two topologies on the same set X. Assume that T1 ≤ T2. Then
if (X, T1) is not compact, then (X, T2) is not compact and (X, T2) is compact, so
is (X, T1).
This is reminiscent of the comparison test for infinite series of positive terms.

(g) Any open ball in Rn (or in any normed linear space ) is not compact.

(h) Rn is not compact.

(i) Any closed and bounded interval [a, b] ⊂ R is compact.

Let {Ui : i ∈ I} be a collection of open sets in R such that [a, b] ⊂ ∪iUi. Consider
the set

E := {x ∈ [a, b] : ∃ a finite set Fx ⊂ I such that [a, x] ⊂ ∪j∈FxUj}.

If a ∈ Ui, then there exists ε > 0 such that x ∈ (a−ε, a+ε) ⊂ Ui and also a+ε < b.
Then a + ε/2 ∈ E. Let c = l.u.b. E. (Why does it exist?) We claim c ∈ [a.b],
c = b and c = b ∈ E. If c < b, then c ∈ Uj . By the argument above, there exists
ε > 0 such that E 3 c + ε/2 < b, a contradiction. Hence c = b. Repeat the same
argument to conclude b ∈ E.
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(j) R with VIP topology is not compact.

(k) R with outcast topology is compact.

(l) Any set with co-finite topology is compact.

(m) An uncountable set with co-countable topology is not compact.

(n) A finite union of compact sets is compact.

(o) The intersection of two compact sets need not be compact. See, however, Item 193.

Consider Z with the discrete topology. Let {±∞} be two distinct elements not in
Z. Let X = Z ∪ {±∞}. We say a subset U ⊂ X is open if either (i) U ⊂ Z or if
either of ±∞ lies in U ⊂ X, then both the elements lie in U and X \ U is finite.
It is easy to verify that this defines a topology on X. The sets A := Z ∪ {∞} and
B := Z ∪ {−∞} are compact but their intersection Z is not compact. Note that
neither A nor B is closed.

192. A closed subset K of a compact space X is compact.

Let {Ui : i ∈ I} be an open cover of K. To exploit the compactness of X, we need an
open cover of X. Clearly, if we add the open set X \K to the given open cover of K, we
end up with an open cover, say, U of X. Let U0 be a finite subcover of X. It is possible
U0 contains X \K. In any case, U0 \ {X \K} is a finite subcover of K.

193. Let K ⊂ X be a compact subset of X. Is K closed in X?

That is, is X \ K open? The only way of doing this it for each x ∈ X, to find an
open set Ux 3 x such that Ux ∩K = ∅. We also need to exploit the compactness of K.
That is, we need to find an open cover of K (via open sets of X), which do not have
x. This suggests that we may require X to be Hausdorff. (All these were arrived at by
students!) We have the following result.

In a Hausdorff space a compact subset is closed and hence the intersection of compact
sets is compact in a Hausdorff space.

Let X be Hausdorff and K ⊂ X be compact. We shall show that the complement
Kc := X \ K is open. Given p ∈ Kc, we need to show that there exists an open set
Up 3 p with Up ⊂ Kc. We need to exploit Hausdorffness of X and the compactness of
K. This means we need to generate an open cover of K. For any q ∈ K, we have disjoint
open sets Vq 3 q and Upq 3 p. Hence {Vq : q ∈ K} is an open cover of K and hence
there exists a finite set {q1, . . . , qn} of K such that K ⊂ ∪ni=1Vqi . Let Up := ∩ni=1Upqi .
Then Up 3 p is an open set and it lies in Kc. Thus, Kc = ∪p∈KcUp is open.

194. Note that the a proof in the last item establishes the following result.

Let X be a compact Hausdorff space. Let K ⊂ X be closed and x /∈ K. Then there
exist disjoint open sets Ux 3 x and UK ⊃ K.

A space X is said to be regular if K is closed in X and x /∈ K, there exist disjoint open
sets Ux 3 x and UK ⊃ K.

Hence a compact Hausdorff space is regular.

Question: In the result about a compact Hausdorff space X, can we replace x by a
closed set L disjoint from K?
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195. Let (X, d) be a metric space. We say that A ⊂ X is bounded if there exist x0 ∈ X and
r > 0 such that A ⊂ B(x0, r). The following are easily seen results about this concept:

(a) A is bounded iff for every x1 ∈ X, there exists R > 0 such that A ⊂ B(x1, R).

Easy. Observe

d(a, x1) ≤ d(a, x0) + d(x0, x1) < r + d(x0, x1).

Hence let R = r + d(x0, x1).

(b) Let (X, ‖ ‖) be an normed linear space . Show that A ⊂ X is bounded iff there
exists M > 0 such that ‖x‖ ≤ M for all x ∈ A. Easy. A ⊂ B(0,M) for some
M > 0 by the last subitem.

(c) Any finite set is bounded.

(d) Any open or closed ball is bounded.

(e) A is bounded iff there exists M > 0 such that d(x, y) ≤M for all x, y ∈ A.

(f) If A 6= ∅, we set diam (A) := sup{d(x, y) : x, y ∈ A}, which is set to∞ if the supre-
mum does not exist. The extended real number diam (A) is called the diameter of
A. A set A is bounded iff either A = ∅ or diam (A) <∞.

(g) diam (B(x, r)) ≤ 2r and strict inequality can occur.

(h) In an normed linear space , diam (B(x, r)) = 2r. Hint: Go through Item 71.

(i) Any convergent sequence in a metric space is bounded.

(j) Boundedness is not a topological property. Already seen in Item 140g.

(k) Which vector subspaces of an normed linear space are bounded subsets?

(l) The set O(n) of all orthogonal matrices (that is, the set of matrices satisfying
AAt = I = AtA) is a bounded subset of M(n,R). Here M(n,R) is considered as

an normed linear space as in Ex. 50. Observe that ‖A‖2 =
∑

i

(∑
j |a2ij |

)
= n.

(m) The set SL(n,R) of all n× n real matrices with determinant 1 is not bounded in
M(n,R).

(n) The set of all nilpotent matrices in M(n,R) is not a bounded set.

(o) Let G be a subgroup of the multiplicative group C∗ of the non-zero complex num-
bers. Assume that as a subset of C it is bounded. Then |g| = 1 for all g ∈ G.

196. In a metric space any compact set is bounded in X.

Let K be a compact subset of a metric space X. Fix a ∈ X. Consider {B(a, n) : n ∈ N}
This is an open cover of X and hence the collection {B(a, n) : n ∈ N} has a finite
subcover of K. Since (B(a, n) is increasing, there exists N ∈ N such that K ⊂ B(a,N).

Applications:

(a) SL(n,R) is not a compact subset of M(n,R).

(b) The set of symmetric (respectively, the skew-symmetric) matrices is not compact
in M(n,R). So is the set of matrices with trace zero.

(c) The set of nilpotent matrices in M(n,R) is not compact.
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197. In any topological space, any convergent sequence along with its limit is a compact
subset.

Let xn → x. Given an open cover {Ui : i ∈ I} of {xn : n ∈ N} ∪ {x}, let x ∈ Uj . Then
all but finitely many xn ∈ Uj .

198. If A is a nonempty compact subset of R, then supA and inf A exist and they belong to
A.

Let β = supA. Then there exists xn such that β − 1
n < xn ≤ β. Hence xn → β and

hence β is a limit point of A. Heine-Borel says that A is closed.

199. Assume that f : X → Y is continuous and that X is compact. Then f(X) is compact.
In particular, compactness is a topological property.

200. The product X × Y of two spaces is compact iff X and Y are compact.

To understand the proof, draw a picture of X ×Y as a closed rectangle, as explained in
Item 167. If {Ui×Vi : i ∈ I} is an open cover by means of basic open sets, then we have
an cover of {x} × Y , a “vertical line”. Since this is compact, we have a finite subcover
which turns out to be an open cover of a (super)set of the form Ux × Y , Ux 3 x open.
(A more challenging and instructive exercise could be to carry out this in the case of an
open cover of the circle x2 + y2 = 1 by means of open disks in R2.) These Ux’s cover X
and hence they have a finite subcover. Thus we end up with a finite subcover of X×Y .

Let us now work out the details. WLOG, we may assume that we are given an open
cover by means of basic open sets as in the last paragraph. Since the inclusion map
x 7→ (x, y) is continuous (Why? See Items 169b and 169c.), {x} × Y is compact by
Item 199. Hence there exists a finite subcover, say, {Ui × Vi : i ∈ Fx} for a finite
subset Fx ⊂ I. Then x ∈ Ux = ∩j∈FxUi is an open set. Thus the finite subcover
{Ui×Vi : i ∈ Fx} is an open cover of Ux×Y . As x varies over X, we have an open cover
{Ux : x ∈ X} of the compact space X. Let A ⊂ X be finite such that {Ux : x ∈ A} is
an open cover of X. Then the collection {Ui× Vi : i ∈ Fx, x ∈ A} is a finite subcover of
X × Y .

(Why? Let (x, y) ∈ X × Y . Since {Ua : a ∈ A} is a finite open cover of X, there exists
a ∈ A such that x ∈ Ua. Hence (x, y) ∈ Ua × Y . Now, {Uj × Vj : j ∈ Fa} is a finite
open cover of Ua × Y , there exists j ∈ Fa such that (x, y) ∈ Uj × Vj , j ∈ Fa, a ∈ A, as
claimed.)

201. A more general result known as Tykhonoff’s theorem is true, which has very far-reaching
applications in analysis.

Theorem 9 (Tykhonoff). Let {Xi : i ∈ I} be a family of compact spaces. The the
product space

∏
i∈I Xi with product topology is compact.

For a proof, see my article on Compact spaces.

202. Application of the last item: Any cube [−R,R]n ⊂ Rn is compact. This follows from
Items 191i and 200.

203. Let K be closed and bounded subset of Rn. Let R > 0 be such that ‖x‖ ≤ R for x ∈ K.
Then |xi| ≤ R for x = (x1, . . . , xn) ∈ K. Thus, K ⊂ [−R,R]n. Hence by the last result,
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[−R,R]n is compact. By Item 192, K is compact. We have thus proved the sufficiency
part of the following

Theorem 10 (Heine-Borel). A subset K ⊂ Rn is compact iff K is closed and bounded.

The necessary part follows from Items 193 and 196.

204. Applications of Heine-Borel theorem.

(a) Among the non-degenerate conics in R2, only circles and ellipses are compact.

(b) The unit sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is compact.

(c) O(n,R), the set of orthogonal matrices is compact subset of M(n,R).

(d) The subgroup SL(n,R) is closed and unbounded. It is not a compact subset of
M(n,R).

(e) The set of nilpotent matrices in M(n,R) is closed and unbounded. It is not a
compact subset of M(n,R).

(f) All norms on Rn are equivalent. Details!

Application: Any finite dimensional vector subspace of an normed linear space is
always closed. Hints: If two equivalent norms ‖ ‖1 and ‖ ‖2 are given on a vector
space X, then (X, ‖ ‖1) is complete iff (X, ‖ ‖2) is complete.

205. In general, a closed and bounded subset of a metric space need not be compact. (Stan-
dard example. For another, see Item 217h.)

206. Compact sets and maps:

(a) Assume that f : X → Y is continuous and that X is compact. Then f(X) is
compact. In particular, compactness is a topological property.

(b) Let X be compact and Y be Hausdorff. Then any continuous bijection f : X → Y
is a homeomorphism.

We claim that f is a closed map. Let C ⊂ X be a closed set. Then C is compact
by Item 192. Hence f(C) is a compact subset of Y by sub-item (a). Since Y is
Hausdorff space, and the compact set f(C) is closed in Y by Item 193.

This is a very useful result. Some applications are given below.

i. Typical applications arise in the theory of quotient spaces: The quotient space
[0, 2π]/ ∼ is homeomorphic to S1.

ii. Let f be any map (not assumed to be continuous) from a compact Hausdorff
space X to a compact space Y . Assume that the graph of f is closed as a
subset of the product space X × Y . Then f is continuous.
We have a bijection ϕ : X → Graph(f) given by ϕ(x) = (x, f(x)). If we
show that ϕ is continuous, then as a component of ϕ, the function f must
be continuous. To use Item 206b, the requirements that the domain and co-
domain are compact are met. We need a continuous bijection. If ψ := ϕ−1,
then ψ(x, f(x)) = x is a continuous bijection from the compact space Graph(f)
to the compact Hausdorff X. Hence it is a homeomorphism. We conclude its
inverse ϕ is also continuous.
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This may be called a Closed Graph Theorem, in analogy with a result bearing
the same name in functional analysis: Let X and Y be complete normed linear
spaces, Let T : X → Y be a linear map whose graph is closed in X × Y . Then
T is continuous.

iii. Let X be a set with two distinct topologies T1 and T2. Assume that T1 ⊂ T2
and further that (X, T2) is compact Hausdorff. Then (X, T1) is compact but
not Hausdorff.

(c) Let X be compact and Y be a metric space. Then any continuous map f : X → Y
is bounded.

Let f : X → Y be a continuous function from a compact space X to a metric
space Y . Fix q ∈ Y . Consider Vn := B(q, n). Then Un := f−1(Vn) is open. The
sequence (Un) is increasing and ∪nUn = X. Hence X = UN for some N , that is,
f(X) ⊂ B(q,N).

Note that this also follows form Items 199 and 196.

The converse is not true, in general. See Items 31 and 191m. For metric spaces,
the converse is true. For a proof, see my article on Compact Spaces. Details!

(d) Let X be compact. Then any continuous function f : X → R attains its bounds.

Let X be a compact space and f : X → R be continuous. By the last sub-item
f(X) is a bounded subset of R. Let M = sup f(X) and m = inf f(X). If there
does not exists any ∈ X such that f(a) = M , then Un := {x ∈ X : f(x) <
M − 1

n} is open, Un ⊂ Un+1 and ∪nUn = X. By compactness, there exists N such
that f(X) = UN . But then sup f(X) ≤ M − 1

N , a contradiction. Similar proof
establishes the existence of b ∈ X such that f(b) = m.

This can also be proved using Item 199, Heine-Borel theorem and Item 198.

Applications:

i. Let X be compact and f : X → R be continuous. Assume that f(x) > 0 for
all x ∈ X. Then there is a δ > 0 such that f(x) ≥ δ for all x ∈ X.

ii. Let K be a compact and C a closed subsets of a metric space X such that
K ∩ C = ∅. Then d(K,C) > 0.

iii. Let K be a nonempty compact subset of a normed linear space X. Then there
exists x ∈ K such that ‖y‖ ≤ ‖x‖ for all y ∈ K.

(e) Let X and Y be metric spaces. Assume that X is compact. Then any continuous
map f : X → Y is uniformly continuous.

Fix ε > 0. For each x ∈ X, let δx correspond to ε/2 and the continuity of f at x.
Then {B(x, δx/2) : x ∈ X} is an open cover of X. Let {B(xk, δk/2) : 1 ≤ k ≤ n}
be a finite subcover where δk = δxk . Let δ := min{δk/2 : 1 ≤ k ≤ n}.
Let s, t ∈ X be such that d(s, t) < δ. If s ∈ B(xk, δk/2), then d(t, xk) ≤ d(t, s) +
d(s, xk) < δk. Hence that

d(f(s), f(t)) ≤ d(f(s), f(xk)) + d(f(xk), t) < ε.

207. Given an open cover {Ui : i ∈ I} of a metric space (X, d), we say that a positive number
δ is a Lebesgue number of the cover, if for any subset A ⊂ X whose diameter is less than
δ, there exists i ∈ I such that A ⊂ Ui.
If δ is a Lebesgue number of the cover and 0 < δ′ ≤ δ, then δ′ is also a Lebesgue number
of the given open cover.
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208. In general, an open cover may not have a Lebesgue number. Let X = (0, 1) with the
usual metric. Let Un := (1/n, 1). Then {Un : n ∈ N} is an open cover of X. Does there
exist a Lebesgue number for this cover?

Theorem 11 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space. Let
{Ui : i ∈ I} be an open cover of X. Then a Lebesgue number exists for this cover.

We mimic the argument of Item 206e. For each x ∈ X, if x ∈ Ui, then there exists δx
such that B(x, δx) ⊂ Ui. Consider the open cover {B(x, δx/2) : x ∈ X} like earlier and
arrive at δ, which does the job.

209. Use the last theorem to prove Item 206e. Note that the proofs of Item 206e and Lebesgue
covering lemma are also similar.

210. Definition of FIP: A family of subsets {Fi : i ∈ I} of a set X is said to have the finite
intersection property, (FIP, in short), if every finite collection of members of the family
has a nonempty intersection. Examples:

(a) Let X be any set and (Fn) be a decreasing sequence of nonempty subsets of X.
Then {Fn : n ∈ N} enjoys FIP.

(b) Let X be noncompact. Then there exists an open cover {Ui : i ∈ I} of X which
does not admit a subcover. Consider the family of closed sets {Fi : i ∈ I} where
Fi := X \ Ui. This family of closed sets has F.I.P.

211. A topological space is compact iff every family of closed sets with FIP has a nonempty
intersection.

Let X be compact. Let {Ai : i ∈ I} be a family of closed sets with FIP. We are required
to show that ∩iAi 6= ∅. Assume on the contrary that ∩iAi = ∅. Let Ui := X \ Ai.
Then {UI : i ∈ I} is an open cover of X. Since X is compact, there exists a finite
set F ⊂ I such that ∪j∈FUj = X. By taking complements of this equation, we obtain
∩j∈FAj = ∅. This contradicts our hypothesis that {Ai : i ∈ I} enjoys FIP.

Converse is exactly along the same lines. If X has the said property, we need to show
that X is compact. Let {Ui : i ∈ I} be an open cover of X. Assume that it does not
admit a finite subcover. Let Ai := X \ Ui. Then {Ai : i ∈ I} is a family of closed set
with FIP. Hence ∩iAi 6= ∅ which entails ∪iUi 6= X!

This characterization is used in the proof of Tykhonoff’s theorem.

212. Cantor intersection theorem. This is an analogue of the nested interval theorem of real
analysis.

Theorem 12. Let X be any Hausdorff topological space. Let (Kn) be a decreasing
sequence of nonempty compact subsets of X. Then ∩nKn 6= ∅.

Assume the contrary. Let Un := X \ Kn. Then each Un is open. (Why?) (Un) is an
increasing sequence of open sets whose union is X. Hence {Un : n ∈ N} is an open cover
for K1 and hence there exists N such that K1 ⊂ UN . That is, K1 ⊂ X \ KN . Since
KN 6= ∅, if we select p ∈ KN ⊂ K1, we arrive at a contradiction p ∈ K1 ⊂ Kc

N .
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213. A subset A of a metric space (X, d) is said to be totally bounded if for any given ε > 0,
there exist a finite number of points x1, . . . , xn ∈ X such that A ⊂ ∪nk=1B(xk, ε).

The finite set {xk : 1 ≤ k ≤ n} is usually referred to as an ε-net for A.

214. Examples, non-examples and properties of totally bounded sets.

(a) Any compact subset of a metric space is totally bounded.

(b) If B is totally bounded and A ⊂ B, then A is totally bounded.

(c) If A is totally bounded, so is its closure A.

If {xk : 1 ≤ k ≤ n} is an ε-net for A, then it is 2ε-net for A.

(d) Any totally bounded subset is bounded. The converse is not true. Standard
example: an infinite set with discrete metric. A slightly more demanding example:
In `2, the orthonormal set {en : n ∈ N}. An interesting example: fn(x) = xn,
n ∈ N, in (C[0, 1], ‖ ‖∞).

(e) Any bounded subset of R is totally bounded. (This is essentially Archimedean
property.) In fact, any bounded subset of Rn is totally bounded.

One can prove this directly. Or, if A ⊂ Rn is bounded, so is K := A. Hence K is
closed and bounded. By Heine-Borel, K is compact and hence totally bounded. A
being a subset of K is therefore totally bounded by Item 214b.

215. Characterization of compact metric spaces.

Theorem 13. Let X be a metric space. Then the following are equivalent.
1. X is compact.
2. X is complete and totally bounded.
3. (Bolzano-Weierstrass property.) Every infinite subset of X has a cluster point in X.
4. (Sequential compactness.) Every sequence in X has a convergent subsequence.

For a proof, see my article on compact spaces.

216. Applications of 2nd characterization:

(a) Arzela-Ascoli theorem as a characterization of compact subsets of (C(X), ‖ ‖∞),
where X is a compact metric space. (Perhaps statement only.)

(b) A subset A ⊂ `1 is compact iff A is closed, bounded and is such that for every
ε > 0, there exists N ∈ N such that

∑
n≥N |xn| < ε for all x ∈ A.

217. Applications of (perhaps the most useful) 4th characterization.

(a) Any continuous map from a compact space to a metric space is bounded.

(b) Any continuous real valued function on a compact space attains its bounds.

(c) Let K be a nonempty compact subset of R. Show that supK, inf K ∈ K. Deduce
the last item from this.

Let α := inf K. Then there exists x ∈ K such that α ≤ xn < α + 1
n . Hence

xn → α. Since K is closed, we obtain α ∈ K.

To deduce the last result, take K = f(X).
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(d) Let A,B be disjoint compact subsets of a metric space. Then there exist a ∈ A, b ∈
B such that d(A,B) = d(a, b), and hence d(A,B) > 0.

This result need not be true if the sets are assumed to be closed. Consider A :=
{(x, 0) ∈ R2 : x ∈ R} and B := {(x, y) ∈ R2 : x > 0, y > 0 and xy = 1}. Then
A+B = {(x, y) ∈ R2 : y > 0}.

(e) Let K be a compact subset and C a closed set in Rn. If K ∩ C = ∅, then there
exist x ∈ K and y ∈ C such that d(x, y) = d(K,C).

It is easy to see that there exists an x ∈ K such that d(K,C) = d(x,C). To get y,
observe that there exists a sequence (yn) in C such that d(x, yn) → d(x,C). You
need to apply Bolzano-Weierstrass theorem to the sequence (yn).

(f) Let K,C be as in the last item. Then K + C is closed in Rn.

(g) Let X,Y be compact metric spaces. Then X × Y is compact.

An obvious line of attack needs a careful argument. Observe that 4th character-
ization applied to the sequences (xn) and (yn) may produce subsequences of the
form (x2n) and (y2n−1) converging to x and y respectively. This will not help us
to produce a convergent subsequence of (xn.yn)!

If ((xn, yn)) is a sequence in X×Y , by compactness of X, there exists a subsequence
(xnk

) which converges to some x ∈ X. Now consider the sequence (ynk
) in the

compact metric space Y . Assume a subsequence (ynkr
) converges to y ∈ Y . Then

the subsequence (xnkr
, ynkr

) converges to (x, y) by Item 168b.

(h) Let X denote the normed linear space of all bounded real valued functions on [0, 1]
under the sup norm ‖ ‖∞. Then the closed unit ball in X is closed and bounded
but not compact.

Recall Item 91b and (xn) in C[0, 1].

218. Connected Spaces. Look at

(a) R, an interval,

(b) a circle, a parabola, an ellipse, two intersecting lines, a disk, a circle, a parabola
or an ellipse along with a tangent line at one of its points in R2,

(c) a plane, a sphere, a ball in R3.

All of them seem to be in a “single piece.” Consider now

(a) {−1, 1}, Z, (−1, 0) ∪ (0, 1) in R,

(b) two (distinct) parallel lines, a hyperbola, two disjoint open disks in R2,

(c) two distinct parallel planes, the set consisting of the unit ball B(0, 1) along with
the plane x = 2.

All of these seem to have more than one piece.

219. A topological space X is said to be connected if the only subsets of X which are both
open and closed are ∅ and X. If there exists a subset ∅ 6= A 6= X which is both open
and closed, then the space is said to be disconnected or not connected.

Clearly, connnectedness is a topological property.

We say that a subset A of a topological space X is connected (or a connected subset of
X), if A is a connected space with the subspace topology.
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220. If X is not connected, say ∅ 6= A 6= X is both open and closed, then B := X \A is such
that ∅ 6= B 6= X and it is both open and closed. Hence, X is disconnected iff there exist
. . .. (Complete this sentence.) Thus X has two “pieces” A and B!

One usually calls A or the pair (A,B) as a disconnection of X.

221. A topological space X is connected iff it has the following property: If U and V are
nonempty open sets such that X = U ∪ V , then U ∩ V 6= ∅.

222. A subset A is connected iff the following condition is satisfied: If U and V are open
subsets of X such that U∩A and V ∩A are nonempty and A ⊂ U∪V , then U∩V ∩A 6= ∅.

223. We now give some examples. (More examples will follow once we prove a powerful
characterization of connected spaces. See Items 224–225.)

(a) R is connected. See Item 57i. Similar proof shows that any interval is connected.

(b) Q and R \Q are not connected. See Item 150e.

(c) Any discrete space with more than one element is disconnected.

(d) Any indiscrete space is connected.

(e) Is the empty set connected?

224. The following theorem is a powerful characterization of connected spaces. The theorem
remain true if we take Z to be any discrete space with at least two elements, for instance,
Z ⊂ R with the subspace topology.

Theorem 14. Consider Z := {±1} ⊂ R with subspace topology. A topological space is
connected iff any continuous map f : X → Z is a constant.

Let X be connected. Let f : X → Z be continuous. If f(a) = 1 and f(b) = −1, let
A := f−1({1}) and B := f−1({−1}). Then A and B are non-empty, open, disjoint, with
X = A ∪B. Hence X is not connected.

Conversely, if X is not connected, let (A,B) be a disconnection of X. Define f = 1 on
A and f = −1 on B. If V is an open set in {±1}, then V = ∅, V = {±1}, V = {1}
or V = {−1}. Their inverse images are ∅, X, A and B respectively. Hence f is a
continuous function from X onto {±1}.
When we use this result to deal with connectedness of subsets in a topological space,
we shall make use of Items 155–156.

225. Applications of the last theorem.

(a) Any interval is connected. Use intermediate value theorem.

(b) A subset of R is connected iff it is an interval. As one can give a direct proof of
this, we have the intermediate value theorem as a corollary.

(c) Let M(n,R) denote the set of all n×n matrices of real numbers. Then GL(n,R) :=
{A ∈M(n,R) : det(A) 6= 0} is not connected.

(d) O(n,R) := {A ∈ GL(n,R) : AAt = I} is not connected.

(e) Let X be a topological space. Let A and B be two connected subsets of X such
that A ∩B 6= ∅. Then A ∪B is connected. Generalize this.
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(f) Let X be a connected topological space and g : X → Y be a continuous map. Then
g(X) is connected. Applications:

i. Any line segment in an normed linear space is connected.

ii. The circle {(x, y) ∈ R2 : x2 + y2 = 1} is connected. Similarly, the ellipse and
parabola are connected.

iii. SO(2,R) := {A ∈ O(2,R) : detA = 1} is connected.

iv. GL(n,R) is not connected.

v. O(n,R) is not connected.

(g) Let X be such that every pair of points of X lies in a connected subset. Then X
is connected.

In fact, we can weaken the hypothesis. Let p ∈ X be fixed. Assume that for any
x ∈ X, there exists a connected subset Ax ⊂ X such that p, x ∈ Ax. Then X is
connected.

Applications:

i. Any star-shaped subset of a normed linear space is connected. A subset E of
a normed linear space X is said to be star-shaped at p ∈ E if for any q ∈ E,
the line segment [p, q] := {(1− t)p+ tq : 0 ≤ t ≤ 1} ⊂ E.

ii. A subset C of a normed linear space is said to be convex if it is star-shaped at
each of its points. Hence a convex set in a normed linear space is connected.

iii. It is easy to see that a ball B(a, r) in a normed linear space is convex. If
x, y ∈ B(a, r), we have, for t ∈ [0, 1],

d((1− t)x+ ty, a) = ‖(1− t)(x− a) + t(y − a)‖
≤ (1− t) ‖x− a‖+ t ‖y − a‖
< (1− t)r + tr = r.

Consequently, any ball (open or closed) in a normed linear space is connected.

iv. R2 \ {0} is connected.

v. R2 \ {(n, 0) : n ∈ Z} is connected.

vi. R with the lower limit topology TL is connected. For given any two points, say,
a < b, the the identity map from (R, Td) to (R, TL) is continuous and hence
maps the connected set [a, b] to a connected set.

(h) Let A be a connected subset of a space X. Let A ⊂ B ⊂ A. Then B is connected.

Let f : B → {±1} be continuous. Restricted to A, f is a constant, say 1. Let
x ∈ B. We show that f(x) = 1. Let, if possible, f(x) = −1. Then there exists a
set Ux 3 x, open in B, such that f(Ux) ⊂ (−3/2,−1/2). Since x is a limit point
of A, we can find a ∈ Ux ∩A. But then f(a) = 1 /∈ (−3/2,−1/2).

Application:

• Consider the set L := {(t, 0) : t ∈ [0, 1]}, An := {(1/n, y) : y ∈ [0, 1]} for
n ∈ N and A0 := {(0, y) : y ∈ [0, 1]}. Then E := L ∪ (∪nAn) is connected and
so its closure, E ∪ A0 is connected. Hence the set E ∪ {(0, 1)} is connected.
(X := E ∪A0 is known as the comb space.)

(i) Let X be the union of open disk in R2 along with the tangent line x = 1. It is
connected.
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(j) The open unit disk in R2 along with any subset of its boundary is connected. (This
is geometrically ‘obvious’.)

(k) Let {Ai : i ∈ I} be a collection of connected subsets of a space X with the property
that for all i, j ∈ I we have Ai ∩Aj 6= ∅. Then A := ∪iAi is connected.

Applications:

Any star-shaped subset of a normed linear space is connected. In particular, we
have

• Any convex subset of a normed linear space is connected.

• Any open/closed ball in any normed linear space is connected.

• Any vector subspace in a normed linear space (in particular Rn) is connected.

• Any coset of a vector subspace in a normed linear space (or Rn) is connected.

(l) Let X be a topological space. Assume that {Ai : i ∈ I} is a family of connected
subsets of X. Let L be another connected subset such that L∩Ai 6= ∅ for all i ∈ I.
Show that L ∪ (∪i∈IAi) is a connected subset of X.

(m) Let X and Y be topological spaces. Then the product space X × Y is connected
iff both X and Y are connected.

Let f : X×Y → {±1} be a continuous function. Fix (a, b) ∈ X×Y . We show that
for any (x, y) ∈ X×Y , we have f(x, y) = f(a, b). Since {a}×Y is connected (why?),
the restriction of f to this set is a constant. In particular, f(a, y) = f(a, b). Now
the subset X × {y} is connected and hence the restriction of f to it is a constant.
In particular, f(a, y) = f(x, y). Hence f(x, y) = f(a, b). Picture!

Applications:

i. R2 \ {(0, 0)} is connected as it is the product of (0,∞)× [0, 2π).

ii. A cylinder {(x, y, z) : x2 + y2 = 1} is the product of circle and R and hence is
connected.

(n) The sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is connected.

The case n = 1 is already seen. Assume n > 1.

Note that S = S+ ∪ S− where S± := {x ∈ Rn+1 : ±xn+1 > 0}, union of two closed
hemi-spheres. The map ϕ : S− → B[0, 1] given by ϕ(x1, . . . , xn+1) = (x1, . . . , xn)
is a bijective continuous map whose inverse is ψ : B[0, 1] ⊂ Rn → S− given by

ψ(u) =
(
u,−

√
1−

∑
u2j

)
. Hence it is homeomorphism and S− is connected.

Similarly, S+ is connected. Now the intersection of these two hemi sphere is the
equator {xn+1 = 0}. By Item 225e, the sphere is connected.

Alternatively, connectedness of Sn can also seen as follows. Since Sn is the image
the polar coordinate map, Sn is connected. For instance, ϕ : [−π/2, π/2]×[0, 2π]→
S2 is given by ϕ(u, v) = (cosu cos v, cosu sin v, sinu).

A third way of seeing this is to observe that any point x other than the north pole
en+1 lies on a unique great circle and appeal to Item 225g.

Applications:

i. Rn \ {0} is connected, n ≥ 2.

ii. A cylinder {(x, y, z) ∈ R3 : x2 + y2 = 1} is connected.

iii. An annular region {x ∈ Rn : r < ‖x‖ < R} is connected.
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226. We can give a direct proof of Item 225(n)i. Draw pictures in R2 to understand the proof
below. Let x ∈ Rn be nonzero. Let P = {x ∈ Rn : xn = 1}. Then P is homeomorphic
to Rn−1 and hence is connected (as n > 1). We show that any non-zero x lies on a
line segment which meets P . Hence by Item 225l it will follow that the set of nonzero
vectors in Rn (n > 1) is connected.

Let x ∈ Rn be nonzero. If xj 6= 0 for some j < n, then the line (x1, . . . , xj , . . . , t) passes
through x, does not contain 0 and it meets P .

If xn is the only nonzero coordinate, the line joining x with (1, 0, . . . , 0, 1) is given by
(1 − t)(0, . . . , 0, xn) + (1 − t)(1, 0, . . . , 0, 1). It contains the given point, does not pass
through origin and it meets P .

We now prove that the sphere is connected. The continuous map Rn\ → Rn given by
x 7→ x/ ‖x‖ has the sphere as its image.

227. Connectedness can be used to settle questions on homeomorphisms:

(a) The set of irrational numbers in R with subspace topology is not homeomorphic
to R.

(b) A hyperbola cannot be homeomorphic to R.

(c) R cannot be homeomorphic to R2.

(d) A pair of intersecting lines cannot be homomorphic to a parabola.

(e) The set A of two distinct parallel lines in R2 is not connected. Hence a pair of
intersecting lines cannot be homomorphic to A.

228. A finite metric space is connected iff is a singleton.

229. Let X be connected and f : X → R be a continuous non-constant function. Show that
f(X) is uncountable.

230. Let X be a connected metric space with at least two elements. There X “has at least
as many elements as R.” In particular, X is uncountable.

231. What are all the continuous functions from f : R→ R that take only rational values?

232. Are there continuous functions f : R→ R that take irrational values at rational numbers
and rational values at irrational numbers?

233. Let f : [a, b]→ R be continuous. “Identify” the image f([a, b]).

234. Let f be a one-one continuous function on an interval. Then f is monotone.

235. What are all the continuous functions from a connected space to (i) a discrete space,
(ii) a finite Hausdorff space?

236. Let f : X → Y be a continuous map from a connected space X onto a finite Hausdorff
space? What can you conclude about Y ?

237. Let X and Y be topological spaces and f : X → Y be a map. We say that f is locally
constant if for each x ∈ X, there exists an open set Ux containing x with the property
that f is a constant on Ux.
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238. Show that any locally constant function is continuous.

239. Let U ⊂ Rn be a nonempty open set. Let f : U → R be a differentiable function with
derivative 0. Then f is locally constant. (It need NOT be a constant function!)

240. Let X be connected and Y be Hausdorff. Then any locally constant function f : X → Y
is a constant function on X.

Fix p ∈ X. We show that f(x) = f(p) for x ∈ X. Define a subset A := {x ∈ X : f(x) =
f(p)}. Then p ∈ A. Hence p is non-empty. We shall show that A is both open and
closed. Since X is connected, it will follow that A = X.

Let x ∈ A. Since f is locally constant, there exists an open set U 3 x on which f is a
constant. Hence for any z ∈ U , f(z) = f(x) = f(p). That is, U ⊂ A. Hence A is open.

Let q be a limit point of A. Let Uq 3 q be an open set on which f is a constant. Since
q is a limit point of A, there exists a ∈ A ∩ Uq. Hence f(z) = f(a) for all z ∈ Uq, in
particular, f(q) = f(a) = f(p). Hence q ∈ A, that is, A is closed. Hence A = X.

This is a typical way in which connectedness hypothesis is used. If a result has connect-
edness as hypothesis, define a set which reflects what we want to prove and show that
the set so-defined is non-empty, open and closed. Learn this proof well. For another
example, refer to Item 252.

241. In Item 239, if we further assume that U is connected, then f is a constant.

242. Path-connected Spaces. A continuous map α : [a, b] → X to a topological space X
is called a path. Since any two intervals are homeomorphic, it is a standard practice
to assume that a = 0 and b = 1. The point p := α(0) is called the initial point and
q := α(1) is called the terminal point of the path α. We also say that p is path connected
to q by the path α.

Note that if p is connected to q by a path to α : [0, 1]→ X with α(0) = p and α(1) = q,
then the reverse path α̃ : [0, 1]→ X defined by α̃(t) := α(1− t) is a path from q to p.

Thus if p is connected to q by a path iff q is connected to p by a path. Because of this
we simply say that p and q are path-connected, without specifying which is the initial
point etc.

243. It is important not to identify the path α with its image α([0, 1]) in X. (It is called the
trace of α. Mnemonic: the trains could be different but the tracks may be the same.)
The paths α, β : [0, 1]→ R2 given by α(t) = (t, 0) and β(t) = (t3, 0) have the same trace.

244. Two point p and q may be connected by more than one path. Think of at least 3
different paths connecting (−1, 0) to (0, 1) in R2.

245. If x and y are path-connected and y and z are path-connected in a space, then x and z
are path connected.

This is an application of gluing lemma. Assume that α : [0, 1]→ X connects x to y and
β : [0, 1]→ X connects y to z. Then the map γ : [0, 1]→ X defined as

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1/2

β(2t− 1) if 1/2 ≤ t ≤ 1.
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Since α(1) = y = β(0), we can apply gluing lemma to conclude that γ is path connecting
x to z.

246. We say that a topological space X is path-connected if any two points of X are connected
by a path.

247. X is path connected iff there exists p ∈ X such that any point x ∈ X is path connected
to p.

248. Any path connected space is connected.

Let X be path connected. Let f : X → {±1} be continuous. Let p, q ∈ X and α : [0, 1]→
X be a path joining p to q. Now f ◦ α : [0, 1] → {±1} is continuous and hence is a
constant. In particular, f(p) = f(α(0)) = f(α(1)) = f(q), Hence f is a constant.

Or, observe that any two points lie on the trace of a path, which is connected. Hence,
by Item 225g, X is connected.

249. The converse is not true. Two examples:

(a) Comb space: Let L := {(x, 0) : 0 ≤ x ≤ 1} and An := {(1/n, y) : 0 ≤ y ≤ 1}, for
n ∈ N. Let P = {(0, 1)}. Then L∪ (∪n∈NAn) is connected and its closure contains
X := L ∪ (∪n∈NAn) ∪ {P}. Hence X is connected. It is not path connected. If
possible, let γ be path joining P to Q = (1, 0) ∈ X. Choose an open disk B(P, r)
which does not meet the x-axis. Let [0, δ) be such that γ(t) ∈ B(P, r) for t ∈ [0, δ).
Let γ = (γ1, γ2). Then γ1([0, δ)) is a connected subset of B(P, r)∩X. It follows that
γ1(t) = 0 for t ∈ [0, δ). Hence γ1(δ) = 0. We Let t0 := sup{t ∈ [0, 1] : γ1(t) = 0}.
Then γ1(t0) = 0. We claim that t0 = 1. If not, repeat argument using the
continuity of γ at t0. We then get there exists s > t0 such that γ1(s) = 0. Thus
we conclude that γ(t) = P for t ∈ [0, 1].

(b) Topologist’s sine curve. Consider

X := {(x, sin(1/x)) : x > 0} ∪ {(x, 0) : −1 ≤ x ≤ 0} = A ∪B (say.)

Clearly each of A and B is connected. Also, the point (0, 0) is a limit point of the
set A and hence A1 = A∪ {(0, 0)} ⊂ A is connected. Since B and A1 have a point
in common their union X is connected.

We claim that X is not path-connected. In fact, we show that there is no path
connecting (1/π, 0) with (0, 0). Let γ : [0, 1]→ X be path such that γ(0) = (1/π, 0)
and γ(1) = (0, 0). Then π1 ◦ γ must take all values that lie between 0 and 1/π. In
particular, there exist tn ∈ [0, 1] such that π1 ◦ γ(tn) = 1

(2n+ 1
2
)π

. Then, γ(tn) →
(0, 1) as n → ∞. By Bolzano-Weierstrass, there exists a convergent subsequence,
(tnk

). Let t0 be the limit of this subsequence. Then π1 ◦ γ(tnk
) → 0. Thus, γ(t0)

must be (0, y) for some y. Since γ(t0) = (0, y) ∈ X, it follows that y = 0. But,
π2 ◦ γ(t0) = limπ2 ◦ γ(tnk

) = 1. This contradiction shows that there is no such
path γ.

250. The continuous image of a path connected space is path connected.

Let f : X → Y be continuous with X path connected. Let Y = f(X). Given yj =
f(xj) ∈ Y , j = 1, 2. Let γ be a path connecting x1 to x2. Then f ◦ γ is a path
connecting y1 to y2.
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An application. The proof in Item 226 showed that Rn \ {0}, n ≥ 2, is path connected.
Hence Sn, being a continuous image of Rn \ {0} is also path connected.

251. The product space of path connected spaces is path connected.

Let x = (xi), y = (yi) ∈
∏
iXi. Let γi be a path connecting xi to yi in the space Xi.

Define γ(t) := (γi(t)). Then γ is a path connecting x to y .

An application. The third proof of the connectedness of Sn in Item 225n established its
path connectedness. Hence Rn \ {0} = (0,∞)× Sn−1 is path connected.

252. Any open subset of a normed linear space is connected iff it is path connected.

Let A be a connected open subset of a normed linear space X. Fix p ∈ A. It suffices to
show that there is a path connecting p to any q ∈ A. (See Item 247.) Let

E := {x ∈ A : x is path-connected to p}.

From here onwards, the proof is exactly similar to the one in Item 240.

Clearly, p ∈ E and hence E 6= ∅. Let x ∈ E. Then there exists an open ball B(x, r) ⊂
A, since A is open. Now any z ∈ B(x, r) is connected to x via the line segment
t 7→ (1 − t)z + tx. Since x ∈ E, x is path connected to p. Hence by Item 245, z is
path-connected to p and hence B(x, r) ⊂ E. We conclude that E is open.

Let q ∈ A be a limit point of E in A. As earlier, there exists B(q, r) ⊂ A. Since q is
a limit point of E, there exists z ∈ B(q, r) ∩ E. Now, q is path connected by the line
segment (1 − t)q + tz to z which in turn is path connected to p, as z ∈ E. Hence q is
path connected to p, or q ∈ E. Hence E is closed.

253. Connected Components. In a topological space X, the relation x ∼ y if there exists
a connected set A with x, y ∈ A is an equivalence relation. The equivalence classes are
called the connected components or components of X. The following are immediate:

(a) If C is a component, then C is a closed connected set.

(b) Any component C is a maximal connected set in the sense that if A is connected
and C ⊂ A, then C = A.

(c) If C is a component, x ∈ C and if A is a connected set with x ∈ A, then A ⊂ C.

254. Examples of components:

(a) The only component of a connected space X is X.

(b) The components of a discrete space are the singleton sets.

(c) The components of Q are the singleton sets. (Note that the topology on Q is
not discrete topology. We gave two proofs of this. One is direct use of subspace
topology and another used existence of non trivial convergent sequences.) Details!

(d) What are the components of R with VIP topology? with outcast topology?

255. If f : X → Y is a homeomorphism, then f induces a natural bijective correspondence
between the components of X and those of Y : If C is a component of X, then f(C)
is a component of Y . Application: The pair of intersecting lines is not homeomorphic
to R. (If they are, remove the point of intersection from the pair of lines and its image
from R. Count the components.)
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256. Path components are defined in an obvious way. If Cx (resp. Px) is the component
(resp. path-component) containing x ∈ X, then Px ⊆ Cx.

257. Going through the proof in Item 252, we are led to the concept of locally path connected
spaces. First of all a definition.

258. Let X be a topological space and x ∈ X. A subset U is called a neighbourhood of x in X
if there exists an open set G such that x ∈ G ⊂ U . Example: [0, 1) is a neighbourhood
of any x ∈ (0, 1) but not of x = 0.

259. A set in a topological space is open iff it is a neighbourhood of each of its points.

260.

Locally P spaces

General Philosophy: Let P be a topological property. We say that a space X is
locally P (or enjoys P locally) if for each x ∈ X and an open set U 3 x, there exists
a neighbourhood N of x where N has the property P and N ⊂ U .

261. Let X be a topological space. Then X is said to be locally path connected if for each
x ∈ X and an open set U 3 x, there exists a path connected neighbourhood N of x
such that N ⊂ U .

Now you can similarly define locally connected and locally compact spaces.

Do you see the need for introducing the notion of neighbourhoods? If we replace a
neighbourhood by an open set in the locally P spaces, what will happen if we wanted a
Hausdorff space to be locally compact?

262. The proof of Item 252 yields the following result: An open set in a locally path connected
space is connected iff it is path-connected.

263. An important remark: In general X may have property P but it may not be locally P .
For instance, the complete comb space is connected but not locally connected. (Look
for a connected neighbourhood of the point (0, 1).) Similarly, there exists a compact
space (Item 274c) which is not locally compact. (Do NOT get confused with the ‘bad’
definition of Munkres and hence his “note” that any compact space is locally compact!)

Similarly, the space X may be locally P , but X may not enjoy P . For instance, consider
R with discrete topology. Then it is locally connected, locally path-connected and locally
compact. But it is not connected, not path connected and not compact.

264. A space X is locally connected iff the components of any open subset (with subspace
topology) are open in X. In particular, the components of X are open. Details!

265. The components in a locally path connected space are open.

266. Let U be an open subset of a locally path connected space. Then U is connected iff it
is path-connected.

267. In a locally path connected space, the components and path components are the same.

268. Can we define locally Rn or locally Euclidean spaces?

We say that a space X is locally Euclidean or locally Rn if for each x ∈ X, there exists
a neighbourhood Ux 3 x which is homeomorphic to a neighbourhood in Rn. (Note that
n is fixed.)
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269. Can we define locally Hausdorff spaces? Is it necessarily Hausdorff?

Consider X = R∗∪{θ1, θ2} where θj are two elements not in R∗. (We shall think of them
as “two zeros” or “the zero with split personality!”) As a local basis for x ∈ R∗, we take
{(x− 1/k, x+ 1/k) : k ∈ N}. At θj , we take {(−1/k, 0)∪ {θj} ∪ (0, 1/k) : k ∈ N}. Then
we get a topological space which is locally Euclidean and hence it is locally Hausdorff.
However, it is not Hausdorff.

270. Locally Compact Spaces:

271. The following are descendants of Item 193.

(a) Let K be a compact subset of a Hausdorff space X and x /∈ K. Then there exist
disjoint open sets U and V such that x ∈ U and K ⊂ V . (This is Item 194.)

(b) Let A and B be disjoint compact subsets of a Hausdorff space. Then there exist
disjoint open sets U and V such that A ⊂ U and B ⊂ V .

(c) Let X be a compact Hausdorff space. Let A and B be disjoint closed subsets of
X. Then there exist disjoint open sets U and V such that A ⊂ U and B ⊂ V .

272. A space X is said to be normal if given two disjoint closed sets A and B, there exist
disjoint open sets U ⊃ A and V ⊃ B.

Last item shows that a compact Hausdorff space is normal.

273. Another example of a normal space is any metric space.

To appreciate this, look at A = {(x, y) ∈ R2}, the set of axes which are asymptotes of
the rectangular hyperbola B := {(x, y) ∈ R2 : xy = 1}.
We now prove the result. If a ∈ A, then A is a not a limit point of B. Hence d(a,B) > 0,
by Item There exists ra > 0 such that B(a, ra) ∩ B = ∅. U := ∪a∈AB(a, ra). We can
do similarly for B.

274. Examples of locally compact spaces:

(a) R, Rn are locally compact.

(b) Q is not locally compact.

(c) A compact space need not be locally compact. Example: Consider Q with the
usual topology, adjoin an extra element, say ∞. The neighbourhoods of x ∈ Q are
either the neighbourhoods of x in Q or ∞ added to the standard neighbourhoods.
The neighbourhoods of ∞ are complements in Q of a finite subset of F along with
∞.

(d) An normed linear space is locally compact iff it is finite dimensional. (One way is
easy; the proof of the other is omitted.)

(e) A locally compact metric space need not be complete. A trivial example is (0, 1)!

Theorem 15. The following are equivalent for a Hausdorff space:
1. X is locally compact.
2. For every x ∈ X and a neighbourhood U of x, there exists an open set V such that

x ∈ V , V is compact and V ⊂ U .
3. Each x ∈ X has a compact neighbourhood.
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Proof. (1) =⇒ (2): Let x ∈ X and K be a compact neighbourhood of x. Then there
exists an open set V ⊂ K with x ∈ V . Since X is Hausdorff, K is closed. Hence V ⊂ K.
Hence V being a closed subset of a compact set K, is compact.

(2) =⇒ (3): Take V of (2).

(3) =⇒ (1): Details!

Since locally compact spaces such as Rn arise quite often, whenever we say X is locally
compact, we shall assume that X is Hausdorff also.

275. Local compactness is a topological property. In fact, more is true: Let f : X → Y be a
continuous open map of a locally compact space X onto Y . Then Y is locally compact.

Let y ∈ Y and V 3 y be open. Let x ∈ X be such that f(x) = y. Then U := f−1(V )
is an open set with x ∈ U . Since X is locally compact, there exists an open set W 3 x
with W compact and W ⊂ U . Since f is open f(W ) 3 y is open, since W is compact,
f(W ) is compact. Thus, f(W ) is a compact neighbourhood of y.

276. A closed (respectively open) subspace of a locally compact space is locally compact.

277. A Hausdorff topological space X is called an n-dimensional topological manifold if for
each p ∈ X, we can find an open set Up 3 p such that Up is homeomorphic to an
open subset of Rn for n fixed. Thus, a manifold is a Hausdorff space which is locally
Euclidean.

Typical examples are (i) open subset of Rn and (ii) Sn ⊂ Rn+1. A non-example is a
pair of intersecting lines in R2. Modern topology deals mostly with manifolds.

278. Given X = (0, 1] ⊂ R, by adding just the point 0, we can make it to be compact. Note
that (0, 1] is dense in [0, 1].

Similarly, the subspace topology on the set {1/n : n ∈ N} ⊂ R is discrete. If we add
the point 0 to it, then the resulting space is compact in which the original set is dense.

Can we so something similar to any locally compact, non-compact Hausdorff space X?

That is, can we add a new point, which is denoted by ∞ to X and obtain a compact
Hausdorff space? Let us work backwards. Assume X∞ := X ∪ {∞} is compact Haus-
dorff. We would like to retain open subset of X in tact. So we need to provide a local
base at ∞. If U 3 ∞ is an open set , then X∞ \ U is a closed subset of the compact
space X∞ and hence is compact. But, it is in fact a subset of X. This suggests a way
of defining a local base at ∞, namely, a subset U 3 ∞ is open if X∞ \ U is a compact
subset of X.

279. One point compactification. Given a locally compact noncompact Hausdorff space
X, let X∞ := X ∪ {∞} where ∞ /∈ X. Let T denote the topology on X. Consider

T∞ := T ∪ {V ⊂ X∞ : X∞ \ V is a compact subset of X.}.

Then Details!

(i) T∞ is a Hausdorff topology on X∞.
(ii) The subspace topology on X is T .
(iii) (X∞, T∞) is compact.
(iv) X is dense in X∞.
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280. Let X be noncompact, locally compact Hausdorff space. Let Y be a compact Hausdorff
space. Assume that there exists q ∈ Y and a homeomorphism f : X → Y \ {q}. Then
the one point compactification X∞ of X is homeomorphic to Y . Details!

281. Examples:

(a) Rn ∪ {∞} = Sn.

(b) Let x : N → X be a sequence in X. Then xn → x∞ iff the function x : N∞ → X
defined by x(n) = xn and x(∞) = x∞ is continuous at ∞.

Application: Use this to give another solution of Item 168b.

(c) Let X be a discrete space. What is its one point compactification?

282. Functions vanishing at infinity: Let X be a locally compact Hausdorff space. A con-
tinuous function f : X → R is said to vanish at infinity if for any given ε > 0 there
exists a compact set K ⊂ X such that |f(x)| < ε for x /∈ K. (We can also define
continuous function vanishing at∞ for functions taking values in a normed linear space
in an obvious way.)

A continuous function f : X → R vanishes at infinity iff it extends to a continuous
function f∞ : X∞ → R with f∞(∞) = 0.

(a) Let f : X → R be given. Its support is by definition the closure of the set {x ∈
X : f(x) 6= 0}, that is,

supp (f) := {x ∈ X : f(x) 6= 0}.

We say that f has compact support if the support of f is compact. Evidently, any
continuous function with compact support vanishes at infinity.

(b) What are the entire functions f : C→ C which vanish at infinity?

283. A closely related concept is proper maps between (locally compact Hausdorff) spaces.
See ???? Details!

This concept is so important that any proof of Fundamental theorem of algebra has
to either directly or indirectly use the fact that the any non-constant polynomial with
complex coefficients when considered as a map from C to C is proper.

284. A subset A ⊂ X of a topological space is said to be nowhere dense in X, if given any
nonempty open set U , we can find a nonempty open subset V ⊂ U such that A∩V = ∅.
This definition is equivalent to the standard one found in all text-books: A is nowhere
dense in X iff the interior of the closure of A in X is empty: Int (A) = ∅.

285. Prototype examples of nowhere dense sets:

(a) Let V be any proper vector subspace of Rn. More generally, any proper vector
subspace of a normed linear space .

(b) The set of zeros of any polynomial map Rn → R.

286. Baire Category theorem. We shall give the formulation of Baire category theorem
in a form which will be more useful than the one which uses the notion of category.
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Theorem 16. Let (X, d) be a complete metric space.
(1) Let Un be open dense subsets of X, for n ∈ N. Then ∩nUn is non-empty.
(2) X cannot be a countable union of nowhere dense closed subsets Fn.

We first observe that both the statements are equivalent. For, G is open and dense iff
its complement F := X \G is closed and nowhere dense. Hence any one of them follows
from the other by taking complements. So, we confine ourselves to proving the first. In
fact, we shall show that ∩nUn is dense in X.

The basic idea is to get into a situation like nested interval theorem. Since we need to
exploit completeness, we need to produce a Cauchy sequence whose limit is likely to be
in the intersection of Un’s. If we have a nested sequence of open balls, say, (B(xn, rn)
such that B(xn, rn) ⊂ B(xn−1, rn−1), we get a sequence (xn). If we sih to show it is
Cauchy, the only obvious estimate available (for n > m) is

f(xn, xm) ≤ d(xn, xn−1) + · · ·+ d(xm+1, xm) ≤
n∑

k=m

rk.

Thus we are lead to make the sequence (rn) of radii as the terms of a convergent
sequence. The standard way of doing this is to demand 0 < rn < 2−n.

We can also replace (Un) by a nested sequence (Vn) of open dense sets. Define V1 := U1.
Having defined Vn, define Vn+1 = Un+1 ∩ Vn. Clearly, V1 is open dense. Assume that
we have shown Vn is open dense. Let U be any nonempty open set. We need to show
that U ∩ Vn+1 6= ∅. Observe that

U ∩ Vn+1 = (U ∩ Vn) ∩ Un+1.

Since by induction U ∩ Vn is nonempty open, it must have nonempty intersection with
the dense set Un+1. Thus we have produce a nested sequence (Vn) of open dense sets
with ∩nVn = ∩nUn. We now show that ∩nVn is dense. Let B(p, r) be an open ball. Since
V1 is dense, there exists x1 ∈ V1 ∩ B(p, r). Since the intersection is open, there exists
a positive r1 < 1/2 such that B[x1, r1] ⊂ V1 ∩ B(p, r). Repeating the same argument
with B(x1, r1) ∩ V2, we find x2 and 0 < r2 < 2−2 such that

B[x2, r2] ⊂ B(x1, r1) ∩ V2 ⊂ V1 ∩ V2 ∩B(p, r).

By induction we get sequences (xn) and (rn) such that

B[xn, rn] ⊂ B(xn−1, rn−1) ∩ Vn ∩ · · · ∩ V1 ∩ V2 ∩B(p, r).

Clearly (xn) is Cauchy. Since X is complete, (xn) converges, say, to x ∈ X. Observe
that {xk : k ≥ n} ⊂ B[xn, rn]. Hence x is a limit point of the closed ball B[xn, rn] so
that x ∈ B[xn, rn]. Since this is true for all n, we obtain x ∈ B(p, r) ∩ (∩nVn). The
theorem is proved.

Let U := ∩nUn. We have to prove that U is dense in X. Let x ∈ X and r > 0 be given.
We need to show that B(x, r)∩U 6= ∅. Since U1 is dense and B(x, r) is open there exists
x1 ∈ B(x, r)∩U1. Since B(x, r)∩U1 is open, there exists r1 such that 0 < r1 < 1/2 and
B[x1, r1] ⊂ B(x, r) ∩ U1. We repeat this argument for the open set B(x1, r1) and the
dense set U2 to get x2 ∈ B(x1, r1) ∩ U2. Again, we can find r2 such that 0 < r2 < 2−2
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and B[x2, r2] ⊂ B(x1, r1) ∩ U2. Proceeding this way, we get for each n ∈ N, xn and rn
with the properties

B[xn, rn] ⊂ B(xn−1, rn−1) ∩ Un and 0 < rn < 2−n.

Clearly, the sequence (xn) is Cauchy: if m ≤ n,

d(xm, xn) ≤ d(xn, xn−1) + · · ·+ d(xm+1, xm) ≤
n∑

k=m

2−k.

Since
∑

k 2−k is convergent, it follows that (xn) is Cauchy.

Since X is complete, there exists x0 ∈ X such that xn → x0. Since x0 is the limit
of the sequence (xn)n≥k in the closed set B[xk, rk], we deduce that x0 ∈ B[xk, rk] ⊂
B(xk−1, rk−1) ∩ Uk for all k. In particular, x0 ∈ B(x, r) ∩ Uk for all k ∈ N.

287. A most often used corollary of Baire’s theorem is the following: If a complete metric
space X can be written as a countable union of closed sets Fn, then at least one Fn will
have a nonempty interior.

288. Applications:

(a) Rn cannot written as the union of a countable family of its proper vector subspaces.
In particular, R2 is not the union of a countable family of lines through the origin.

(b) No infinite dimensional complete normed linear space can be countable dimen-
sional. (Algebraic sense!)

(c) There can exist no metric d on Q such that d induces the usual topology on Q and
(Q, d) is complete.

(d) Let (X, d) be complete and fn : X → R be a sequence of continuous functions. As-
sume that fn → f pointwise onX. Then the setA := {x ∈ X : f is continuous at x}
is dense in X.

Proof. Our proof is a beautiful application of both versions of Baire’s theorem.

Fix ε > 0. Define, for each k ∈ N,

Ek(ε) := {x ∈ X : |fn(x)− fm(x)| ≤ ε, for all m,n ≥ k}.

Then we claim that Ek(ε) is closed for each k.

Reason: Fix m,n ≥ k. Since |fn − fm| is continuous, the set

Em,n
k (ε) := {x ∈ X : |fn(x)− fm(x)| ≤ ε}

is a closed subset of X. Now, since Ek(ε) = ∩m,n≥kE
m,n
k (ε), the claim follows.

It is easy to show that X = ∪kEk(ε).
Reason: Let x0 ∈ X. Since fn(x0) → f(x0), the sequence (fn(x0)) is Cauchy.

Hence for the given ε > 0, there exists k0 such that for m,n ≥ k0, we have

|fm(x0)− fn(x0)| ≤ ε. Hence we conclude that x0 ∈ Ek0(ε).
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Since Xis a complete metric space, at least one of Ek(ε) should have nonempty
interior. Let Uε := ∪kInt (Ek(ε)). Then Uε is a nonempty open subset of X.

Let Un := U1/n. We claim that each Un is dense in X.

Reason: It is enough if we show that every closed ball B := B[x, r] meets Un

non-trivially. (Why?)

Reason: To show a set A is dense in a metric space, it suffices to show
that A∩B(x, r) 6= ∅ for any x ∈ Xand r > 0. Assume that A∩B[z, ρ] 6= ∅
for any z ∈ X and ρ > 0. Then given any B(x, r), we may take z = x
and ρ = r/2. Then ∅ 6= A ∩B[x, ρ] ⊂ A ∩B(x, r).

Observe that the closed set (and hence a complete metric space) B is the union of

a countable family of closed sets: B = ∪n(B∩Ek(1/n)). By Baire, at least one of

them has nonempty interior, say, Int (B∩Ek(1/n)) 6= ∅. Since Int (B∩Ek(1/n)) ⊂
B ∩ IntEk(1/n), it follows that B[x, r] ∩ Un 6= ∅ and hence the claim is proved.

Let D := ∩nUn. By Baire, D is dense in X. We claim that every x ∈ D is a point
of continuity of f .

Reason: Fix p ∈ D. Let ε > 0 be given. Choose N � 0 such that 1/N < ε.
Since p ∈ D, p ∈ UN and hence there exists k ∈ N such that p ∈ Int (Ek(1/N).
By continuity of fk at p, there exists an open neighbourhood V of p contained
in IntEk(1/N) such that

|fk(x)− fk(p)| < ε, for all x ∈ V. (1)

For x ∈ V , since V ⊂ Ek(1/N), by the definition of Ek(ε)’s, we have

|fm(x)− fk(x)| ≤ 1/N, for all m ≥ k. (2)

Letting m→∞ in the above equation, we obtain

|f(x)− fk(x)| ≤ 1/N, for all x ∈ V. (3)

We are now ready for the kill. We claim that |f(x)− f(p)| < 3ε for x ∈ V .

|f(x)− f(p)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(p)|+ |fk(p)− f(p)|
≤ 1/N + ε+ 1/N

< 3ε.

This shows that f is continuous at every point of D.

289. An amusing exercise: Let (xn) be any sequence of real numbers. Show that the set
{x ∈ R : x 6= xn, n ∈ N} is dense in R. Hence conclude that R is uncountable. Details!

290. Baire category theorem for locally compact spaces. Let X be a locally compact
Hausdorff space. Let (Un) be a sequence of open dense sets in X. Then ∩nUn is dense
in X.

Let G be a nonempty open set in X. We need to prove that there exists x ∈ G such that
x ∈ Un for all n. The strategy is to mimic the proof in the case of metric spaces replacing
open balls by the existence of open sets V such that V is compact and x ∈ V ⊂ V ⊂ U
for any given open set U and x ∈ U and then invoking Cantor intersection theorem for
a decreasing sequence of compact sets.
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Since G is a nonempty open set and U1 is dense, there exists x1 ∈ G∩U1. Since G∩U1

is open, x ∈ G ∩ U1 and X is locally compact hausdorff space, there exists an open set
V1 such that x ∈ V1, V 1 is compact and V 1 ⊂ G ∩ U1. Assume, by way of induction,
that we have chosen xi, Vi 3 xi, V i is compact and that xi ∈ Vi ⊂ V i ⊂ Vi−1 ∩ Ui, for
1 ≤ i ≤ n.

Now given a nonempty open set Vn, since Vn∩Un+1 is nonempty, there exists xn+1 ∈ Vn∩
Un+1. Since X is locally compact and hausdorff, there exists an open set Vn+1 3 xn+1

such that V n+1 is compact and xn+1 ∈ Vn+1 ⊂ V n+1 ⊂ Vn∩Un+1. Let Kn := V n. Thus
we have a decreasing sequence (Kn) of nonempty compact subsets. Hence by Cantor
intersection theorem, there exists x ∈ ∩nKn. Since x ∈ Kn = V n ⊂ Un, it follows that
x ∈ ∩Un. Also, x ∈ K1 ⊂ U .

291. Locally closed sets: A subset A of a topological space is locally closed if for every a ∈ A,
there exists an open set Ua in X such that a ∈ Ua and Ua ∩A is closed in Ua.

(a) A characterization of locally closed sets: A ⊂ X is locally closed iff there exist an
open set U and a closed set C such that A = U ∩ C.

(b) The characterizations gives us easy examples of locally closed sets: [0, 1) is neither
closed nor open in R but is locally closed in R.

292. Separation axioms. They deal with separating various kinds of disjoint objects by means
of disjoint open sets that contain the given objects. The prominent ones are given below.

(a) Hausdorff spaces: Given two distinct points x 6= y, if we can find open sets U and
V such that x ∈ U , y ∈ V and U ∩ V = ∅.

(b) Regular spaces: Given a point x and a closed set F with x /∈ F , there exist open
sets U and V such that x ∈ U and V ⊂ V with U ∩ V = ∅.

(c) Normal spaces: Given two disjoint closed sets A,B, there exist open sets U, V such
that A ⊂ U and B ⊂ V with U ∩ V = ∅.

(d) Completely regular spaces: Given two disjoint (nonempty) closed sets, we can find
disjoint a continuous function f : X → R such that f = 0 on A and f = 1 on B.

(e) Clearly, a completely regular space is regular. How about completely Hausdorff
and completely normal spaces? These could be the spaces the objects under ques-
tion are separated by means of continuous real valued functions. Make precise
definitions.

These spaces will be useful for analysts since they assure that there is an ‘abundant’
supply of real valued continuous functions on the given space!

293. Some standard examples and facts concerning the above concepts:

(a) Examples of regular spaces.

i. Any metric space is regular.
Let A be a closed subset of a metric space X and x /∈ A. Let U := X \ A.
Then U is open and x ∈ U . hence there exists r > 0 such that B(x, 3r) ⊂ U .
Then the open sets B(x, r) and X \B[x, 2r] are open set which separate x and
A.
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ii. Any locally compact Hausdorff space is regular. Let A be a closed subset of a
locally compact space X and x /∈ A. Then x ∈ X \ A and hence there exists
an open set U such that U is compact and x ∈ U ⊂ U ⊂ X \A. The open sets
U and X \A separate x and A.

(b) Examples of normal spaces.

i. Any metric space is normal.
We give two proofs of this.
Let A and B disjoint closed subsets of a metric space X. For each a ∈ A,
since a /∈ B, a is not a limit point of B. hence there exists ra > 0 such
that B(a, 2ra) ∩ B = ∅. Similar analysis holds for each b ∈ B. Now consider
U := ∪a∈AB(a, ra) and V := ∪b∈BB(b, rb). Then U and V are open sets
containing A and B respectively. If x ∈ U ∩ V . then x ∈ B(a, ra) ∩ B(b, rb)
for some a ∈ A and b ∈ B. We observe

d(a, b) ≤ d(a, x) + d(x, b) < ra + rb ≤ 2 max{ra, rb}.

Thus, a ∈ B(b, 2rb) if rb ≥ ra or b ∈ B(a, 2ra) if ra ≥ rb. This contradicts our
choice of ra etc. Hence U ∩ V = ∅.
The second is based on Urysohn’s lemma for metric spaces. See Item 295.

ii. Any compact Hausdorff space is normal.
We adapt the argument which showed that in a Hausdorff space, compact sets
are closed. Let A and B be disjoint closed subsets of a compact Hausdorff
space X. Fix x ∈ A. For each b ∈ B, there exist open sets Ub 3 a and Vb 3 b
such that Ub∩Vb = ∅. Since B is compact, the open cover {Vb : b ∈ B} admits
a finite subcover, say, B ⊂ V := ∪b∈FVb for a finite subset F ⊂ B. Consider
Ua := ∩b∈FUb. Then Ua, being a finite intersection of open sets, is open and
a ∈ Ua. Clearly, Ua ∩ V = ∅. Note that this argument shows that a compact
Hausdorff space is regular.
Given a ∈ A, by the last paragraph, there exist open sets Ua 3 a and Va ⊃ B
such that Ua ∩ Va = ∅. Now the open cover {Ua : a ∈ A} of A admits a finite
subcover, say, {Ua : a ∈ G} for a finite subset G ⊂ A. Let U := ∪a∈GUa and
V := ∩a∈GVa. It is easy to see that U and V separate A and B.

(c) A normal space in which all singleton sets are closed is regular.

294. The most important result about normal spaces is the Urysohn’s lemma.

Theorem 17 (Urysohn’s Lemma). Let A,B be disjoint non-empty closed subsets of a
normal space. Then there exists a continuous function f : X → [0, 1] such that f = 0
on A and f = 1 on B.

295. We prove Urysohn’s lemma in the case of a metric space. Look at

f(x) :=
d(x,A)

d(x,A) + d(x,B)
.

Note that f makes sense, as the denominator is nonzero. For, d(x,A) + d(x,B) = 0
implies that each of the non-negative terms is zero. That is, d(x,A) = 0 and d(x,B) = 0.
Hence x is a limit point of the closed sets A and B (Item ???) and hence x ∈ A and
x ∈ B, a contradiction. By Item ??, f is continuous. Clearly, f(x) = 0 iff x ∈ A and
f(x) = 1 iff x ∈ B. (This is stronger than what is required!)
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296. Note that Urysohn’s lemma says that a space is normal iff it is completely normal.

297. A key fact needed for Urysohn’s lemma for normal spaces is the following observation.

Lemma 18. A space X is a normal space iff for each closed set F and an open set V
containing A there exists an open set U such that F ⊂ U ⊂ U ⊂ V .

Let X be normal and F , V as above. Then F and X \ V are disjoint closed sets. By
normality of X there exist open sets U and W such that F ⊂ U and X \ V ⊂ W and
U ∩W = ∅. Since U ⊂ X \W and X \W is closed, we see that U ⊂ X \W ⊂ V . Thus
U is as required.

To see the converse, let A and B disjoint closed subsets of X. Let V1 := X \ B. Then
V1 ⊃ A is an open subset. Hence by hypothesis, there exists U1 such that A ⊂ U1 ⊂
U1 ⊂ V1. Let V2 = X \U1. Then V2 ⊃ B is an open set. Let U2 be an open set such that
B ⊂ U2 ⊂ U2 ⊂ X \ U1. We claim that U1 ∩ U2 = ∅. For if x ∈ U1 ∩ U2, then x ∈ U1

and x ∈ U2 ⊂ (X \ U1 and hence x /∈ U1. Since U1 ⊂ U1, this is a contradiction.

298. A clean and neat proof of Urysohn’s lemma is in Munkres.

A key step in the proof of Urysohn’s lemma is the construction of a sequence (Un) of
open set index by dyadic rations in [0,1].

Lemma 19. Let X be a normal space. If A and B are closed subsets of X, for each
dyadic rational r = k2−n ∈ (0, 1], there is an open set Ur with the following properties:
(i) A ⊂ Ur ⊂ X \B, (ii) U r ⊂ Us for r < s.

Let U1 := X \B. By the last lemma, there exist disjoint open sets V and W such that
A ⊂ V and B ⊂W . Let U1/2 = V . Then, since X \W is closed, we have

A ⊂ U1/2 ⊂ U1/2 ⊂ X \W ⊂ X \B = U1.

Applying the same lemma once again to the open set U1/2 containing A and to the open

set U1 containing U1/2, we get open sets U1/4 and U3/4 such that

A ⊂ U1/4 ⊂ U1/4 ⊂ U1/2 ⊂ U1/2 ⊂ AU3/4 ⊂ U3/4 ⊂ V.

Continuing this manner, we construct, for each dyadic rational r ∈ (0, 1), an open set
Ur with the following properties:

(i) U r ⊂ Us, 0 < r < s ≤ 1.
(ii) A ⊂ Ur, 0 < r ≤ 1. (iii) Ur ⊂ U1, 0 < r ≤ 1.

More formally, we proceed as follows. We select Ur for r = k2−n by induction on n.
Assume that we have chosen Ur for r = k2−n, 0 < k < 2n, 1 ≤ n ≤ N − 1. To find Ur
for r = (2j+ 1)2−N , 0 ≤ j < 2N−1, observe that U j21−N and X \U(j+1)21−N are disjoint
closed sets. So once again appealing to the last lemma, we can choose an open set Ur
such that

U j21−N ⊂ Ur ⊂ U r ⊂ U(j+1)21−N .

These Ur’s are as desired.

299. We are now ready to prove
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Theorem 20. Urysohn’s Lemma. A space X is a normal space iff the following
is true: For any two disjoint closed subsets A and B of X there exists a continuous
function f : X → [0, 1] such that f = 0 on A and f = 1 on B.

Let Ur’s be as in the lemma of the last item. We define the function f so that the sets
∂Ur are the level sets of f for the value r. We achieve this by defining

f(x) =

{
0, x ∈ Ur for all r

sup{r : x /∈ Ur}, otherwise.

Clearly, 0 ≤ f ≤ 1, f = 0 on A and f = 1 on B. We need only establish the continuity
of f .

Let x ∈ X be such that 0 < f(x) < 1. Let ε > 0. Choose dyadic rationals r and s in
(0, 1) such that f(x) − ε < r < f(x) < s < f(x) + ε. Then x /∈ Ut for dyadic rationals
t ∈ (r, f(x)). By (i), x /∈ U r. On the other hand x ∈ Us. Hence W = Us \U r is an open
neighbourhood of x. If y ∈ W , then from the definition of f we see that r ≤ f(y) ≤ s.
In particular, |f(y)− f(x)| < ε for y ∈ W . Thus f is continuous at x. The cases when
f(x) = 0 or 1 are easier and left to the reader.

300. We now prove Tietze extension theorem, an important tool for analysts and topologists.

301. The standard proof of Tietze extension theorem runs as follows.

(a) Let f0 = f and M0 = sup{|f0(y)| : y ∈ Y }. Define

A0 := {y ∈ Y : f0(y) ≥M0/3}
B0 := {y ∈ Y : f0(y) ≤ −M0/3}.

Then A0 and B0 are disjoint closed subsets of Y . Let g0 : X → [−M0/3,M0/3] be
a continuous function such that g0 = M0/3 on A0 and g0 = −M0/3 on B0.

(b) Let f1 := f0 − g0 on Y . Let M1 := sup{|f1(y)| : y ∈ Y }. Observe that M1 ≤
(2M0)/3. Apply the construction of the last subitem to f1 to obtain a continuous
function g1 on X. What properties does g1 have?

(c) Repeating the constructions of the two subitems above, we get a sequence (gn) of
continuous functions gn : X → R. The bounds Mn on gn ensure the applicability
of Weierstrass M -test to conclude that the series

∑
n gn is uniformly convergent

on X. Let g :=
∑

n gn. Then g is an extension as required.

302. The argument outlined in the last item can be abstracted as follows.

Lemma 21. Let X and Y be complete normed linear spaces. Let T : X → Y be a
continuous linear map. Assume that for y0 ∈ Y there exist constants M and r ∈ (0, 1)
such that there exists x ∈ X such that ‖x‖ ≤ M ‖y0‖ and ‖y0 − Tx‖ ≤ r ‖y‖. Then
there exists z ∈ X such that Tz = y0 with ‖z‖ ≤M/(1− r).

Let y ∈ Y be given. We may assume without loss of generality that ‖y‖ = 1. Given
y ∈ Y let z1 = x as given in the lemma. For y0 = y − Tz1, we can find a z2 ∈ X
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such that ‖z2‖ ≤ M ‖y − Tz1‖ ≤ Mr and ‖y − Tz1 − Tz2‖ ≤ r ‖y − Tz1‖ ≤ r2.
Proceeding by induction, we get a sequence (zn) in X such that (i) ‖zn‖ ≤Mrn−1 and
(ii) ‖y −

∑n
i=1 Tzi‖ ≤ rn. The series

∑∞
n=1 zn converges to an element z ∈ X. We have

Tz = y0.

303. We now prove Tietze theorem in the following form.

Theorem 22 (Tietze Extension Theorem). Let X be a normal space and Y a closed
subset of X. Let f ∈ Y := Cb(Y,R). Then there exists a g ∈ X := Cb(X,R) such that
g(y) = f(y) for all y ∈ Y and sup{g(x) : x ∈ X} = sup{f(y) : y ∈ Y }.

Let T : X → Y denote the restriction map g 7→ g|Y . We show that T satisfies the
hypothesis of the previous lemma. Without loss of generality, assume that |f(y)| ≤ 1
for all y ∈ Y . Let A := f−1([−1,−1/3]) and B := f−1([1/3, 1]). Then A and B are
closed in Y and hence in X. By Urysohn’s lemma, there exists a g ∈ X such that
|g(x)| ≤ 1/3 for x ∈ X and g = −1/3 on A and g = 1/3 on B. One easily checks
that ‖Tg − f ‖X ≤ 1/3. If we take M = 1/3 and r = 2/3, then T satisfies the previous
lemma. Note that the assertion about the equality of the norms is also obtained.

304. Exercises.

(a) Let X be a normal space and F a closed subset. Assume that f : F → (−R,R) be
a continuous function. Then f can be extended to a continuous function from X
to (−R,R). Hint: You may need Urysohn’s lemma.

(b) Let X be a normal space and F a closed subset. Assume that f : F → R be a
continuous function. Then f can be extended to a continuous function from X to
R. Hint: R is homeomorphic to (−1, 1).

(c) Assuming Tietze extension theorem, prove Urysohn’s lemma.

Consider f : A ∪B → R where f = 0 on A and 1 on B.

(d) A topological space is normal iff every continuous function from a closed subset to
[0,1] extends to a continuous function from X to [0,1].

By the last item, Urysohn’s lemma is valid for X. Use Item 296.

(e) Let A be a closed subset of a normal space X. Let f : A → Sn be continuous.
Show that there exists an open set U ⊃ A (U depends on f) and an extension g
of f to U .

(f) Show that with the notation of Exer. 304e that f may not extend to all of X.
Hint: What happens (i) if n = 0 and X is connected or (ii) if X := B[0, 1] ⊂ Rn+1,
A := Sn and f is the identity?

305. An example for practice.

Consider X = R with the topology T consisting of sets of the form U \ A where U is
open in the standard topology Td and A ⊂ R is any countable subset.

(a) A subset F is closed in T if F = E∪B where E is closed in Td and B is a countable
subset.

(b) If E = U \ A is open in T , show that the closure of E in T is the closure of E in
Td.
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(c) Is Q dense in (X, T )?

(d) What are compact subsets in T ?

(e) Show that any open cover of (X, T ) admits a countable subcover.

(f) Show that (X, T ) is not first countable.

(g) Show that any countable subset is closed in T and hence (X, T ) is not separable.

(h) Show that (X, T ) is connected but not path-connected.

306. Quotient spaces. In the next few items (307–318), we shall deal with quotient spaces.
We refer the reader to our article on on “Quotient Spaces.”

The best way to develop intuition on quotient topology is to start with a lot of examples
and use paper models. Let us look at a few of them.

(a) Take a piece of string, which represents say the interval [0, 1]. Glue the ends. We
get a ‘loop’. Thus, we expect that if we identify the endpoints of the interval the
resulting ‘topological space’ is homeomorphic to a circle.

(b) Take a rectangular piece of paper. Glue a pair of opposite sides, say, the horizontal
sides. We get a cylinder. Thus we expect to get a cylinder if we identify the opposite
sides of a square or a rectangle.

(c) If we glue the pair of horizontal sides and again the pair of vertical sides, we get a
‘cycle tube’. We thus expect to get a ‘torus’ (circle × circle) if we identify pairs of
opposite sides of square.

(d) Take circular mat/coaster made of cloth. If we sew the entire rim/boundary of the
mat, we seem to get the surface of a drop of a liquid. We therefore expect to get a
space homeomorphic to a (2-dimensional sphere) if we identify/collapse all points
on the boundary of the closed unit disk in R2.

(e) Consider R2. If we collapse all points on a vertical line parallel y-axis and if we
do this for all such vertical lines, we seem to get a line. This suggests that if
we identify vertical lines parallel to y-axis with their point of intersection on the
x-axis, the resulting space is homeomorphic to R.

(f) Let us take a circle, say of radius 1 with centre at the origin. If we identify pairs of
diametrically opposite points, we end up with closed semi-circle whose end points
are to be glued. We seem to end up with a circle again.

Below, we develop a theory with which we shall be able to establish all the above
examples rigorously.

307. We recalled concept of quotient topology. Let X be a set and ∼ be an equivalence
relation on X. Let X/∼ be the quotient set or the set of equivalence classes of ∼. Let
π : X → X/∼ be the quotient map defined by π(x) = [x], the equivalence class of x.
The quotient topology on X/∼ is the set of V ⊂ X/∼ such that π−1(V ) is open in X.

308. Let X be a topological space and ∼ an equivalence relation on X. Then the quotient
topology on X/∼ is the largest topology for which the natural quotient map π : X →
X/∼ is continuous.

309. The theorem below, though easy, is the ‘only’ result needed to check the continuity of
maps from quotient spaces to others.
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Theorem 23 (Universal Mapping Property). Let π : X → X/∼ be a quotient map. A
map f : X/∼→ Y is continuous iff f ◦ π is continuous.

If f is continuous, then f ◦ π is continuous. To see the converse, let V be open in Y .
Then (f ◦ π)−1(V ) is open in X. That is, π−1(f−1(V )) is open in X. By the definition
of quotient topology, f−1(V ) is open in X/ ∼.

310. The next theorem tells us how to generate quotient spaces.

Theorem 24. Let f : X → Y be continuous. Let ∼ be the equivalence relation on
X defined by x1 ∼ x2 iff f(x1) = f(x2). Then there exists a continuous function
g : X/∼→ Y such that f = g ◦ π.

It is trivial to see that that ∼ is an equivalence relation. If we set g([x]) := f(x), then
g is well-defined and we have f = g ◦ π. In view of universal mapping property, g is
continuous.

Note that g is one-one. For, if g([x1]) = g([x2]), then f(x1) = f(x2) by the definition of
g. Hence x1Rex2 or [x1] = [x2].

311. Keep the notation of the last item. If f is onto, then g is onto. Thus, if f : X → Y is
continuous and onto, we have a continuous bijection f̃ ≡ g : X/∼ → Y . Can we think
of conditions under which f̃ becomes a homeomorphism?

312. The next result gives us a recipe to identify the quotient spaces. If we have some
guess that the quotient space X/∼ is homeomorphic to Y , we try to find a surjective
continuous map f : X → Y such that the equivalence relation defined by f is ∼ and
such that f is either open or closed.

Theorem 25. Let f : X → Y be an open (or closed) continuous surjective map. Let
∼ be the equivalence relation defined by f : x1 ∼ x2 iff f(x1) = f(x2). Then Y is
homeomorphic to the quotient space X/∼ via the map f̃ : X/∼ → Y defined by f̃(x) =
f(x).

The proof is essentially an exercise in set theory. We have already seen that f̃ is a
bijective continuous map. We show that if W ⊂ X/∼ is open (resp. closed) we show
that f̃(W ) is open (resp. closed) in Y .

If you draw a picture for this set-up, you will be led to conclude that f̃(W ) = f(π−1(W ))
for any set W ⊂ X/∼. Assume that this is true. Now the proof is clear. If W is
open/closed, by continuity of π, the set π−1(W ) is open/closed in X. If f is open/closed,
it follows that the set f(π−1(W )) is open/closed. Since f̃(W ) = f(π−1(W )), we conclude
that f̃(W ) is open/closed. Thus f̃ is bijective, continuous and open/closed and hence
is a homeomorphism. This completes the proof.

Let us attend to the claim: f̃(W ) = f(π−1(W )) for any set W ⊂ X/∼. If y ∈ f̃(W ),
then y = f̃([x]) for some [x] ∈ W . Hence y = f(x), by the definition of f̃ . Since
π(x) = [x] ∈ W , clearly x ∈ π−1(W ). It follows that y ∈ f(π−1(W )). The reverse
inclusion is similar. Let y ∈ f(π−1(W )). Then y = f(x) for some x ∈ π−1(W ). Hence
π(x) = [x] ∈W . Hence y = f(x) = f̃([x]) for some [x] ∈W .

71



313. Theorem 25 is the analogue of the first fundamental theorems of homomorphisms in
algebra. Let us look at group theory. If H is a normal subgroup of a group G and if we
have a guess that the quotient group G/H is isomorphic to K, to proves this what all
we need to do is this: find a surjective group homomorphism f : G → K whose kernel
is H. The induced map f̃ : G/H → K is a bijective homomorphism and hence is an
isomorphism. As we have already see, in topology we need the inverse of the induced
bijection f̃ to be continuous.

314. Illustrations of the use of Theorem 25.

(a) The quotient space obtained from [0, 1] got by identifying the end points 0 and 1
is S1.

Let S1 = {z ∈ C : |z| = 1}. Consider the map f : [0, 1]→ S1 given by f(t) := e2πit.
The induced map f̃ : [0, 1]/ ∼→ S1 is a bijective continuous from a compact space
to a Hausdorff space and hence is a homeomorphism.

(b) The quotient space got by identifying two of the opposite sides of a rectangle is
homeomorphic to a finite closed cylinder.

Let the square be X = [0, 1] × [0, 1]. Let the cylinder be Y := {(x, y, z) ∈ R3 :
x2 + y2 = 1, 0 ≤ z ≤ 1}. Consider the map f : X → Y defined by f(u, v) :=
(cos 2πu, sin 2πu, v).

(c) The quotient space of S1 obtained by identifying the diametrically opposite points
is again S1!

Note that the diametrically opposite points are ±z, z ∈ S1. An obvious map f
such that f(z) = f(−z) is f(z) = z2. Consider f : S1 → S1 given by f(z) = z2.

(d) The quotient space of the unit square identifying the corresponding points of the
horizontal sides as well as the points on the vertical sides is homeomorphic to
S1 × S1, a torus (a vada or a cycle tube).

(e) For any space X and a subset A of X, the space X/A stands for the quotient space
of X with respect to the equivalence: x1 ∼ x2 iff x1 = x2 or x1, x2 ∈ A. Thus X/A
is the space obtained from X by collapsing A to a single point.

Example: Dn := B[0, 1] ⊂ Rn. Then Dn/Sn−1 ' Sn.

(f) Let A be a closed subset of a compact Hausdorff space X. The quotient space
obtained from X by identifying A to a single point is homeomorphic to the one-
point compactification of X \A.

Let Y = (X \ A) ∪ {∞} be the one-point compactification of X \ A. The obvious
map is f : X → Y is given by f(x) = x if x /∈ A and f(a) =∞ if a ∈ A. It is easy
to see that f is continuous and does the job.

(g) The last item may be used to prove that Dn/Sn−1 ' Sn.

(h) If X = S1 × [0, 1] is the cylinder and A = S1 × {0} is the bottom circle, then
X/A ' D2.

Consider f : X → D2 defined by f(x, y, z) = (zx, zy).

How did one think of such a map? We visualize the cylinder as a stack of circles
on the plane z = r where r ∈ [0, 1] and the disk as the union of concentric circles
of radius r ∈ [0, 1]. So, we map the circle (cos t, sin t, r) to (r cos t, r sin t).
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(i) 1-dimensional real projective space. Consider X = R2 \ {(0, 0)}. Define an
equivalence relation by setting (x1, y1) ∼ (x2, y2) iff there exists (necessarily)
nonzero t ∈ R such that t(x1, y1) = (x2, y2). The quotient set can be thought
of as the set of lines passing though the origin (minus the origin, if you wish).
The circle S1 ⊂ R2 meets each equivalence class at two points which are an-
tipodes (diametrically opposite to each other). Hence we expect the quotient
space to be the same as in Item 314c. The map f : R2 \ {(0, 0)} → S1 defined
by f(r cos t, r sin t) = (cos 2t, sin 2t) will be as required.

315. We say that an equivalence relation ∼ on X is open if whenever U ⊂ X is open in X
so is its saturation [U ] := {x′ ∈ X : x′ ∼ x for some x ∈ U}.

Proposition 26. An equivalence relation ∼ on X is open iff the quotient map π : X →
X/∼ is open.

316. Hausdorffness of quotient spaces. The following result is the most useful (sufficient)
condition on ∼ that ensures the quotient space is Hausdorff.

Theorem 27. Let ∼ be an open equivalence relation on X. Assume that the relation
R := {(x, y) ∈ X × X : x ∼ y} is closed as a subset of X × X. Then X/∼ is
Hausdorff.

317. Projective spaces over R. Let X := Rn+1 \ {0}. The relation on X defined by x ∼ y
iff x = ty for some nonzero t ∈ R is a equivalence. The quotient X/∼ is known as the
n-dimensional projective space over the reals. It is denoted by Pn(R). The following
are some of the properties of Pn(R).

(a) Pn(R) is a compact Hausdorff space.

(b) Pn(R) is homeomorphic to the quotient of Sn with respect to the relation on Sn:
x ∼ y iff x = ±y.

In this we had to deal with the continuity of a map into the quotient space. Go
through the proof again. It shows the typical way in which the continuity of a map
f : Y → X/∼ into a quotient space is dealt with. (Universal mapping property
cannot deal with this situation.) The trick was to write f as the composite of a
continuous map g : Y → X followed by the quotient map π : X → X/∼.

(c) The one dimensional projective space is homeomorphic to S1.

318. Two very popular and important examples of quotient spaces.

(a) Möbius Strip. On the unit square X we define the equivalence relation as follows:

(x, y) ∼ (x′, y′) ⇐⇒ (x, y) = (x′, y′) or {x, x′} = {0, 1} and y = 1− y′.

Thus two points of opposite vertical sides are identified cross-wise. The quotient
space is known as the Möbius strip.

(b) Klein’s bottle. Let X be the unit square. Define an equivalence relation on X
whose nontrivial relations are given by

(0, y) ∼ (1, y) and (x, 0) ∼ (1− x, 1).

The quotient space is called the Klein’s bottle.
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319. Let X be a topological space. A loop in X is a path α : [0, 1] → X with α(0) = α(1).
We say that α s a loop based at α(0).

Recall that if α, β : [0, 1]→ X are paths such that α(1) = β(0), then their join α ∗ β is
defined by

α ∗ β(t) :=

{
α(2t) for 0 ≤ t ≤ 1/2

β(2t− 1) for 1/2 ≤ t ≤ 1.

Then, α ∗β is continuous (by gluing lemma) and we say that it is got by concatenation.

Standard Notation in homotopy theory: Let I = [0, 1].

320. Let X,Y be topological spaces. Let f, g : X → Y be continuous maps. We say that they
are homotopic if there exists a continuous map F : X× I → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x ∈ X. We say that ft(x) := F (x, t) for t ∈ I and x ∈ X.

The map F is called a homotopy from f to g and we write f
F' g.

If f(a) = g(a) for all a ∈ A ⊂ X and if the homotopy F is such that F (a, t) = f(a) for
all t ∈ I and a ∈ A, we say that f is homotopic to to g relative to A. We denote this

by f
F' g rel A.

If α and β are paths in X with the same initial and terminal points, then saying that
α is homotopic to β relative to {0, 1} is the same as saying that all the intermediate
paths αt(s) := F (s, t) have the same initial and terminal points, that is, they satisfy
F (0, t) = α(0) and F (1, t) = α(1).

321. Examples:

(a) Let C ⊂ Rn be convex. Let f, g : X → C be continuous maps. Then the map
F (x, t) := (1− t)f(x) + tg(x) is a homotopy from f to g. If f and g agree on a set
A ⊂ X, then F is a homotopy relative to A.

(b) Let f, g : X → Sn be continuous maps such that f(x) 6= −g(x) for x ∈ X. Then
the map

F (x, t) :=
(1− t)f(x) + tg(x)

‖(1− t)f(x) + tg(x)‖
is a homotopy from f to g.

(c) The map f : S1 := {z ∈ C : |z| = 1} → S1 defined by f(z) = −z is homotopic to
the identity map g(z) = z.

(d) Let f : X → Sn be a continuous map which is not onto. Then it is null-homotopic,
that is, homotopic to a constant map.

(e) Consider X := {p ∈ R2 : 1 ≤ ‖p‖ ≤ 2}. Let α be ‘the inner circle’ and β be the
ellipse lying in X and circumscribing α. Assume that they both start and end at
(0, 1). They are homotopic in X. (Note that X is not convex.)

322. The relation of homotopy between the continuous maps from a space X to another
space Y is an equivalence relation.

For, if f
F' g and g

G' h, then

H(x, t) :=

{
F (x, 2t) 0 ≤ t ≤ 1/2

G(x, 2t− 1) 1/2 ≤ t ≤ 1,
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is a homotopy from f to h.

323. The relation of homotopy between the continuous maps from a space X to another
space Y relative to a subset A ⊂ X is an equivalence relation among maps that agree
on A.

324. Homotopy behaves well with respect to composition of maps.

(a) Let f, g : X → Y be homotopic relative to a set A ⊂ X via the homotopy F . Let

h : Y → Z be a map. Then h ◦ f h◦F' h ◦ g relative to A.

(b) Let f : X → Y be a map. Assume that g, h : Y → Z are homotopic relative

to B ⊂ Y via a homotopy G. Then g ◦ f F' h ◦ f relative to f−1(B), where
F (x, t) := G(f(x), t).

325. Fix a base point p ∈ X. Let α be a loop at p. The equivalence class 〈α〉 of all loops
based at p homotopic to α relative to {0, 1} is called a homotopy class. The collection
of homotopy classes of loops at p is denoted by π1(X, p).

326. Construction of the fundamental group. We make π1(X, p) into a group as follows. For
〈α〉 , 〈β〉 ∈ π1(X, p), we let 〈α〉 ∗ 〈β〉 := 〈α ∗ β〉.

(a) The above multiplication is well-defined.

For, α
F' and β

G' β′, then α∗β H' α∗β′ whereH(s, t) :=

{
F (2s, t) 0 ≤ s ≤ 1/2

G(2s− 1, t) 1/2 ≤ s ≤ 1.

(b) The multiplication is associative.

First of all, we compute

((α ∗ β) ∗ γ)(s) =


α(4s) 0 ≤ s ≤ 1/4

β(4s− 1) 1/4 ≤ s ≤ 1/2

γ(2s− 1) 1/2 ≤ s ≤ 1

(α ∗ (β ∗ γ))(s) =


α(2s) 0 ≤ s ≤ 1/2

β(4s− 2) 1/2 ≤ s ≤ 3/4

γ(4s− 3) 3/4 ≤ s ≤ 1

.

Define f : I → I by setting

f(s) :=


2s 0 ≤ s ≤ 1/4

s+
1

4
1/4 ≤ s ≤ 1/2

(s+ 1)/2 1/2 ≤ s ≤ 1

.

Since f(0) = 0 and f(1) = 1, we see that f ' 1I , that is, f is homotopic to the
identity map 1I of I relative to {0, 1}. We have

(α ∗ β) ∗ γ = (α ∗ (β ∗ γ)) ◦ f
' (α ∗ (β ∗ γ)) ◦ 1I

= α ∗ (β ∗ γ).
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(c) Existence of the identity. Let e = ep denote the constant loop at p: e(t) = p for
0 ≤ t ≤ 1. Then 〈e〉 serves as the identity for the multiplication. Again, proceeding
as earlier, we have

e ∗ α(s) =

{
e(2s) 0 ≤ s ≤ 1/2

α(2s− 1) 1/2 ≤ s ≤ 1

e ∗ α = α ◦ f

where f(s) =

{
0 0 ≤ s ≤ 1/2

2s− 1 1/2 ≤ s ≤ 1.

Thus we have
e ∗ α = α ◦ f ' α ◦ 1I rel I = α.

Similarly, one shows that α ∗ e ' α.

(d) Existence of inverse. The inverse of 〈α〉 is
〈
α−1

〉
, where α−1 is the reverse path

defined by α−1(s) := α(1− s).

i. The inverse s well-defined. If α
F' β relative to {0, 1}, then α−1

G' β−1 relative
to {0, 1} where G(s, t) := F (1− s, t).

ii. We show that α ∗ α−1 = α ◦ f where

f(s) =

{
2s 0 ≤ s ≤ 1/2

2− 2s 1/2 ≤ s ≤ 1.

Now, f ' g relative to {0, 1} where g(s) = 0 for 0 ≤ s ≤ 1. Hence,

α ∗ α−1 = α ◦ f ' α ◦ g rel {0, 1} = e.

One similarly, shows that α−1 ◦ α ' e.
(e) Explicit homotopies can also be given. (Of what use?)

i. Existence of identity.

• α ∗ e ' α via

H(s, t) :=

{
α
(

2t
s+1

)
s ≥ 2t− 1

p s ≤ 2t− 1.

• e ∗ α ' α via

H(s, t) =

{
p s ≥ 2t

α
(
2t−s
2−s

)
s ≤ 2t

ii. Existence of inverse. α ∗ α−1 ' e via

H(s, t) =


α(2t) s ≥ 2t

α(s) s ≤ 2t and s ≤ 2− 2t

α(2− 2t) s ≥ 2− 2t
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iii. Associativity. (α ∗ β) ∗ γ ' α ∗ (β ∗ γ) via

H(s, t) =


α( 4t

s+1) 4t− 1 ≤ s
β(4t− s− 1) 4t− 2 ≤ s ≤ 4t− 1

γ(4t−2s2−s − 1) s ≤ 4t− 2.

I have not verified these, simply copied from a book!

327. Let α, β be two paths such that α(1) = β(0). Then proceeding as in the last item, we
show the following, as the same homotpies work as they take care of the end points!

(a) If α′ ' α relative to {0, 1} and If β′ ' β relative to {0, 1}, then α ∗ β ' α′ ∗ β′
relative to {0, 1}.

(b) If α, β, γ are paths such that α ∗ (β ∗ γ) and (α ∗ β) ∗ γ make sense, then

α ∗ (β ∗ γ) ' (α ∗ β) ∗ g relative to {0, 1}.

(c) We have α ◦ α−1 ' eα(0) relative to {0, 1} and α−1 ◦ α ' eα(1) relative to {0, 1}.

328. If X is path connected, then π1(X, p) is isomorphic to π1(X, q) for p, q ∈ X. This
isomorphism depends on the choice of path joining p and q.

329. Let p : E → B be a continuous map. An open subset U ⊂ B is said to be evenly covered
by p if p−1(U) is the union ∪iVi of disjoint open subsets Vi of E such that the restriction
pi of p to Vi is a homeomorphism of Vi onto U .

We say that p is a covering map if (i) p is onto and (ii) each b ∈ B has an open
neighbourhood Ub which is evenly covered by p.

The set p−1(b) is called the fibre over b.

The sets Vi are called sheets of p−1(U).

E is called the total space and B, the base of the covering map p.

330. Properties of a covering map.

(a) Any covering map is open.

(b) Each of the fibres p−1(b) is discrete.

(c) Each b ∈ B has an open neighbourhood U such that p−1(U) is homeomorphic to
p−1(b)× U .

331. Examples.

(a) The exponential map p : R→ S1 := {z ∈ C : |z| = 1} is a covering.

(b) The quotient map π : Sn → Pn(R) is a covering.

(c) Products of covering maps is again a covering map. (precise statement?)

(d) Consider the exponential map exp: C → C∗. The open set U := C∗ is not evenly
covered by exp.

In fact, an open set U ⊂ C∗ is evenly covered by the exponential map iff there
exists a continuous logarithm L on U , that is, a continuous map L : U → C such
that exp(L(z)) = z for all z ∈ U .

Note however that exp: C→ C∗ is a covering map.
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332. Let p : E → B a covering map. Let f : X → B be continuous map. Then a map
g : X → E such that p ◦ g = f is called a lift of f . One has the following commutative
diagram. (Figure?)

333. Uniqueness of lifts.

Theorem 28. Let p : E → B be a covering map and X a connected space. Let f : X →
B be a map. If g, h : X → E are lifts of f such that g(x) = h(x) for some x ∈ X, then
g = h.

334. Path lifting lemma.

Theorem 29. Let p : E → B be a covering map. Let c : I → B be a path. Let e0 ∈ E
be such that p(e0) = c(0). then there exists a unique path γ : I → E such that γ(0) = e0
and p : γ = c.

335. A Version of homotopy lifting lemma:

Theorem 30. Let p : E → B be a covering map. Let F : I × I → B be a continuous
map. Let e0 ∈ p−1(F (0, 0)). Then there exists a unique lift G : I × I → E of F such
that G(0, 0) = e0.

336. Let (E, e) and (B, b) be topological spaces with base points e and b respectively. Let
p : E → B be a covering map. If c is a loop at b and γ is its lift through e, we cannot
conclude that γ is a loop at e but p(γ(1)) = b, that is, γ(1) ∈ p−1(b). Example: Consider
the spaces (R, 0) and (S1, 1). A lift of c(t) = e2πit is γ(t) = t in R.

337. Let c0 and c1 be homotopic loops at b with F as a a homotopy. We thus get a lift
G : I × I → E of F such that G(0, 0) = e and p(G(s, t)) = ct(s), for (s, t) ∈ I × I. Let
γt(s) := G(s, t). Then all these paths start at e and have the same end point γ0(1).

As a corollary, if 〈c〉 ∈ π1(B, b) and γ is a lift of c through e, then

π1(B, b)→ π−1(b) defined by ϕ : 〈c〉 7→ γ(1) (4)

is well-defined.

338. Simply connected space. We say a path-connected topological space X is simply con-
nected if π1(X,x) is trivial for some (and hence for any) x ∈ X. Examples:

(a) Any convex subset of Rn is simply connected.

(b) The parabola {(x, y) ∈ R2 : y = x2} is not convex but simply connected.

(c) We shall show below (Item 341) that Sn for n ≥ 2 is simply connected.

339. Let p : (E, e) → (B, b) be a covering map. Assume that E is simply connected. Then
the map defined in (4) is a bijection of π1(B, b) with π−1(b).

As a corollary (under the above hypothesis), for any q ∈ π−1(b), if we let γy be a path
joining e to y, then given a loop c at p, we have a unique q ∈ π−1(b) such that c is
homotopic to p ◦ γy.

340. Applications.
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(a) Fundamental group of Pn(R) (n ≥ 2). For n ≥ 2, π1(Pn(R), [e1]) is isomorphic to
Z2.

(b) Fundamental group of S1 is isomorphic to Z. The following are the main steps.

i. Given 〈c〉 ∈ π1(S1, 1), ϕ(〈c〉) ∈ Z. We call the integer the index of c.

ii. The map 〈c〉 7→ ϕ(〈c〉) is a group homomorphism of π1(S
1, 1) to Z.

341. Let X be a space, U, V be simply connected open subsets of X such that (i) X = U ∪V
and (ii) U ∩ V is path connected. Then X is simply connected.

Application. Sn is simply connected for n ≥ 2.

342. Applications of the index of loops in S1.

(a) No retraction theorem. There is no continuous map f : B2 → S1 such that f(z) = z
for z ∈ S1.

(b) Brouwer fixed point theorem. Any continuous map of B2 to itself has a fixed
point.

(c) Borsuk-Ulam theorem. Let f : S2 → R2 be a continuous map. Then there exist
antipodal points ±v ∈ S2 such that f(v) = f(−v).

This has a physical interpretation.

(d) Ham-Sandwich theorem. Let A,B,C be bounded connected open subsets of R3.
Then there exists a plane in R3 that divides each of the sets into two subsets of
equal volume.

Proof of this relied on some intuitively obvious facts on volumes.

(e) Fundamental theorem of algebra.

For proofs, you may refer to my relevant articles in Expository Articles.

To add as appendices:

1. Finite sets

2. Cardinality

3. Subspace Topology

4. Quotient Topology

5. Generating Topologies

6. Tykonoff’s theorem

7. Compact Spaces

8. Connected Spaces

9. Existence of Continuous Functions

10. Proper maps
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11. Covering spaces

12. Topological groups

13. Discrete Subgroups of Rn.
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Consider X = R with the smallest topology T containing sets of the form U \A where U
is open in the standard topology Td and A ⊂ R is any countable subset.

Then (X, T ) is Hausdorff. It is not first countable. For,
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