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The fact that we need the LUB property of the reals to show that the set of real numbers
is uncountable is hardly appreciated by many students. Even though most of the students
have seen a proof of the uncountability of the reals many are not aware of a subtle point
of the proof. Below we give three proofs of this result—a not-so-well-known proof using the
LUB property of R directly, the second one using the nested interval theorem and the third
(so-called Cantor’s diagonal trick).

Theorem 1. The set [0, 1] is uncountable.

Proof 1. If [0, 1] is countable, since [0, 1] is infinite, there exists a bijection f : N → [0, 1].
Let zn := f(n). We define two sequences (xn) and (yn) whose elements are defined recursively.
Let x1 be the zr where r is the first integer such that 0 < zr < 1. Let y1 be zs where s is the
first integer such that x1 < zs < 1. Assume that we have chosen (xi)

n
i=1 and (yi)

n
i=1 with the

property

0 = x0 < x1 < x2 < · · · < xn < yn < yn−1 < · · · < y2 < y1 < y0 = 1.

We choose xn+1 to be the zr where r is thefirst integer such that xn < zr < yn. Let yn+1 Details!

be zs where s is the first integer such that xn+1 < zs < yn. Clearly the set {xn} ⊂ [0, 1] is
nonempty and bounded above. Let x := sup{xn}. Then it is easily seen that x ∈ [0, 1] and
that x 6= zn for n ∈ N.

Proof 2. We wish to show that the set of reals in [0, 1] is uncountable. Assume the
contrary that [0, 1] is countable. That is, there exists a map f : N→ [0, 1] which is onto. Let
xn := f(n) ∈ [0, 1]. To arrive at a contradiction, we shall employ the Nested interval theorem.
Let us subdivide the interval [0, 1] into three closed subintervals of equal length. Then there
exists at least one subinterval which does not contain f(1) = x1. (Draw a picture. The worst
possible case is when f(1) = x1 happens to be either 1/3 or 2/3.) Call this subinterval as
J1. Let us subdivide J1 into three equal closed subintervals. Either x2 = f(2) /∈ J1 or it
lies in at most two of the subintervals of J1. In any case there exists a subinterval of J1
which does not contain f(2). Choose one such and call it J2. We proceed along this line to
construct a subinterval Jn of Jn−1 which does not contain f(n). Thus we would have obtained
a nested sequence (Jn) of closed and bounded intervals. By the nested interval theorem their
intersection is nonempty: ∩nJn 6= ∅. Let x ∈ ∩Jn. Then x ∈ [0, 1]. So there exists an n ∈ N
such that x = f(n). Thus f(n) = x ∈ ∩nJn. This contradicts our choice of Jn. Hence our
assumption that [0, 1] is countable is wrong.
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Proof 3. This is the “standard” proof found in almost all text-books. The idea behind
this proof is simple: If [0, 1] is written as a sequence (xn) we write xn in decimal form and
construct a number y = 0.y1y2 · · · yn · · · such that y and xn differ at their n-th decimal digit.
But however to make this idea work one should exercise care.

Let xn = xn1xn2 · · ·xnn · · · be a decimal expansion of xn. We choose yn ∈ {0, 1, . . . , 9} but
yn 6= xnn. We define y = 0.y1y2 · · · yn · · · . By LUB there exists a real number y ∈ [0, 1]. For,
if we denote sn :=

∑n
k=1 yk/10k then {sn} is a subset of nonnegative real numbers bounded

above by 1: sn ≤
∑

k 9/10k = 1. Thus by LUB property there exists a real number y. From
the theory of infinite series this y is the sum of the infinite series

∑∞
k=1 yk/10k.

Now the usual argument goes as follows: This number y must be xn for some n. But
then this is impossible as y and xn differ at the n-th decimal digit. This argument is not
completely correct for the simple reason that some real numbers have more than one decimal
expansions. For instance the number y under consideration could have been 0.499 · · · 9 · · ·
which represents 1/2. But 1/2 might appear in our sequence as 0.500 · · · 0 · · · . Thus we
cannot really conclude the number y we constructed is not in our list!

The way out is to allow only special kind of decimal expansions. One knows that the
decimal expansion is unique for any x ∈ [0, 1] unless it is of the form k/10n for some k ∈ N
and n ∈ N with k ≤ 10n. In this exceptional case there are exactly two expansions—one
which ends in zeros and the other which ends in 9’s. The first one is called the terminating
decimal expansion and the second the nonterminating one. Thus we observe the following:

1. The correspondence between the real numbers and the decimal expansions in which we
choose the terminating one if there are two expansions is one-to-one and onto.

2. The correspondence between the real numbers and the decimal expansions in which we
choose the non-terminating one if there are two expansions is one-to-one and onto.

Now we return to the proof. Assume we adopt the first convention above, i.e., we choose
the terminating decimal expansions if there are more than one decimal expansions. In this
case we take yn = 2 if xnn 6= 2 and yn = 5 if xnn = 2. Then 0.y1y2 · · · yn · · · is a decimal
expansion which does not end in an infinite sequence of 9’s. Hence y := 0.y1y2 · · · yn · · · is a
real number in (0, 1) which is not equal to any of the xn’s.

If we decide to adopt the second convention of representing reals in (0, 1] by nonterminating
decimal expansion, then we choose zn = xnn + 1 if xnn < 5 and zn = xnn − 1 if xnn ≥ 5.
Then 0.z1z2 · · · zn · · · is a decimal expansion of the form we agreed up on representing a real
number z ∈ [0, 1]. Clearly z 6= xn for any n.
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