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We define a cross-product on a three dimensional real vector space V with an inner prod-
uct: (x, y) 7→ 〈x, y〉. We fix an orthonormal basis {ei} of V such that 〈ei, ej〉 = δij . If you
wish you may take V = R3 with the standard basis vectors and the Euclidean inner product
(x, y) 7→ 〈x, y〉 :=

∑3
i=1 xiyi. For any ordered set of three points x1, x2, x3 of V we define the

oriented volume of the parallelepiped with sides Oxi by setting:

vol (x1, x2, x3) = det(αji) where xi =
∑
j

αjiej .

vol (x1, x2, x3) is independent of the choice of the basis as above. We also have the Riesz
representation theorem: For any linear map f : V → R there exists a unique u ∈ V such that
f(x) = 〈x, u〉. Hint: With basis vectors ei we take u :=

∑
i f(ei)ei. We now define the cross

product or vector product on V as follows:

For x, y ∈ V , the map z 7→ vol (x, y, z) is linear map of V to R and hence by Riesz
representation theorem there exists a unique vector x× y such that

〈x× y, z〉 = vol (x, y, z), for all z ∈ V.

It is easy to see that if w := x × y =
∑

iwiei is the unique vector given by Riesz, then
wj = 〈

∑
iwiei, ej〉 = det(x, y, ej). From this we find that

x× y = (x2y3 − x3y2)e1 − (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3.

This product has the following properties which are immediate consequences of well-known
properties of determinants:

1. λx× y = λ(x× y) = x× λy, for λ ∈ R.

2. y × x = −x× y.

3. 〈x× y, z〉 = 〈y × z, x〉 = 〈z × x, y〉.

4. 〈x, y × z〉 = 〈y, z × x〉 = 〈z, x× y〉.

Proposition 1. For any three vectors x, y, z ∈ V , we have

x× (y × z) = {(〈x, z〉)y − (〈x, y〉)z}. (1)
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Proof. To show that these two vectors are equal, it is enough to show that their inner product
with any vector of V (in fact, any vector in an orthonormal basis) are the same:

〈v, x× (y × z)〉 = 〈v, (〈x, z〉)y − (〈x, y〉)z〉 .

In view of (4), it is enough to verify for an arbitrary vector v,

〈v × x, y × z〉 = {〈v, y〉 〈x, z〉 − 〈x, y〉 〈v, z〉}. (2)

We first observe that both sides are linear in each of the variables. Hence it is enough to
verify it on {ei}. Due to symmetry we may take y = e1, z = e2 so that y × z = e3. Now it is
easily checked that both sides of Eq. 2 are equal to (v1x2 − v2x1).

The geometric meaning of the vector or cross product x × y is that it is the vector or-
thogonal to x and y with the property that {x, y, x× y} is a basis with the same orientation
as {e1, e2, e3} and is of length ‖x‖ ‖y‖ sin θ. This follows for example from Eq. 2. It may
be noted that the latter quantity ‖x‖ ‖y‖ sin θ is the area of the parallelogram spanned by x
and y.

We often write x ∧ y for x× y.
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