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1 Introduction

A vector field on a subset S ⊂ Rn is a continuous function F : S → Rn. Vector fields on R2

are often represented as the vector F (x), with its tail at x. We look at some examples.

Example 1. If S is any subset of Rn and v0 ∈ Rn is fixed, then the function F (x) = v0 is a
vector field on S. It is called a constant vector field.

Example 2. The function (x, y) 7→ (−y, x) is a vector field on R2. This represents the
velocity at each point of R2 when R2 is rotated in the counterclockwise direction at a uniform
rate.

Example 3. Let U be an open set in Rn and f : U → R be C1, i.e., all partial deriva-
tives of f exist and are continuous. Then the gradient ∇f of f is defined by ∇f(x) :=
( ∂f∂x1 (p), . . . , ∂f∂xn (p)). Then p 7→ ∇f(p) is a vector field on U .

A point p ∈ S is called a zero of the vector field F on S if F (p) = 0. While the vector field
F itself behaves well at and around a zero, its direction F/ ‖F ‖ can behave quite wildly near
a zero of F . For this reason, the zeros of F are called the singularities of F in old literature.

There is a notion of index available for vector fields on R2. Indeed, if F is any nonzero
vector field on a subset S of R2 and if eit 7→ γeit, 0 ≤ t ≤ 2π, is a loop in S, then the index of
F around γ is defined to be the index of F ◦ γ, regarded as a map from the circle to nonzero
complex numbers. (See the article on Winding Numbers of Loops.) The index of F around
γ counts the number of times F (p) winds around the origin as p moves around γ.

Lemma 4. Let F be a vector field on the closed disk B[0, R] that does nor vanish on the
boundary circle S1. Assume that the index of F around the loop eit 7→ Reit is not zero. Then
F has a zero at some point of the open disk B(0, R).

Proof. If F has no zeros on B[0, R], then we shall show that the index of the map FR : eit 7→
F (Reit) is zero. To see this, observe that the map F (r, eit) := F (reit), 0 ≤ t ≤ 2π, 0 ≤ r ≤ R,
is a homotopy from the constant map F0 and FR. Since the index of a constant map is zero,
and homotopic maps have the same index, we conclude that the index of FR is zero.
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2 Vector Fields on S2

A vector field F on the unit sphere S2 ⊂ R3 is tangent to S2 if F (p) ⊥ p, i.e., 〈F (p), p〉 = 0.
If we write F = (F1, F2, F3), then F is tangent to S2 iff

xF1(x, y, z) + yF2(x, y, z) + zF3(x, y, z) = 0, for all (x, y, z) ∈ S2.

The vector field F (x, y, z) := (−y, x, 0) is tangent to S2. It points from west to east everywhere
except at the poles (0, 0,±1). The only constant vector field which is tangent to S2 is the
zero field. Another example is F (x, y, z) := (xz, yz, z2 − 1), (x, y, z) ∈ S2. Then F is tangent
to the sphere. F points from north to south except at the poles which are zeros of F .

The main result of this article is to prove the following

Theorem 5. Every tangent vector field on S2 has a zero.

There is a physical interpretation of this result. If we regard S2 as a realisation of the
earth’s surface, we obtain a vector field tangent to S2 by assigning to any point a vector
expressing the magnitude and direction of the wind at that point, at some fixed time. The
above result says that at any given time there is a point on the earth at which the wind s not
blowing.

We give the main ideas behind the formal proof. Suppose that the vector field F does
not have a zero at the north pole. Consider a small circle Γ that is centred at the north
pole and inside which F is nearly a constant. If an observer stands at the north pole and
regards the surface of the earth nearby as flat, then he would compute the index of F around
Γ to be zero. However if he were at the south pole and studying the vector field on the map
obtained by projecting the sphere stereographically from the north pole into the plane, he
would compute the index of the vector field around the circle corresponding to Γ is 2. Hence
F vanishes somewhere on the map by Lemma 4.

Proof. Let N = (0, 0, 1) be the north pole of the sphere. Define the stereographic projection
ϕ : S2 \ {N} → R2 by

ϕ(x, y, z) := (
x

1− z
,

y

1− z
).

ϕ is continuous with a continuous inverse ψ = ϕ−1 given by

ψ(u, v) := (
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1
), (u, v) ∈ R2.

Thus ϕ is a homeomorphism of S2 \ {N} onto R2.

Let F = (F1, F2, F3) be a tangent vector field on S2. We associate a vector field G on R2

by
G(u, v) = ((1− z)F1 + xF3, (1− z)F2 + yF3), where (x, y, z) = ψ(u, v).

Clearly G is continuous. (How is G written down? See remark at the end.)

We now claim that p ∈ S2 is a zero of F iff ϕ(p) is a zero of G. If F (x, y, z) = 0, then it is
clear from the definition of G that G(u, v) = 0. To see the converse, assume that G(u, v) = 0.
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Let ψ(u, v) = (x, y, z). We get

(1− z)F1 + xF3 = 0

(1− z)F2 + yF3 = 0.

Multiply the first equation by x, the second by y, adding and using the relations xF1 +yF2 =
−zF3 and x2 + y2 = 1− z2, we obtain

(1− z)(−zF3) + (1− z2)F3 = 0.

This simplifies to (1− z)F3 = 0. Since z 6= 1. we have F3(x, y, z) = 0. Eq. 1 and Eq. 1 then
yield that Fi(x, y, z) = 0 for i = 1, 2. Hence F (x, y, z) = 0.

Before we go further into the proof let us look at a particular vector field. Let F̃ (x, y, z) =
(z, 0,−x) on S2. Then G̃(u, v) = (z − z2 − x2,−xy). Using the expressions for x, y and z in
terms of u and v and using the polar coordinates for u and v we get

G̃(r cos θ, r sin θ) =
−2r2

(r2 + 1)2

(
1

r2
+ cos 2θ, sin 2θ

)
.

If r > 0, then G̃ does not vanish and we can consider the index of G̃ around the circle
eiθ 7→ reiθ. This is same as the index of the map eiθ 7→

(
1
r2

+ cos 2θ, sin 2θ
)
. The index of

this is that of eiθ 7→ (cos 2θ, sin 2θ) which is 2.

Now suppose that F is a vector field on S2 such that F (0, 0, 1) = (1, 0, 0) = F̃ (0, 0, 1). Let
G be the corresponding vector field on R2. Then F ·F̃ = 1 at (0, 0, 1). By continuity, F ·F̃ > 0
in a neighbourhood U of (0, 0, 1). It follows that the convex linear combinations tF +(1− t)F̃
have no zeros in U for 0 ≤ t ≤ 1. For, otherwise, we obtain a contradiction by taking the
scalar product with F̃ . Since tG + (1 − t)G̃ corresponds to tF + (1 − t)F̃ , it follows that
tG+(1− t)G̃ has no zeros on ϕ(U). Choose R so large that if u2 +v2 > R then (u, v) ∈ ϕ(U).
The family, tG+ (1− t)G̃, 0 ≤ t ≤ 1, gives a homotopy of the maps eiθ 7→ G(R cos θ,R sin θ)
and eiθ 7→ G̃(R cos θ,R sin θ) in the punctured plane. We have computed the index of the
latter to be 2. Consequently, the index of the former is also 2. By Lemma 4, G has no zeros
inside B[0, R]. Hence F has no zero.

Now let F be an arbitrary vector field on S2. We claim that F has a zero. If F (0, 0, 1) =
(1, 0, 0), we are done. Otherwise, let T be a rotation of R3 such that T (F (0, 0, 1)) = α(1, 0, 0),
α ∈ R, α 6= 0 and T (0, 0, 1) = (0, 0, 1). The vector field (1/α)T ◦ F ◦ T−1 has a zero. Hence
so does F .

Remark 6. We say a vector v ∈ Rn is tangent to S = Sn−1 at p ∈ S if v · p = 0. Thus
a tangent vector field is a continuous map F from S to Rn such that F () ⊥ p. The crucial
geometric observation is that any tangent vector at p ∈ S actually arises as a tangent to
a curve c passing through p. That is to say that given v ∈ Rn with v ⊥ p, there exists
an ε > 0 and a C1-map c : (−ε, ε) → S such that c(0) = p and c′(0) = v. Recall that
c′(t) = (x′1(t), . . . , x

′
n(t)) if c(t) = (x1(t), . . . , xn(t)). For if v ⊥ p and ‖v‖ = 1, then the

curve c(t) := p + tv lies on S for all t ∈ R and we have c(0) = p and c′(0) = v. (This is the
parameterization of the great circle—the intersection of the plane spanned by p and v with
S. If v ⊥ p and v is arbitrary, let

γ(t) = c(t)/ ‖c(t)‖ =
cos tp+ sin tv

(1 + sin2 t(‖v‖2 − 1))1/2
.
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Then γ(t) ∈ S for all t, γ(0) = p and γ′(0) = v. (Check!)

Now if F is a vector field on S and p ∈ S, let v := (F1(p), F2(p), F3(p)). By the last
paragraph, there is a curve c in S such that c(0) = p and c′(0) = v. We write c(t) =
(x(t), y(t), z(t)). Then γ(t) := ϕ ◦ c(t) is curve through ϕ(p). Its tangent vector at ϕ(p) is

(ϕ ◦ c)′(0) =
d

dt
(x(t)/(1− z(t)), y(t)/(1− z(t))) |t=0

=

(
(1− z(t))x′(t) + x(t)z′(t)

(1− z(t))2
,
(1− z(t))y′(t) + y(t)z′(t)

(1− z(t))2

)
= (1/(1− z)2) ((1− z)F1 + xF3, (1− z)F2 + yF3)

= G(u, v)/(1− z)2,

a nonzero multiple of G(u, v).

3 Vector Fields on Spheres

In this section we give Milnor’s proof of the following result. The proof is analytic and uses
the change of variable formula.

Theorem 7. There are no continuously differentiable tangent vector field F with ‖F (p)‖ = 1
for p ∈ S2k.

We need some preliminary lemmas. Recall that f : (X, d) → (Y, d) is lipschitz if there
exists a constant L such that d(f(x), f(x′)) ≤ Ld(x, x′) for all x, x′ ∈ X. We say f is locally
lipschitz if for every x ∈ X there exists a neighbourhood Ux of x such that the restriction of
f to Ux is lipschitz map from Ux to Y .

Lemma 8. Let (X, d) be a compact metric space. Let f : X → Y be locally Lipschitz from X
into another metric space Y . Then f is Lipschitz on X.

Proof. By local lipschitz condition, for any x ∈ X there exist rx > 0 and Lx > 0 such
that d(f(x1), f(x2)) ≤ Lxd(x1, x2) for all x1, x2 ∈ B(x, rx). By compactness, there exist
finitely many points xi such that X = ∪B(xi, ri) where ri := rxi . We let Li stand for the
lipschitz constant corresponding to xi and Bi for B(xi, ri). Consider the continuous function
h : X × X \ ∪i(Bi × Bi) given by h(x, y) := d(x, y). Then h is a continuous function on a
compact set taking values in positive reals. Hence there exists ε > 0 such that h(x, y) ≥ ε for
all (x, y) in the domain of the function h. If we take M ≥ max{Li, diam f(X)/ε}, then M is
a lipschitz constant for f on X.

Lemma 9. Let f : U → Rm be a C1 map from an open set U in Rn. Let K be a compact set
in U . Then f : K → Rm is Lipschitz.

Proof. This follows easily from the mean value theorem of differential calculus and the last
lemma. By the mean value theorem, if B[x, rx] ⊂ U , we have

‖f(x1)− f(x2)‖ ≤ sup
0≤t≤1

‖Df(x1 + t(x2 − x1))‖ ‖x1 − x2‖ , x1, x2 ∈ B[x, rx].
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Since Df is continuous on U and hence on the compact set B[x, rx], f is lipschitz with the
lipschitz constant Lx = sup{‖Df(z)‖ : z ∈ B[x, rx]}. Thus f is locally lipschitz on K and
hence lipschitz on K.

Lemma 10. Let U be an open connected bounded set in Rn so that A = U is compact and
connected. Let F be a continuously differentiable vector field in an open set V ⊃ A. For
t ∈ R, let Ft(x) := x + tF (x), for x ∈ A. If t is sufficiently small, then the mapping Ft is
one-to-one and maps A onto Ft(A) whose volume is a polynomial function of t.

Proof. Since A is compact and F is C1, F is lipschitz on A, say with lipschitz constant
L: ‖F (x)− F (y)‖ ≤ L ‖x− y‖, for x, y ∈ A. If t is such that Ft is not one-to-one, then
Ft(x) = Ft(y) so that x − y = t(F (x) − F (y) and hence ‖x− y‖ ≤ L|t| ‖x− y‖. So, if we
choose |t| < 1/L, then Ft is one-to-one. The Jacobian matrix of Ft is of the form I + t( ∂fi∂xj

),

where I is the identity matrix. Hence the determinant of the Jacobian, DFt is a polynomial
function of t of the form 1+ tα1(x)+ · · ·+ tnαn(x) where αi are continuous functions of x. By
change of variable formula, we see that the volume of the image of A under Ft is a polynomial
function of t:

m(Ft(A)) = a0 + a1t+ · · ·+ ant
n,

where ai is the integral of αi over A.

Lemma 11. Assume that F : Sn−1 → Rn be a C1 tangent vector field on the sphere with
‖F (x)‖ = 1 for all x. If t is sufficiently small, then Ft maps the unit sphere in Rn onto the
sphere of radius

√
1 + t2.

Proof 1. Assume that A is defined by the inequalities: 1/2 ≤ ‖x‖ ≤ 3/2. We extend the
vector field F on A by setting F (x) := ‖x‖F (x/ ‖x‖). We also define Ft(x) = x+ tF (x) on
this set A. Choose t small enough so that |t| < 1/3 and t < L−1. (L is the lipschitz constant
of F .) For each v0 ∈ Sn−1, the map ϕ : x 7→ v0 − tF (x) maps the complete metric space A
into itself. ϕ is a contraction. Hence by contraction mapping theorem there exists a unique
fixed point. Consequently, the equation Ft(x) = v0 has a unique solution. Thus for a given
v0 ∈ Sn−1, Ft(x) = v0 has a unique solution in A. Multiplying both x and v0 by

√
1 + t2, the

lemma follows. (Note that Ft(rx) = rFt(x).)

Proof 2. We assume that n ≥ 2. If t is sufficiently small, then DFt(x) is nonsingular on all
of the compact set A. (This follows from the expression for the determinant of the Jacobian
matrix DFt(x). See the proof of Lemma 10. Or, observe that the set of invertible matrices
is an open set, I lies in the open set and for t near to 0, the Jacobian matrices DFt(x) all lie
in a neighbourhood of I for all x ∈ A.) By inverse mapping theorem, Ft is an open map and
hence maps the interior of A into an open subset and Ft(S

n−1) is a relatively open subset
of the sphere of radius

√
1 + t2. But Ft(S

n−1) is a compact and hence closed subset of the
sphere of radius

√
1 + t2. Since n ≥ 2, the spheres in Rn are connected. Hence Ft(S

n−1) is
the sphere of radius

√
1 + t2.

Proof of Thm. 7. Given a C1 field F of unit tangent vectors on Sn−1, we consider any annular
region a ≤ ‖x‖ ≤ b and extend F to this region as in the last lemma. Then Ft maps the
sphere of radius r onto the sphere of radius r

√
1 + t2, for t near 0. Hence Ft maps the region
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A onto the annular region between the spheres of radii a
√

1 + t2 and b
√

1 + t2. Obviously,
the volume of the latter region is given by

Volume of Ft(A) = (
√

1 + t2)nVolume of A.

If n is odd the volume of Ft(A) is not a polynomial function of t. This contradicts Lemma 10.

Theorem 12. An even dimensional sphere does not admit a continuous nowhere vanishing
tangent vector field.

Proof. Suppose F is such vector field. We produce an infinitely differentiable unit tangent
vector field. This will contradict Thm. 7.

Let m := inf{‖F (x)‖ : x ∈ Sn−1}. By (Stone-)Weierstrass theorem there exists a poly-
nomial map P : Sn−1 → Rn such that ‖P (x)− F (x)‖ < m/2 for all x ∈ Sn−1. We define
a differentiable vector field G by setting G(x) := P (x) − 〈P (x), x〉x for x ∈ S. Then G is
tangent to S. Also, G is nowhere zero. Let, if possible, G(x0) = 0. Then

P (x0) = 〈P (x0), x0〉x0. (1)

Since ‖P (x)− F (x)‖ < m/2, by Cauchy-Schwarz inequality

| 〈P (x)− F (x), x〉 | < m/2. (2)

But 〈P (x)− F (x), x〉 = 〈P (x), x〉, since 〈F (x), x〉 = 0. It the follows from Eq. 2 that

| 〈P (x), x〉 | < m/2. (3)

Using this inequality in Eq. eq:vfd1 we get

‖P (x0)‖ = | 〈P (x0), x0〉 | ‖x0‖ < m/2. (4)

Since ‖F (x)‖ ≥ m and ‖F (x)− P (x)‖ < m/2, by triangle inequality we see that ‖P (x)‖ ≥
m/2 for all x. This contradicts Eq. 4. Hence there is no x0 with G(x0) = 0. The vector field
G(x)/ ‖G(x)‖ is then a smooth unit tangent field on S.

Reference Milnor, J., Analytic Proofs of the “Hairy Ball Theorem” and the Brouwer Fixed
Point Theorem, Amer. Math. Monthly, vol.85, 1978.
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