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A basic course on Linear Algebra is an introduction to the preliminary notions such as
basis, linear maps and orthonormal basis in an inner product spaces and orthogonal/unitary
linear maps. The second phase of linear algebra is the study of structural results such as
the decomposition of the vector space w.r.t. a linear map and investigating the possibility of
representing the linear map in simple forms. This article is written with the aim of introducing
good students to these aspects of linear algebra, soon after they have had a basic course in
linear algebra. The subject matter is developed as a series of exercises with copious hints so
as to reach the results as directly and as efficiently as possible.

1 Warm-up

Let V and W be (finite dimensional) vector spaces over a field, say, R or C. Let {vi : 1 ≤ i ≤
m} and {wj : 1 ≤ j ≤ n} be bases of V . Let A : V →W be linear. Let us recall how to write
a matrix of a linear map A : V → W with respect to these bases. Write Avi :=

∑n
j=1 ajiwj .

Note the way the indices of the coefficients aji are written. The i-th column Ci in the matrix
of A w.r.t. these bases, is the coefficients of Avi:

Ci =

a1i...
ani

 .

Let us start with a warm-up exercise.

Ex. 1. Let V and W be vector spaces over a field of dimensions m and n respectively.
Let A : V → W be a linear map. Then we can find bases {vi : 1 ≤ i ≤ m} of V and
{wj : 1 ≤ j ≤ n} of W such that the matrix of A w.r.t. these bases is of the form
(a) (

Im×m
0m−n×m

)
, if A is one-one.

Hint: If {vi} is a basis of V , then extend the linearly independent set {Avi} to a basis {wj}
of W .
(b) (

In×n 0n×m−n
)
, if A is onto.
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Hint: Choose a basis {ui : 1 ≤ i ≤ m− n} of kerA and extend it to a basis {vi : 1 ≤ i ≤ m}
of V so that vn+i = ui. Then {wj := Avj : 1 ≤ j ≤ n} is a basis of W .
(c) Why are these results unsatisfactory? Hint: What do these results say when V = W?

2 Arbitrary Vector Spaces over C

Let V be a finite dimensional vector space over C and let A : V → V be a linear map. We
shall assume that dimV = n. All the results in this section are valid if the underlying field is
algebraically closed.

Definition 2. Let A : V → V be a linear map. A scalar λ ∈ C is said to be an eigen value of
A if there exists a nonzero vector v ∈ V such that Av = λv. If λ is an eigen value of A, then
a vector w ∈ V is called an eigen vector of A if Aw = λw.

Ex. 3. Let λ be an eigen value of A. Then Vλ := {v ∈ V : Av = λv}, the set of eigen vectors
of A, is a vector subspace and is equal to ker(A− λI).

Ex. 4. V is not necessarily the span of eigenvectors of A. For instance, consider A : C2 → C2

given by A(e1) = 0 and A(e2) = e1. Show that the only eigen value of A is zero and V0 = Ce1.
Hint: Note that A2 = 0.

Ex. 5. Let p(X) :=
∑d

k=0 akX
k be a polynomial in one variable X with complex coefficients

ak. Let p(A) :=
∑

k akA
k. Then p(A) : V → V is linear. It commutes with q(A) where q is

any polynomial. Also, if pq denotes the polynomial multiplication, then pq(A) = p(A) ◦ q(A).

Ex. 6. Let A : V → V be linear. Then A has an eigen value. Hint: Let 0 6= v ∈ V . Then
{v,Av,A2v, . . . , Anv} must be linearly dependent so that p(A)v = 0 for some polynomial p.
Let p(X) = α(X − λ1) · · · (X − λn). Then α(A− λ1I) · · · (A− λnI)v = 0.

Ex. 7. Where does the argument in the last exercise break down in the case of vector spaces
over R? Try to analyze this in depth. Do not be satisfied with easy answers.

Ex. 8. Nonzero eigen vectors corresponding to distinct eigen values are linearly independent.
Hint: Let 0 6= vj be an eigen vector of λj and λj 6= λk for 1 ≤ j 6= k ≤ m. Assume that
a1v1 + · · · + amvm = 0. Apply (A − λ2I) · · · + (A − λmI) on both sides to conclude that
a1(λ1 − λ2) · · · (λ1 − λm)v = 0.

Ex. 9. Let A : V → V be a linear map on an n-dimensional vector space. Show that A can
have at most n distinct eigen values.

Definition 10. Let λ be an eigen value of A. A vector v ∈ V is called a generalized eigenvector
of A if there exists a k ∈ N such that (A − λI)kv = 0. (Note that we speak of generalized
eigen vectors of a (genuine) eigen value and not of generalized eigen values!)

Ex. 11. Let A be as in Ex. 4. Then 0 is the only eigen value and e1 is a generalized eigen
vector but not an eigen vector.

Ex. 12. Let V (λ) denote the set of all generalized eigenvectors corresponding to the eigen
value λ. Then V (λ) is a vector subspace of V . In fact, V (λ) = ker(A − λI)n. Hint: Let
0 6= v ∈ V (λ). Let k ∈ N be the least such that (A− λI)kv = 0. Assume that a0v + a1(A−
λI)v + · · · + ak−1(A − λI)k−1v = 0. Apply (A − λI)k−1 to both sides of the equation to
conclude that a0 = 0 and so on. Hence k ≤ n.
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Definition 13. Let Wj , 1 ≤ j ≤ k, be vector subspaces of V . Then V is said to be a direct
sum of Wj if any vector v can be written uniquely as a sum of elements from Wj . We then
write V = ⊕kj=0Wj . We let pi : V → Wi denote pi(v) ≡ pi(

∑
j wj) = wi for 1 ≤ i ≤ n. Then

pi is a linear map.

Ex. 14. (a) Show that if V = C2 and Wj = Cej , j = 1, 2, then V = W1⊕W2. (b) If V = C3

and if W1 = span{e1, e2}, W2 = span{e2, e3} and W3 = span{e1, e3}, then V = W1+W2+W3

but the sum is not direct.

Ex. 15. The vector space of n × n matrices is the direct sum of the vector subspaces of
symmetric and skew symmetric matrices. Recall that an n× n matrix A = (aij) is said to be
symmetric (respectively, skew-symmetric) if aij = aji (respectively, aij = −aji) for all i, j.)

Ex. 16. In the notation of the above definition, show that dimV =
∑

j dimWj .

Ex. 17. V is the span of generalized eigen vectors of A. Hint: Fix an eigen value λ of A.
Observe that V = ker(A − λI)n ⊕ Im (A − λI)n. For, if v lies in both, then v = (A − λI)nu
so that (A− λI)nv = (A− λI)2nu = 0. Hence v = (A− λI)nu = 0 by Ex. 12. Now complete
the proof by induction.

Ex. 18. If 0 is the only eigen value of a linear map T , then T is nilpotent. (A linear map T
is said to be nilpotent if T k = 0 for some k ∈ N. )

Ex. 19. Nonzero generalized eigenvectors corresponding to distinct eigenvalues are linearly
independent. Hint: Assume, in an obvious notation, that a1v1 + · · · + amvm = 0. Let k be
the least such that

(A− λ1I)kv1 = 0.

Apply (A− λ1I)k−1(A− λ2I)n · · · (A− λmI)n to both sides of the first equation to get

a1(A− λ1I)k−1(A− λ2I)n · · · (A− λmI)nv1 = 0.

Write (A− λjI)n = [(A− λ1I) + (λ1 − λj)I]n in the above equation. Conclude that

a1(λ1 − λ2)n · · · (λ1 − λm)n(A− λ1I)k−1v1 = 0.

Ex. 20. Let V = ⊕kj=0Wj . Let A : V → V be a linear map such that A(Wj) ⊂ Wj for all j.
Then if we denote by Aj the restriction of A to Wj , we then can write A := A1 ⊕ · · · ⊕Ak so
that A(v) =

∑
j Ajwj . We can also exhibit A as a block operator:

A =


A1 0

A2

. . .

0 Ak


State and prove a converse of the above statements.

Ex. 21 (Structure Theorem). Let λj , 1 ≤ j ≤ m, be all the distinct eigenvalues of A. Let
Vj := V (λj), 1 ≤ j ≤ m. Then

(a) V = ⊕mj=0Vj .
(b) A maps each Vj to itself.
(c) (A− λjI) is nilpotent on Vj .
(d) The only eigenvalue of A on Vj is λj .

Hint: To prove (d), note that 0 = (A− λjI)nv = (λ− λj)nv, if Av = λv.
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Ex. 22. Prove the converse of Ex. 18: If T is nilpotent, then 0 is its only eigen value.

Definition 23. An n× n matrix A = (aij) is said to be upper triangular if aij = 0 if i > j.

Ex. 24. Let A : V → V be linear. Then the matrix of A w.r.t. a chosen basis {vj : 1 ≤ j ≤ n}
of V is upper triangular iff Aek ∈ span{ej : 1 ≤ j ≤ k}.

Ex. 25. Let A : V → V be linear. Then A admits an upper triangular matrix representation
iff there exists a flag of vector spaces Vk, 0 ≤ k ≤ n, such that

{0} = V0 ⊂ V1 ⊂ V2 · · · ⊂ Vn−1 ⊂ Vn = V

and such that AVk ⊂ Vk, for 0 ≤ k ≤ n.

Ex. 26. Let A be nilpotent. Then there exists a basis of V with respect to which the matrix
of A is upper triangular. Hint: Choose a basis of kerA. Extend it to a basis of kerA2 and so
on.

Ex. 27. Let A be any linear map on V . Then there exists a basis of V with respect to which
the matrix of A is of the form 

A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Am


where

Aj :=


λj ? . . . ?
0 λj ? ?

0 0
. . . ?

0 0 0 λj


In particular, the matrix of A w.r.t. this basis is triangular. Hint: Use the last exercise and
Ex. 21.c.

Definition 28. A basis {ek} of V is a said to be a Jordan basis of V w.r.t. A if the matrix
of A w.r.t. this basis looks like:

A :=


A1

A2

. . .

Ak

 ,

where each Aj :=


λj 1 0

λj 1
. . .

. . .

λj 1
0 λj

.

Ex. 29 (Jordan canonical Form for Nilpotent Operators). Let A : V → V be nilpotent.
Assume that q is the least positive integer such that Aq = 0. Assume that S ⊂ V (possibly
empty) be linearly independent and such that S ∩ kerAq−1 = ∅. Then S can be extended
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to a Jordan basis of V w.r.t. A. Hint: Extend S to a linearly independent set S′ such that
V = spanS′ ⊕ kerAq−1. Observe that AS′ is linearly independent subset of kerAq−1 such
that spanAS′ ∩ kerAq−2 = {0}. Now induction can be applied. If J ′ is a Jordan basis of
kerAq−1, then the basis J ′ ∪ S′, ordered in a way that elements of S′ come after elements of
J ′, will be a Jordan basis for V .

Ex. 30 (Jordan Canonical Form). Let A : V → V be any linear map. Then there exists a
Jordan basis of V for A. Hint: Ex. 27 and Ex. 21.

Definition 31. Let A : V → V be linear. Let k be the smallest positive integer positive
such that I, A, A2, . . . , Ak are linearly dependent. Then there exist complex numbers cr,
0 ≤ r < k, such that Ak + ck−1A

k−1 + · · · + c1A + c0I = 0. The polynomial p(X) :=
c0 + c1X + · · ·+ ck−1X

k−1 +Xk is called the minimal polynomial of A. Thus p is the monic
polynomial of smallest degree such that p(A) = 0. (A polynomial is monic if the coefficient
of the highest power is 1.)

Ex. 32. Let the notation be as in Ex. 21. Let αj be the smallest positive integer such that
(A− λjI)αj = 0 on V (λj). Let p(X) := (X − λ1)α1 · · · (X − λm)αm . Then

(a) deg p ≤ n.
(b) If q is a polynomial such that q(A) = 0, then p divides q.
(c) p is the minimal polynomial of A.

Hint: To prove (b), if q(X) = c(X − r1)d1 · · · (X − rt)dt(X − λj)δ, then q(A) = 0 will imply
that (A− λj)δv = 0, if v ∈ V (λj).

Definition 33. If λ is an eigen value of A, then the multiplicity of λ is dimV (λ). Keep the
notation of Ex. 21. Let dk := dimV (λk). The characteristic polynomial of A is the polynomial
(X − λ1)d1 · · · (X − λm)dm .

Ex. 34. The characteristic polynomial of A is det(XI − A). Hint: Using the standard
notation, for any α ∈ C, the eigen values of αI − A are α − λj with multiplicities dj . Hence
the determinant of αI −A is (α− λ1)d1 · · · (α− λm)dm .

Ex. 35 (Cayley-Hamilton Theorem). If q(X) is the characteristic polynomial of A, then
q(A) = 0. Hint: Use the Def. 33 and Ex. 32!

Ex. 36. Show that the minimal polynomial of A is the monic generator of the ideal {q ∈
C[X] : q(A) = 0}. (This is the standard definition of the minimal polynomial of the linear
map A.)

3 Inner Product Spaces over C

Let us now assume that V is an inner product space with an inner product 〈, 〉. In this section
we characterize those operators which produce an orthonormal basis of V consisting entirely
of eigenvectors.

Definition 37. Let A : V → V be given. Then A∗ : V → V is defined by the equation

〈A∗x, y〉 = 〈x,Ay〉 for all x, y ∈ V.

Ex. 38. Show that v 7→ A∗v is a linear map, called the adjoint of A.
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Definition 39. A linear map A : V → V is said to be self-adjoint or hermitian if A = A∗

and normal if AA∗ = A∗A.

Ex. 40. A is self adjoint iff 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ V .

Ex. 41. If A is normal, then kerA = kerA∗. Hint: Start with 〈A∗x,A∗x〉 for x ∈ kerA.

Ex. 42. If A is normal, then any generalized eigen vector of A is an eigen vector. Hint:
Prove that kerAk = kerA by induction on k. If A(Akx) = 0, then AA∗x = 0.

Ex. 43. If λ is an eigenvalue of A, then λ is an eigen value of A∗.

Ex. 44. If A is normal, then eigen vectors corresponding to distinct eigen values are orthog-
onal. Hint: Start with (λ− µ) 〈x, y〉.

Ex. 45 (Spectral Theorem for Normal Operators). A is normal iff V has an orthonormal
basis consisting of eigen vectors of A. Hint: By induction on the dimension. Observe that if
V (λ) is an eigen space, then A : V (λ)⊥ → V (λ)⊥.

Ex. 46. Show that the eigen values of a self-adjoint linear map are real.

Ex. 47. Let A be a linear map on an inner product space V . Then there exists an orthonormal
basis of V w.r.t. which the matrix of A is upper triangular. Hint: Let v ∈ V be an eigen vector
of A with norm 1. Consider W := (Cv)⊥ and the map B : W →W given by B = P ◦A where
P : V →W is the orthogonal projection, given by Ax := x− 〈x, v〉 v. Argue by induction.

Compare this exercise with Ex. 27.

Ex. 48. Let A : V → V be linear. Then the following are equivalent.
(a) 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ V .
(b) ‖Ax‖ = ‖x‖ for all x ∈ V .
(c) AA∗ = A∗A = I.
(d) A takes an orthonormal basis of V to an orthonormal basis.

Definition 49. A linear map A : V → V is said to be unitary if A satisfies any one (and
hence all) of the conditions of the last exercise.

Ex. 50. Let A be a unitary operator and λ an eigen value of A. Then |λ| = 1.

Ex. 51 (Spectral Theorem for Unitary Operators). Let A be a unitary operator. Then there
exists an orthonormal basis of V w.r.t. which A = diag (eit1 , . . . , eitn). Hint: Let v ∈ V be an
eigen vector of unit norm. Consider W , the orthogonal complement of v. Then A maps W
to itself. Apply induction.

4 Inner Product Spaces over R

Let V be a finite dimensional vector space over R and A : V → V be linear.

Ex. 52. Let V = R2 and A : (x, y) 7→ (−y, x). Show that A (the rotation by right angle in
anti-clockwise direction) has no real eigen value and hence no eigen vector.
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Ex. 53. Let p(X) be a polynomial with real coefficients. Then p(X) is a product of real
polynomials of degree 1 or 2. Moreover, if X2 + bX + c is one such factor, then b2 − 4c < 0.
Hint: Observe that if λ ∈ C is a root of p iff λ is so. Hence p(X) = (X − λ)(X − λ)q(X).
Prove that q has real coefficients. Now induction applies.

Ex. 54. Let A : V → V be linear. Then there exists an A-invariant subspace of dimension
1 or 2. Hint: Argue as in Ex. 6 making use of Ex. 53. If one of the factors A2 + bA + c has
nonzero kernel, so that (A2 + bA+ cI)w = 0, for some nonzero w, then W = span{w,Aw} is
as required.

In the sequel, V denotes a finite dimensional inner product space over R.

Ex. 55. Let A : V → V be self-adjoint: 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ V . Let b, c ∈ R be
such that b2−4c < 0. Then A2+bA+c is invertible. Hint: Show that

〈
(A2 + bA+ cI)v, v

〉
> 0

for all v 6= 0.

Ex. 56. Let A : V → V be self-adjoint. Then A has an eigen value. Hint: Go through the
proofs of Ex. 6 and Ex. 54.

Ex. 57. Let A be self-adjoint. The nonzero eigen vectors of A corresponding to distinct eigen
values are orthogonal to each other. Hence V is the orthogonal direct sum of eigen spaces of
A. Hint: 〈Av1, v2〉 = 〈v1, Av2〉, where Avj = λjvj .

Ex. 58 (Spectral Theorem for Real Self-Adjoint Operators). A : V → V is self-adjoint iff
there exists an orthonormal basis of V consisting of eigenvectors of A. Hint: If v is a nonzero
eigen vector, then A maps (Rv)⊥ to itself.

Ex. 59. Find the matrix (w.r.t. the standard basis) of an orthogonal map of R2 with the
Euclidean inner product. Hint: Note that {Ae1, Ae2} is an orthonormal basis of R2 and that

any vector of unit norm can be written as

(
cos θ
sin θ

)
for some θ ∈ R. Hence A is either of the

form k(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
or of the form r(θ) :=

(
cos θ sin θ
sin θ − cos θ

)
for some θ ∈ R. k(θ)

(resp. r(θ)) is called a rotation (resp. a reflection).

Ex. 60. If A : V → V is orthogonal and λ is an eigen value of A, then λ = ±1.

Ex. 61. Let T : V → V be orthogonal. Let A := T + T−1 = T + T ∗. Then A is symmetric
and let V := ⊕iVi be the orthogonal decomposition of A into distinct eigen spaces. Then

(a) T leaves each Vi invariant.
(b) If Vλ is an eigen space of A with eigen value λ, then we have T 2 − λT + I = 0 on

Vλ.
(c) If λ = ±2, then T acts as ±I on Vλ.
(d) If λ 6= ±2, thenW := Rv+R(Tv) is a two-dimensional subspace such that TW ⊂W .

Also, if Vλ = W ⊕ W⊥, then TW⊥ ⊂ W⊥. Hence Vλ is orthogonal direct sum of two
dimensional vector subspaces invariant under T .

(e) If T : R2 → R2 is orthogonal and satisfies T 2 + λT + I = 0 for some λ 6= ±2, then
T is a rotation.
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Ex. 62 (Spectral Theorem for Orthogonal Operators). Let T be orthogonal. Then there
exists an orthonormal basis of V with respect to which T can be represented as follows:

T =



±1
. . .

±1 (
cos θ1 − sin θ1
sin θ1 cos θ1

)
. . . (

cos θr − sin θr
sin θr cos θr

)


.

That is, T is the block matrix

T = diag
(
±1, · · · ,±1, k(θ1), · · · , k(θr)

)
.

Hint: Ex. 61 and Ex. 59.

The last couple of results are valid for inner product spaces over R or C. Let V be an
inner product space over R or C and A : V → V be linear.

Definition 63. A is said to be positive if (i) A is self-adjoint and (ii) 〈Ax, x〉 ≥ 0 for all
x ∈ V .

Ex. 64. Show that the eigen values of a positive operator A are nonnegative and that there
exists a unique operator S such that S is positive and S2 = A. The operator S is called the
positive square root of A.

Ex. 65 (Polar Decomposition for Invertible Maps). Let A : V → V be nonsingular. Then
there exists a unique decomposition A = PU where U is unitary (or orthogonal) and P is
positive. (This decomposition is called the polar decomposition of A.) Hint: Think of complex
numbers. The map AA∗ is positive and let S be its positive square root. Then U := S−1A
may do the job. But why does S−1 exist?

Ex. 66 (Polar Decomposition). Let A : V → V be any linear map. Then there exists a unitary
(orthogonal) map U and a positive map P such that A = PU . Hint: Let S :=

√
AA∗. Let

W := SV . Define U1 : W → V by setting U1(Sv) := Av. Observe that dimW⊥ = dim(AV )⊥.
Define a unitary map U2 : W⊥ → (AV )⊥.

A Warning! My emphasis on this article is to give a solid and quick treatment of the
theoretical aspects of the results. This cannot be taken as a substitute for a textbook. Even
if you could work out all these exercises, I suggest that you take up a book on Linear Algebra
and do a lot more concrete and numerical examples.
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