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Theorem 1. Let X be a metric space and Y a complete metric space. Let A C X be dense in
X. Let f: A=Y be uniformly continuous. Then there exists a unique (uniformly) continuous
function g: X =Y such that g extends f, that is, g(a) = f(a) for all a € A.

Proof. Outline: Given x € X, by density of A in X we can find a sequence (a,) in A such
that a, — z. Then (f(ay)) is a Cauchy sequence in Y and hence lim f(a,) exists. We set
g(x) := lim, f(a,). One checks that g is well-defined, that is, if a), — x, a], € A, then
lim,, f(an) = lim, f(a},). For, d(f(a,), f(a),)) — 0 as n — oco. Note that g(a) = f(a) for
a € A. To prove the uniform continuity of g, let ¢ > 0 be given. For £/3, the uniform
continuity of f on A gives us a §. Let x1,z2 € X be such that d(z1,z2) < §/3. We can find
a; € A such that d(z;,a;) < /3 and such that d(g(z;),g(a;)) < ¢/3. (The first is by the
density of A and the second by the very definition of g.) Note that

d(ay,a2) < d(a1,z1) + d(x1,z2) + d(x2,a2) < 4.

We have

d(f(x1), f(w2)) < d(f(x1), flar)) +d(f(ar), faz)) + d(f(az), f(z2))
< 3x¢/3.

We now give all the details.

Cliam 1: Given x € X, there exists a sequence (ay) in A such that a,, — z.

Since A is dense in A, for any given n € N, the open ball B(z,1/n) intersects A. Let
an € B(z,1/n) N A. Since d(z,a,) < 1/n, it follows that a,, — =.

Claim 2: If x € X and (ay) is a sequence in A such that a,, — = in X, then the sequence
(f(ayn)) is converegent in Y.

We show that (f(a,)) is Cauchy in Y. Since Y is complete, there exists y € Y such that
flan) — yinY. To show that (f(a,)) is Cauchy, let € > 0 be given. Since f is uniformly
continuous on A, for the € given above, there exists a 0 > 0 such that if a,a’ € A are such
that d(a,a’) < d, then d(f(a), f(a’)) < e. Since (a,) is converegent, it is Cauchy. Hence



there exists ng such that for all n,m > ng, we have d(a,,a,,) < . By our choice of §,
we see that d(f(ay), f(am)) < € for n,m > ng. This means that the sequence (f(ay)) is
Cauchy in Y.

Claim 3: Let (ay) and (b,) be sequences in A such that a, and b, converge to the same
xz € X. Then lim,, f(ay) = lim,, f(b,).

By Claim 2, we know that the sequences (f(ay)) and (f(b,)) are converegent in Y. Let
¥,y € Y such that f(a,) = y and f(b,) — v'. We need to show that y = 3'. Let € > 0
be given. We show that d(y,y’) < e. This will imply that d(y,y’) = 0 and hence y = y/'.

For € > 0 given above, let 6 > 0 correspond to £/3 by the uniform continuity of f on A:
a,a’ € A with d(a,a’) < § = d(f(a), f(a)) <e/3. (1)

Since a, — z and b,, — x, using §/2 in the defintion of convergence, there exists my, ma €
N such that

n>m; = d(ap,r) <d§/2and n>my = d(b,,x) < /2. (2)
Hence it follows from (2) that
n > ms = max{my,ma} = d(an,bn) < d(an,x)+d(z,b,) < (5/2) +(6/2) =4d. (3)
From (3) and (1)

for all n > mg we have d(f(an), f(bn)) < &/3. (4)

Since f(a,) — y, for € as above, there exists my4 € N such that
n=my = d(f(an),y) <e/3. ()
Similarly, there exists ms € N such that

n>ms = d(f(bn),y) <e/3. (6)

We now estimate d(y,y) using (5), (4) and (6):

d(y,y") d(y, f(an)) + d(f(an), f(bn)) +d(f(bn),y") for any n
e/3+¢/3+¢/3 if n > mg := max{my, ms3, ms}.
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Let g: X — Y be defined as follows. For any = € X, by Claim 1, there exists a sequence
(an) in A such that a, — x in X. By Claim 2, there exists y € Y such that f(a,) — y. If we
set g(x) :=lim, f(ay), Claim 3 says that g(z) is well-defined.

Also, if z € A, then we may take a,, = x for all n. Then a,, — x and g(z) := lim f(a,) =
lim,, f(z) = f(x). Hence g is an extension of f

Claim 4: ¢ is uniformly continuous on X.

Let € > 0 be given. By the uniform continuity of f on A, there exists § > 0 such that

a,a’ € A with d(a,a’) <6 = d(f(a), f(a')) < e/3. (7)



We claim that if z,2" € X are such that d(x,2’) < §/3, then d(g(x),g(z’)) < e, that is, g
is uniformly continuous.

Let z,z € X be such that d(z,z’) < §/3. Let (ay) and (b,) be sequences in A such
that a, — x and b, — z’. We claim that there exists n3 such that if n > ns3, then
d(an,by) < 0. Since a, — z and b, — 2/, for §/3, there exist ny,no € N such that

n>n; = d(ap,z) <d/3 and n >ny = d(by,2") < /3. (8)
It follows from (8) that if d(x,z’) < §/3 then for
n > ng = max{ny,ne} = d(an,b,) < d(an,x)+d(z,z") +d(z',b,) < 3(6/3) = 4. (9)
In view of (7) and (9), we get

d(z,2") < /3 and n > ng = d(f(an), f(bn)) < &/3. (10)

Now since f(a,) — g(z) and f(b,) — g(z’), for /3, there exist k1, ks € N such that

n>k = d(f(an),g9(x)) <e/3and n > ks = d(f(bn),g(z")) < /3. (11)

It follows from (11), (10) and (11) that for z,2’ € X with d(z,z') < 6/3

d(g(z), 9(«")) < dlg(x), flan)) + d(f(an), f(bn)) + d(f(bn), g(z)) for any n (12)
< 3(g/3) if n > max{ky, ka,n3}. (13)

Hence ¢ is uniformly continuous on X.
Claim 5: ¢ is unique.

We are supposed to prove: If h: X — Y is a continuous function such that h(a) = f(a)
for all a € A, then h(z) = g(x) for all x € X. Let € X be arbitrary. Let (a,) be a
sequence in A such that a, — z. Recall that g(z) := lim,, f(a,). Since h is an extension
of f, we have h(a,) = f(an). Since a, — x and h is continuous at x, it follows that
h(an) — h(x). Since h(a,) = f(an) and since f(ay,) — g(x), we deduce that h(x) = g(x)
thanks to the uniqueness of limits. Since x € X is arbitrary, we have shown that h = g
on X.
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Ex. 2. Let f: (a,b) — R be continuous. Show that f extends to [a,b] iff it is uniformly
continuous on (a, b).



