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Let X be a set. We say that a collection A of (nonempty) subsets of X has finite in-

tersection property (f.i.p., in short) if every finite family A1, . . . , An of elements in A has a
nonempty intersection.

Ex. 1. A topological space is compact iff every family of closed sets with f.i.p. has nonempty
intersection. Hint: Start with an open cover U which does not admit a finite subcover. Look
at {X \ U : U ∈ U}.

Let us briefly review the product topology. Given a family {Xα : α ∈ I} of topological
spaces, the topology on the product set

∏

α∈I Xα is the weakest (or the smallest topology)
which makes the canonical projection maps Pα : X → Xα continuous. Hence for any open
set Uα ⊂ Xα, the set P−1

α (Uα) must be declared open in X. Finite intersections of such sets
form a basis for the product topology, that is, U ⊂ X is open iff for each x ∈ U , there exists
a finite subset F ⊂ I such that x ∈ ∩α∈FP

−1
α (Uα) for some open sets Uα ⊂ Xα.

To bring out the main ideas of the proof clearly, let us list the following two exercises
which are set-theoretic in nature. Their solutions can be gleaned from the proof of the
theorem below.

Ex. 2. Let A be a family of subsets of a set X with f.i.p. Then there exists a ‘maximal’
family B containing A with f.i.p., that is, a family B of subsets such that (i) A ⊂ B, (ii) B
has f.i.p. and (iii) if C is any family with f.i.p. such that A ⊂ B , then C ⊂ B. Hint: Partially
order the set of all collections with properties (i) and (ii) by inclusion. Apply Zorn’s lemma.

Ex. 3. Let B be a family of subsets of a set X which is maximal with respect to finite
intersection property. Then (i) if A ⊂ X has nonempty intersection with each member of B,
then A ∈ B and (ii) the intersection of any finite number of elements of B again lies in B.

Theorem 4 (Tychonoff). The product of compact spaces is compact. That is, if Xα is

compact for each α ∈ I and if X :=
∏

α∈I Xα is endowed with the product topology, then X

is compact.

Proof. We plan to use Ex. 1. Let F0 be a family of closed sets in X with the finite intersection
property (f.i.p). It suffices to show that there is a point common to all the sets F ∈ F0. We
use Ex. 2 to get maximal family F ⊇ F0. The details are in the next paragraph.
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Consider the class of all families F of (not necessarily closed) subsets such that F0 ⊂ F
which have f.i.p. For two families F and G in this class we say that F ≤ G iff F ⊆ G. Now let
C be any totally ordered chain in this class, that is, if F ,G ∈ C, then either F ⊆ G or G ⊆ F .
This chain has an upper bound, viz., H = ∪F∈CF . We need only show that H has f.i.p. Let
A1, . . . , An ∈ H. Then there exists Fj ∈ C such that Aj ∈ Fj ∈ C. Since C is totally ordered,
and F1, . . . ,Fn are finite in number, there exists k with 1 ≤ k ≤ n such that Fj ⊆ Fk for all
j. Hence A1, . . . , An ∈ Fk. Since Fk has f.i.p., A1 ∩ · · · ∩An 6= ∅. Thus H has f.i.p. and hence
is an upper bound for the chain. Therefore, by Zorn’s lemma, there exists a maximal family
F ∈ C, with F ⊇ F0.

Let Fα denote {Eα := Pα(E), E ∈ F}, where Pα : X → Xα is the canonical projection
map. Then Fα ⊆ P (Xα), the power set of Xα, has f.i.p. For otherwise, Eα

1
∩ · · · ∩ Eα

n = ∅
will imply E1 ∩ · · · ∩ En = ∅, where Pα(Ei) = Eα

i . Hence, F
α = {Eα} has finite intersection

property.

Since Xα is compact, there exists xα ∈ ∩Eα where the intersection is over all Eα ∈ Fα.
Let x ∈

∏

Xα be such that x(α) := xα. We claim that x ∈ ∩F∈FF . Since F ⊇ F0 and since
every element of F0 is closed, the claim completes the proof of the theorem.

We now prove the claim. Let U be an open set in X. By definition of product topology,
there exists α1, . . . , αn and open sets Uαi

⊆ Xαi
, 1 ≤ i ≤ n such that x ∈ ∩n

i=1
P−1
αi

(Uαi
) ⊆ U .

This implies xαi
∈ Uαi

for all i. By hypothesis on xα’s, xαi
is in the closure of Fαi

for all
Fαi

∈ Fαi . Select yαi
∈ Uαi

∩Fαi
and a y ∈ F such that Pαi

(y) = yαi
. Then y ∈ P−1

αi
(Uαi

)∩F .
Thus P−1

αi
(Uαi

) has a non-empty intersection with every F ∈ F . Therefore P−1
αi

(Uαi
) ∈ F by

Ex. 3.

Uαi

F

xαi
yαi

y

P−1
αi

(Uαi
)

X :=
∏

α Xα

Fαi

Figure 1: P−1
αi

(Uαi
) ∩ F 6= ∅

(Reason: Otherwise F ∪ {P−1
αi

(Uαi
)} ⊃ F and the former has finite intersection property,

contradicting the maximality of F .)
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Using Ex. 3 again, we infer that ∩n
i=1

P−1
αi

(Uαi
) ∈ F .

(Reason: Since F,P−1
αi

(Uαi
) ∈ F , we see that F ∩

(

∩iP
−1
αi

(Uαi
)
)

6= ∅. Thus ∩iP
−1
αi

(Uαi
)

meets every element of F . Thus F ∪{∩iP
−1
αi

(Uαi
)} has f.i.p. Since F is maximal with respect

to f.i.p. it follows that ∩iP
−1
αi

(Uαi
) ∈ F .)

Since F has f.i.p., this basic open set and hence U intersects each member of F non-
trivially. Since U was an arbitrary open neighborhood of x, this means that x ∈ F , for all
F ∈ F . Hence the claim.
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