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Theorem 1. Let X be a metric space and Y a complete metric space. Let A ⊂ X be dense in
X. Let f : A→ Y be uniformly continuous. Then there exists a unique (uniformly) continuous
function g : X → Y such that g extends f , that is, g(a) = f(a) for all a ∈ A.

Proof. Outline: Given x ∈ X, by density of A in X we can find a sequence (an) in A such
that an → x. Then (f(an)) is a Cauchy sequence in Y and hence lim f(an) exists. We set
g(x) := limn f(an). One checks that g is well-defined, that is, if a′n → x, a′n ∈ A, then
limn f(an) = limn f(a′n). For, d(f(an), f(a′n)) → 0 as n → ∞. Note that g(a) = f(a) for
a ∈ A. To prove the uniform continuity of g, let ε > 0 be given. For ε/3, the uniform
continuity of f on A gives us a δ. Let x1, x2 ∈ X be such that d(x1, x2) < δ/3. We can find
ai ∈ A such that d(xi, ai) < δ/3 and such that d(g(xi), g(ai)) < ε/3. (The first is by the
density of A and the second by the very definition of g.) Note that

d(a1, a2) ≤ d(a1, x1) + d(x1, x2) + d(x2, a2) < δ.

We have

d(f(x1), f(x2)) ≤ d(f(x1), f(a1)) + d(f(a1), f(a2)) + d(f(a2), f(x2))

< 3× ε/3.

We now give all the details.

Cliam 1: Given x ∈ X, there exists a sequence (an) in A such that an → x.

Since A is dense in A, for any given n ∈ N, the open ball B(x, 1/n) intersects A. Let

an ∈ B(x, 1/n) ∩A. Since d(x, an) < 1/n, it follows that an → x.

Claim 2: If x ∈ X and (an) is a sequence in A such that an → x in X, then the sequence
(f(an)) is converegent in Y .

We show that (f(an)) is Cauchy in Y . Since Y is complete, there exists y ∈ Y such that

f(an)→ y in Y . To show that (f(an)) is Cauchy, let ε > 0 be given. Since f is uniformly

continuous on A, for the ε given above, there exists a δ > 0 such that if a, a′ ∈ A are such

that d(a, a′) < δ, then d(f(a), f(a′)) < ε. Since (an) is converegent, it is Cauchy. Hence
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there exists n0 such that for all n,m ≥ n0, we have d(an, am) < δ. By our choice of δ,

we see that d(f(an), f(am)) < ε for n,m ≥ n0. This means that the sequence (f(an)) is

Cauchy in Y .

Claim 3: Let (an) and (bn) be sequences in A such that an and bn converge to the same
x ∈ X. Then limn f(an) = limn f(bn).

By Claim 2, we know that the sequences (f(an)) and (f(bn)) are converegent in Y . Let
y, y′ ∈ Y such that f(an) → y and f(bn) → y′. We need to show that y = y′. Let ε > 0
be given. We show that d(y, y′) < ε. This will imply that d(y, y′) = 0 and hence y = y′.

For ε > 0 given above, let δ > 0 correspond to ε/3 by the uniform continuity of f on A:

a, a′ ∈ A with d(a, a′) < δ =⇒ d(f(a), f(a′)) < ε/3. (1)

Since an → x and bn → x, using δ/2 in the defintion of convergence, there exists m1,m2 ∈
N such that

n ≥ m1 =⇒ d(an, x) < δ/2 and n ≥ m2 =⇒ d(bn, x) < δ/2. (2)

Hence it follows from (2) that

n ≥ m3 := max{m1,m2} =⇒ d(an, bn) ≤ d(an, x) + d(x, bn) < (δ/2) + (δ/2) = δ. (3)

From (3) and (1)

for all n ≥ m3 we have d(f(an), f(bn)) < ε/3. (4)

Since f(an)→ y, for ε as above, there exists m4 ∈ N such that

n ≥ m4 =⇒ d(f(an), y) < ε/3. (5)

Similarly, there exists m5 ∈ N such that

n ≥ m5 =⇒ d(f(bn), y′) < ε/3. (6)

We now estimate d(y, y) using (5), (4) and (6):

d(y, y′) ≤ d(y, f(an)) + d(f(an), f(bn)) + d(f(bn), y′) for any n

≤ ε/3 + ε/3 + ε/3 if n ≥ m6 := max{m4,m3,m5}.
= ε.

Let g : X → Y be defined as follows. For any x ∈ X, by Claim 1, there exists a sequence
(an) in A such that an → x in X. By Claim 2, there exists y ∈ Y such that f(an)→ y. If we
set g(x) := limn f(an), Claim 3 says that g(x) is well-defined.

Also, if x ∈ A, then we may take an = x for all n. Then an → x and g(x) := lim f(an) =
limn f(x) = f(x). Hence g is an extension of f

Claim 4: g is uniformly continuous on X.

Let ε > 0 be given. By the uniform continuity of f on A, there exists δ > 0 such that

a, a′ ∈ A with d(a, a′) < δ =⇒ d(f(a), f(a′)) < ε/3. (7)
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We claim that if x, x′ ∈ X are such that d(x, x′) < δ/3, then d(g(x), g(x′)) < ε, that is, g
is uniformly continuous.

Let x, x ∈ X be such that d(x, x′) < δ/3. Let (an) and (bn) be sequences in A such
that an → x and bn → x′. We claim that there exists n3 such that if n ≥ n3, then
d(an, bn) < δ. Since an → x and bn → x′, for δ/3, there exist n1, n2 ∈ N such that

n ≥ n1 =⇒ d(an, x) < δ/3 and n ≥ n2 =⇒ d(bn, x
′) < δ/3. (8)

It follows from (8) that if d(x, x′) < δ/3 then for

n ≥ n3 := max{n1, n2} =⇒ d(an, bn) ≤ d(an, x) + d(x, x′) + d(x′, bn) < 3(δ/3) = δ. (9)

In view of (7) and (9), we get

d(x, x′) < δ/3 and n ≥ n3 =⇒ d(f(an), f(bn)) < ε/3. (10)

Now since f(an)→ g(x) and f(bn)→ g(x′), for ε/3, there exist k1, k2 ∈ N such that

n ≥ k1 =⇒ d(f(an), g(x)) < ε/3 and n ≥ k2 =⇒ d(f(bn), g(x′)) < ε/3. (11)

It follows from (11), (10) and (11) that for x, x′ ∈ X with d(x, x′) < δ/3

d(g(x), g(x′)) ≤ d(g(x), f(an)) + d(f(an), f(bn)) + d(f(bn), g(x′)) for any n (12)

< 3(ε/3) if n ≥ max{k1, k2, n3}. (13)

Hence g is uniformly continuous on X.

Claim 5: g is unique.

We are supposed to prove: If h : X → Y is a continuous function such that h(a) = f(a)

for all a ∈ A, then h(x) = g(x) for all x ∈ X. Let x ∈ X be arbitrary. Let (an) be a

sequence in A such that an → x. Recall that g(x) := limn f(an). Since h is an extension

of f , we have h(an) = f(an). Since an → x and h is continuous at x, it follows that

h(an)→ h(x). Since h(an) = f(an) and since f(an)→ g(x), we deduce that h(x) = g(x)

thanks to the uniqueness of limits. Since x ∈ X is arbitrary, we have shown that h = g

on X.

Ex. 2. Let f : (a, b) → R be continuous. Show that f extends to [a, b] iff it is uniformly
continuous on (a, b).
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