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Good references for this topic are some of the standard American textbooks on Calculus
such as Thomas-Finney, Stewart, Howard Anton, Kreyzsig (Advanced Engineering Mathe-
matics) etc. All of these will have good pictures and physical explanations for the concepts
and results. These theorem were found by physical reasoning and latter rigorous proofs were
given by mathematicians. To have a better feeling for this topic, it is suggested to approach
the topic with a physical intuition however weak it is!

1. A vector field F on an open set U ⊂ Rn is a C1-map F : U → Rn. We visualize F (x)
by thinking as a directed line segment F (x) emanating/starting from the point x, as we
used to do in Physics!

2. The notion of vector fields arises naturally in Physics. If we imagine a fluid flowing
through a pipe, then F (x) could the veclocity vector at the pint x of the pipe. If we
have two bodies with masses m and M then the gravitational force acting on any object
at the point (x, y, z) is given by

F (x, y, z) := −mMG

‖x‖3
x,

where G is the gravitational constant.

3. An important example both for theory and practice is the gradient field of a function.
Let f : U → R be a C2 function. Then F : x 7→ grad f(x) is a vector field on U , called
the gradient vector field of f . f is called the potential of F .

4. A vector field F on U ⊂ Rn is said to be conservative if it has a potential, that is, F is
the gradient field of a C2 function f . Is such an f unique?

Exercise: Show that the gravitational field is conservative on its domain.

5. A path γ in an open set U ⊂ Rn is a C1 or a piecewise C1 function γ : [a, b] ⊂ R →
U ⊂ Rn. (γ is piecewise smooth iff γ is continuous on [a, b] and is C1 on partitioning
subintervals.) Such paths/curves are said to be parametrized.

Note that the paths/curves should not be confused with theie images. For example, the
paths α(t) = (t, 0 and β(t) = (t3, 0) for t ∈ [0, 1] are distinct though they have the same
images. The best analogy would be to think of α and β as trains which travel on the
same track but at (possibly) different time intervals and velocities.
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6. If γ is C1, then the tangent vector to γ at t ∈ [a.b] is deifned by γ′(t). We usually write
γ(t) = (x1(t), . . . , xn(t)) in the case of arbitrary n or γ(t) = (x(t), y(t)) in the case when
n = 2 etc. Hence γ′(t) = (x′1(t), . . . , x

′
n(t)).

7. Let γ be a path in U ⊂ Rn and f : U → R be a continuous function. Then the line
integral of f along γ, denoted by

∫
γ f is defined by∫

γ
=

∫ b

a
f(γ(t))

∥∥γ′(t)∥∥ dt. =

∫ b

a
f(γ(t))

√
x′1(t)

2 + · · ·+ x′n(t)2 dt.

How do we define the line integral
∫
γ f if γ is piecewise C1?

8. Given a curve α : [a, b]→ U ⊂ Rn, a reparametrization of α is a C1 function h : [c, d]→
[a, b] such that h′ > 0 and h(c) = a and h(d) = b. The curve β(s) := α(h(s)) is also said
to be a reparametrization of α. Note that if we write t := h(s), then dt = h′(s) and the
change of variable formular or the substituion theorem of calculus yields∫

α
f =

∫
β
f.

9. Let γ : [a, b] → U be a curve and F be a vector field on U . The the line integral of F
over γ is defined as the work done by the force field F by moving a particle along γ. It
is mathematically defined by setting∫

γ
F :=

∫ b

a
F (γ(t)) · γ′(t) dt

Let us derive a classical notation for this when n = 2, 3. If we write γ(t) = (x(t), y(t), z(t)
and F = (P,Q,R), then F · γ′(t) = Px′(t) + Qy′(t) + Rz′(t) so that the classical or
old fashioned notation for integrand on the right side Pdx + Qdy + Rdz. (Note that
x′(t) = dx

dt so that (?) x′(t) dt = dx!)

Hence in old texbooks one sees the defintion of the line integral as
∫
γ F =

∫
γ F · dr =∫

γ Pdx+Qdy +Rdz.

10. Let us compute the line integral of a conservative vector field F = grad f along a path γ.
We find that

∫
γ F = f(γ(b))− f(γ(a)). Note that this is analogous to the fundamental

theorem of calculus. Note also that the work done, namely the line interal of F , is
independent of the path and depends only on the end points of the path.

11. Let U = R2 minus the origin and F (x, y) := 1
x2+y2

(−y, x). Let γ(t) := (cos t, sin t) for

t ∈ [0, 2π]. Then we find that
∫
γ F = 2π. Note that here the end points coincide but

the line integral is not zero.

12. If σ(t) := γ(b+ a− t), then σ is called the reverse path of γ. We have
∫
σ F = −

∫
γ F .

13. If α : [a, b]→ U and β : [b, c]→ U are paths such that α(b) = β(b), then we have a new
path γ with domain [a, c]. Also, we have

∫
γ F =

∫
α F +

∫
β F .

14. We say a path γ : [a, b]→ U is closed if γ(a) = γ(b).
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15. We say that the work done by the vector field F on an open set U is path independent
if
∫
α F =

∫
β F for any two paths having the same end points.

16. The work done by the vector field F on an open set U is path independent iff the work
done by F along any closed path is zero.

17. Let U be an open convex (or star-shaped) set. If the work done by a vector field F on
U is independent of path, then F is a conservative vector field.

Fix the ‘star’ a ∈ U . Define a function f(x) as the work done by F = (F1, . . . , Fn) along
the line segment [a, x]. To show that the i-th partial derivative of f are Fi proceed as
one does in the proof of the fundamental theorem of calculus.

18. Assume that a vector field F on U is conservative. If f is a potential function, then f

must be C2. Since Fi = ∂f
∂xi

and since ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, it follows that ∂Fi
∂xj

=
∂Fj

∂xi
for

all 1 ≤ i, j ≤ n. This set of equations is therefore a set of necessary conditons for the
vector field F to be conservative.

In the case of n = 2, if we write F = (P,Q) or F = (L,M), the necessary condtion
takes the form ∂Q

∂x = ∂P
∂y etc.

19. The set of necessary conditions is also sufficient if we assume that the domain U is
convex. We shall see this after proving Green’s theorem.

20. Show that the following vector fileds are conservative by checking the N & S conditions.
Find a potential function in each of the cases.

(a) F on R2 given by F (x, y) = (3 + 2xy, x2 − 3y2).

(b) F on R3 given by F (x, y, z) = (y2, 2xy + e3z, 3ye3z).

21. Let F (x, y) = (ey, xey) on R2. Show that the field is conservative, find a potential
function. Use this information to comppute the line integral of F along the semicircular
path on the upper half plane y > 0 connecting the point (1, 0) to (−1, 0).

22. We now derive the law of conservation of energy by using Newton’s second law of motion
and computing the work done by a force in two different ways and equating them.

We have by seond law of motion: F = mr′′(t), Using this expression for F , the work done

by F turns out W = m
2

(
‖r′(b)‖2 − ‖r′(a)‖2

)
. The quantity m

2 ‖r
′(b)‖2 is called the

kinetc energy at b etc. Now if we further assume that F si conservative, say, F = grad f ,
then the potential energy P (t) at t is defined as P (t) := −f(γ(t)). Hence the work done
by F can be expressed as

W = −P (b) + P (a) = P (a)− P (a).

Equating the expressions for W we get

W = K(b)−K(a) = P (a)− P (b),

or K(a) + P (a) = K(b) + P (b). This is known as the law of conservation of energy. (I
used different notations which are clear from the context!)
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Students who think that Physics is very ‘concrete’ as opposed to Mathematics should
go through the proof. Observe that the ‘law’ was obtained by manipulating results
obtained mathematically. We define the potential energy (why the negative sign?) and
the kintetic energy (why the presence of half?) so that the law if obtained. Is there any
physical reason with we could have obtained these expressions?

23. All the theorems of vector integral calculus are in the spirit of fundamental theorem of
calculus:

∫ b
a f
′(t) dt = f(b) − f(a). If we interpret the right side as an integral with a

proper orientation of the boundeary of domain [a, b] of integration on the left side, we
see that the fundamental theorem of calculus expresses the integral of f on the doamin
[a, b] as an intergal of f over its orinted boundary {a, b}. Keep this intution in your
mind. As we go along, you may get to see what we mean.

24. Let F = (P,Q) be a vectr field ona domain in R2. Using the concept of fluid motion we
arrived at theconcept of flux density or divergence of a vector field: DivF = ∂P

∂x + ∂Q
∂y .

25. In a similar way we arrived at the circulation density or curl of a vector field CurlF =
∂Q
∂x −

∂P
∂y .

26. To state Green’s theorem precisely, we need the notion of an orientaion of the boundary
curve of a domain in R2. In classical books, one talks of outward normal (which is mo-
tivated by our consideration of divergence) and the boundary curve being parametrized
in anti-clock wise direction.

27. If c(t) = (x(t), y(t)) is the boundary curve, then the tangent vector is (x′, y′). Hence
the normal is obtained by rotating the tangent vector in the clockwise direction by π/2
radians. This is same as ssaying that th normal is obtained by rotating the tangent
vector in the anticlockwise direction by −π/2 radians. Hence the ‘correct’ normal is
(y′,−x′). We denote the unit vector obtained from this vector as n and is called the
unit normal vector of the curve c.

28. Our physical reasoning earlier suggests the following two versions of Green’s theorem.

(a) Flux-Divergence Form which usesthe normal component of the vector field:∫
c
F · n ≡

∫
c
(Qdy − Pdx) =

∫
U

(
∂P

∂x
+
∂Q

∂y

)
dxdy.

(b) Circulation-Curl Form which uses the tangent component of the vector field:∫
c
F ·T ≡

∫
c
(Pdx+Qdy) =

∫
U

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Note that the two forms are equivalent.

29. We prove Green’s theorem for domains of some special type. We assume that the domain
is bounded by graphs of functions y = g1(x), y = g2(x) and x = a and x = b. We also
assume that the domain is bounded by x = h1(y), x = h2(y), y = c and y = d.
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30. The main idea of the proof (of the curl form) is to prove these equations separately:∫
c
P dx = −

∫
U

∂P

∂y
dxdy and

∫
c
Qdy =

∫
U

∂Q

∂x
dxdy.

To prove the first, we use Fubini’s theorem to interchange the order and integrate w.r.t.
y first, use the paramaterization of the boundary in the first form and the fundamental
theorem of calculus in the y-variable. You will arrive at an integral in x. Use the same
parametrization to arrive at the expression for the first line integral involving P , which
is the same as you got from the double integral. To prove the second, we integrate w.r.t.
x first and use the paramaterization of the boundary in the second form.

31. Verify both the forms of Green’s theorem where the domain is the disk {x2 + y2 ≤ R2}
and F (x, y) = (−y, x).

32. We derived from Green’s theorem the following formulas for the area enclosed by a
closed curve:

A =

∫
c
x dy = −

∫
c
ydx =

1

2

∫
c
xdy − ydx.

33. Use the formula to obtain the formulas for the areas enclosed by a circle or more generally
an ellipse.

34. We used Green’s heorem to prove the following theorem. The following statements are
equivalent for a vector field F = (P,Q) on an open convex set U ⊂ R2:

(a) F is conservative.

(b) The work done by F along any path in U depends only on the end points.

(c) The work done by F along any clsoed path in U is zero.

(d) ∂Q
∂x = ∂P

∂y .

The equivalence of (a)–(c) is seen earlier To prove (d) is equivalent to (c), we employed
Green’s theorem.

35. We hinted upon how Cauchy proved his integral theorem in Complex Analysis using
Green’s theorem.

36. Sometimes it is easier to compute a line integral using Green’s theorem. Consider
F (x, y) = (y2, 3xy) and domain is the upper half disk {(x, y) ∈ R2 : y > 0, x2 +y2 < 1}.
Thus the domain is described by −1 < x < 1 and 0 < y <

√
1− x2. The integrand of

the double integral, the curl of F truns out to be y which needs to be integrated int he
doamin. The answer is 2/3. To convince yourself, you should try to compute the line
integral from its definition.

37. Use Green’s theorem to compute the line integral of F (x, y) = (
√
x+y3, x2 +

√
y) where

the curve c is given by y = sin(x) x ∈ [0, π] and the line segment on the x axis from π
to 0. Be careful. The curve is not oriented properly!
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38. Let 1 ≤ k < n, and r ≥ 1. We define a k dimensional Cr-submanifold of Rn is a subset
S ⊂ Rn with the following property: For each point p ∈ S, there exists an open set
U ⊂ Rn such that p ∈ U and an open set V ⊂ Rk and a Cr function ϕ : V → Rn−k
satisfying the condition {(x, ϕ(x)) : x ∈ V } = U ∩ S.

If k = n, then an n-dimensional submanifold of Rn is defined to be an open subset of
Rn.

39. Of course a typical simple example is the graph of such a ϕ. With the notation above,
if we let S stand for the graph of ϕ, then for any p ∈ S, we may take U = Rn.

40. Note that the implicit function theorem gives a lot of examples of k-dimensioanl sub-
manifolds of Rn. If f : Rk+n → Rn is Cr and if S = f−1(0) 6= ∅ with the property that
for each p ∈ S, the rank of Df(p) is n, then the implict function theorem says that S
is a k-dimensional Cr manifold.

41. A particular case of the last item is worht mentioning. If f : Rk+1 → R is Cr and if 0 is
a value of f , and if for each p ∈ S := f−1(0) the gradient grad f(p) is nonzero, then S
is a k dimensional Cr manifold. These submanifolds are called level sets.

42. If S is the graph of a function f : U → R, then the surface is also got as a level
set. How do we do this? An obvious chocie will be to define g(x,1 . . . , xnxn+1) :=
xn+1 − f(x1, . . . , xn). What is its domain V ? We may take V := U × R. What is its

gradient? It is
(
− ∂f
∂x1

, . . . ,− ∂f
∂xn

, 1
)

. Now complete the details.

43. While discussing Lagrange multiplier method, we have introduced the notion of a tan-
gent vector to S at p ∈ S and have established that TpS = kerDϕ(q) where p = ϕ(q).
We shall look at it more carefully now.

44. Let f : V ⊂ R2 → R be Cr and q ∈ V . Since V is open for all sufficiently small |t|,
the line segments q + tei lies in V , i = 1, 2. If we let ϕ(x, y) := (x, y, f(x, y)), then the
iamges of these line segments under ϕ are the curve t 7→ (x+ t, y, f(x+ t, y)) etc. This
passes through p := ϕ(q) = ϕ(x, y) ∈ S and the tangent vector is E1 := (1, 0, fx) where
fx := ∂f

∂x . E2 is defined similarly. Note that the tangent vectors E1 and E2 are linearly
independent. Since S also arises as g−1(0) where g is defined as in Item 42, the tangent
space TpS is the 2 dimensional vector space kerDg(q). Since Dg(q) is ‘represented’
by (−fx,−fy, 1) the gradient of g, we conclude that TpS is the linear span of E1 and
E2. Note that the normal (−fx,−fy, 1) to the surface at p is nothing other than the
cross-product E1 × E2.

45. If the submanifold S arises as a level set of f , then we know that TpS is kerDf(p).
Note that in this case we cannot write down some‘natural’ tangent vectors in a concrete
fashion. Here grad f(p) a ‘natural’ normal to the surface at p ∈ S, if S = f−1(0) for
some f : U ⊂ R3 → R.

46. There is a more standard definition of a k-dimensional submanifold in Rn. We say
that S ⊂ Rn is a k-dimensional Cr submanifold if for each p ∈ S, we have an open
set U ⊂ Rn, an open set V ⊂ Rk and a Cr map ψ : V → Rn such that (i) ψ is a
homeomorphism of V onto U ∩ S and (ii) the rank of Dψ(q) is k for each q ∈ V .

Note that according to this definiton an n-dimensional submanifold of Rn is an open
subset of Rn.

6



47. The definitions in Items 38 and Item 46 are equivalent.

Let S ⊂ Rn be a k < n dimensional submanifold of Rn according to Item 38. Using the
notation established over there, if we define ψ(x) := (x, ϕ(x)), then we see that S is a
submanifold according to Item 46.

To see the other way round, we shall restrict ourselves to a surace S ⊂ R3 according to
Item 46. Keeping the notation of the said item, we write ψ(u, v) = (x(u, v), y(u, v), z(u, v).

Then the jacobian matrix of Dψ is

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

. If we assume WLOG that the first two

rows constitute the nonsingular minor, then the map F (u, v) := (x(u, v), y(u, v)) maps
an open set V1 diffeomrphivally onto an open set W1 ⊂ R2. If we let (u1, v1) as the
coordinates on the codomain of F , then it is easy to see that ψ(V1) is an open subset of
S which is the graph of the function (u1, v1) 7→ F−1(u1, v1) = (u, v) 7→ ψ(F−1(u1, v1)) =
(x(u, v), y(u, v), z(u, v)) 7→ z(u, v).

48. There is an important class of surfaces that arise as surfaces of revolution. Let c(t) =
(x(t), 0, z(t)) be a curve in the (x, z)-plane. Assume that x(t) > 0 and that x′(t)2 +
y′(t)2 6= 0. If we revolve the curve around the z-axis, the z cordinate remains the
same while (x(t), 0) in the (x, y) plane is transofrmed by the rotation matrix to yield
(x(t) cos θ, x(t) sin θ) so that a point on the surface of revolution has coordinates

(x(t) cos θ, x(t) sin θ, z(t)).

Thus we have a parametrization

ψ : (a, b)× (0, 2π)→ R3 given by ψ(t, θ) = (x(t) cos θ, x(t) sin θ, z(t).

We discuused some special cases of surfaces of revolution such as spheres, cylinder and
cones.

49. Given a parametrized surface as in Item 46, we let Xu, Xv stand respectively for the
first and second columns of the Jacobian matrix of Dψ. Recal that they form the basis
of the tangent space. The area element on ψ(V ) is defined by dS := ‖Xu ×Xv ‖ dudv.
How do we use this? If f : ψ(V ) ⊂ R→ R is a continuous function, then its integral on
S is defined ∫

S
fdS :=

∫
V
f ◦ ψ ‖Xu ×Xv ‖ dudv.

In particular, if E ⊂ ψ(V ) is compact, then its (surface) area is defined by

Area (E) :=

∫
V
ψ−1(E)dS ≡

∫
V
ψ−1(E) ‖Xu ×Xv ‖ dudv.

50. We verify that this definition yields the surface area of spheres, cylinder, cones etc. As
they all arise as surfaces of revolution (about x-axis)of a graph of a function f : [a, b]→
R+ we shall verify whether we arrive at the formula learnt from Calculus. Note that
such a surface is parametrized as (u, v) 7→ (u, f(u) cos v, f(u) sin v). Hence Xu =
(1, f ′(u) cos v, f ′(u) sin v) and Xv = (0,−f(u) sin v, f(u) cos v) so that

dS = f(u)
√

1 + f2ududv.
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51.

52. Verify Gauss divergence theorem for F (x, y, z) = (0, 0, z)and the surface S = x2 + y2 +
z2 = R2.

53. Use divergence theorem to find the outward flow of the vector field F (x, y, z) = (x3, y3, z2)
(No typing mistake, the power of z is 2.) across the suarfce of the region bounded bythe
cylinder x2 + y2 = 16 and the planes z = 0 and z = 2.

54. Evaluate
∫
S F · ndS where F (x, y, z) = (x, y, z) and S is any closed surface bounding a

region in R3.
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