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You may contact me in one of the three ways: personally at Room No. 208, Science Block,
or by email (kumaresa@gmail.com) or via the mobile (9948439176) to seek an appointment
for discussion with me.

• Review of Differential Calculus

1. We started with the concepts learnt by you in Analysis 2 of Semester 2.

2. When you mentioned mean value theorem, we started discussing the version of the
theorem.

3. The most important trick in calculus of several variables is to reduce to one variable
calculus.

4. As an illustration, we discussed the value theorem for functions f : Rn → R. We
proved the following result.

Theorem. Let U be an open subset of Rn. Let f : U → R be differentiable. Assume
that x, y ∈ U be such that the line segment [x, y] := {(1 − t)x + ty ∈ U : 0 ≤ t ≤
1} ⊂ U . Then there exists 0 < s < 1 such that

f(y)− f(x) = Df((1− s)x+ sy)(y − x). (1)

To prove this, we reduced it to one variable calculus by considering the function
g(t) := f((1 − t)x + ty) for t ∈ [0, 1] and appealed to the mean value theorem of
one variable calculus.

5. As a second illustration, we proved the first derivative test for local extrema.

Theorem. Let U ⊂ Rn be open. Let f : U → R be differentiable. Assume that
p ∈ U is a local maximum, that is, there exists r > 0 such that B(p, r) ⊂ U and
such that for all x ∈ B(p, r) we have f(x) ≤ f(p). Then Df(p) = 0.

Observe that any ball in Rn (or any normed linear space) is convex. To prove the
result, it is enough to prove that Df(p)(v) = 0 for any nonzero v ∈ Rn. To see
this, we reduced the problem to one variable calculus by considering the function
g(t) := f(p+ tv). For ε := |t| < r/ ‖v‖, p+ tv ∈ U if |t| < ε. We also reviewed the
proof in the one variable case to understand where the hypothesis of local extrema
(or that the point is interior) is needed.

1



6. We recalled the concept of directional derivative and proved the following theorem.

Theorem. Let U ⊂ Rm be open and f : U → Rn be differentiable. Let v ∈ Rm be
arbitrary and a ∈ U . Then the directional derivative Dvf(a) exists and it is given
by

Dvf(a) = Df(a)(v).

7. We proved Riesz representation theorem for Rn: Any linear map f : Rn → R
is of the form f(x) = 〈x, v〉 for a unique v. In fact, we established that v =
(f(e1), . . . , f(en)).

8. If f : U → R is differentiable, then Df(a) is represented by a unique vector u.
As we saw in Item 7, this vector is given by u = (Df(a)(e1), . . . , Df(a)(en)).
But in view of Item 6, Df(a)(ei) is the directional derivative Deif(a), which are
traditionally called the partial derivatives. Thus we established

Df(a)(v) = 〈v, grad f(a)〉 , where grad f(a) =

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

9. You were asked to review all the items above in your mind, discuss with classmates
and not to rush to open a book.

Items 1–9 were done on 5 January 2008 (10 A.M. – 11:45 A.M).

10. We started discussing the formulation of the mean value theorem for functions
f : Rm → Rn. While the statement f(y)− f(x) = Df(z)(y − x) for some z in the
line segment [x, y] makes sense mathematically, it is in general wrong. Consider
f : (−4π, 4π)→ R2 given by f(t) = (cos t, sin t). Take y = 2π and x = 0.

11. A version which is true is this:

Theorem. Let U ⊂ Rm be open. Let f : U → Rn be differentiable. Assume that
x, y ∈ U such that [x, y] ⊂ U . Fix v ∈ Rn. Then there exists 0 < t < 1 (which
depends on v) such that

〈f(y)− f(x), v〉 = 〈Df(x+ t(y − x))(y − x), v〉 . (2)

We proved this reducing to one variable calculus by considering the function

g(t) := 〈f(x+ t(y − x), v〉 .

The function g was the composite of three functions:

t 7→ x+ t(y − x), z 7→ f(z) and w 7→ 〈w, v〉 .

12. While computuing the derivative of g as in the last item, we proved that the
derivative of a linear map A : Rm → Rn at point p ∈ Rn is A itself, that is,
DA(p) = A.
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13. A more often used version of the mean value theorem is the mean value inequality:

Theorem. Keep the notation of the last theorem. We have the following inequality:

‖f(y)− f(x)‖ ≤

(
sup
t∈[0,1]

‖Df(x+ t(y − x)‖

)
‖y − x‖ . (3)

Here ‖Df(z)‖ stands for the operator norm of the linear map Df(z).

14. Applications: Let U ⊂ Rm be open, f : U → Rn be differentiable.

(a) Let U ⊂ Rm be open, f : U → Rn be differentiable. Assume that there exists
M such that ‖Df(z)‖ ≤M for all z ∈ U . Then f is uniformly continuous on
U .

(b) If Df(z) = 0 for all z ∈ U , then f is locally constant. If U is connected, then
f is a constant.
Two difficulties I noticed: 1. Most of you said that f is a constant for any
open set U . 2. You had difficulty in seeing the differentiability of the function
f : U := R2 \ {(x, y) : x = 0} → R given by f(x, y) = −1 if x < 0 and
f(x, y) = 1 if x > 0 for (x, y) ∈ U . I had to explain this starting with the
example f : R∗ → R given by f(x) = −1 if x < 0 and f(x) = 1 if x > 0.

15. We recalled the definition of Ck and C∞ (or smooth) functions.

16. We reviewed the inverse function theorem.

17. I introduced the concept of diffeomorphism. Inverse function theorem says that if
the derivative of f is nonsingular at a point a, then f maps diffeomorphically an
open neighbourhood of a onto an open neighbourhood of f(a).

18. You were asked (i) to review the material covered, (ii) discuss with your friends
the statement and the proof of the mean value inequality and (iii) submit a writ-
ten version of (ii) on a separate sheet of paper with your name and roll-number.

Items 10–18 were done on 8 January 2008 (9:40 A.M. – 11 A.M).

19. We had a detailed look at the concept of diffeomorphism. Compared it with the
concept of isomorphisms in algebra and homeomorphisms in topology.

20. Examples: exp: R → (0,∞) is a diffeomorphism. The map f : R2 → R2 \ {(0, 0)}
given by f(u, v) := eu(cos v, sin v) is with nonsingular derivative at each point. It is
a ‘local diffeomorphism’ which is not a diffeomorphism. The map f : R→ R given
by f(x) = x3 is a homeomorphism which is smooth but not a diffeomorphism.

• Differential Geometry of Curves

1. A line joining x, y ∈ V , a real vector space was defined as the subset

`(x, y) := {(1− t)x+ ty : t ∈ R} = {x+ t(y − x) : t ∈ R} = {y + t(x− y) : t ∈ R}.

We also saw how this defintion of a line joining x and y captures the formulas in
2- and 3-dimensional coordinate geometry.geom of curves

2. Another way of describing a line was to give a point on the line and the direction
to which the line is parallel. If p is given and v ∈ Rn is a nonzero vector, then the
line

`(p; v) := {p+ tv : t ∈ R} = {p+ tλv : t ∈ R},
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where λ is any nonzero real number, is the line through p ‘going in the direction’
of v.

3. A curve in U ⊂ Rn was defined as a (smooth) map c : J → Rn where J is an
interval in R. In differential geometry, all curves are thus ‘parameterized’ curves.
For example, in algebraic geometry, the subset {(x, y) ∈ R2 : x2 + y2 = 1} is a
curve but it is not a curve according to our definition. We need to ‘parameterize’
it. See below.

A physical interpretation is also useful. If J = [a, b], we may think of c(t) as the
position vector of the particle as it moves from time t = a to time t = b. Thus, the
image of c is the trajectory of the particle.

4. Note that the curve is a map and not its image. For example, the curves c1(t) :=
(cos t, sin t), t ∈ [0, 2π], c2(t) := (cos 2t, sin 2t) t ∈ [0, 2π], c3(t) := (cos 2t, sin 2t),
t ∈ [0, π] and c4(t) = (sin t, cos t) for t ∈ [0, 2π] have the same image but are
different as curves.

5. If c : J → Rn is a curve and if we write c(t) := (x1(t), . . . , xn(t)), then the vector
c′(t) := (x′1(t), . . . , x

′
n(t)) is known as the tangent vector to c at t. It is also known

as the (instantaneous) velocity vector.

6. We explained why c′(t) is called the tangent vector. If c is a standard parame-
terization of a conic section, then the tangent line to the conic at the point c(t)
lying on the conic is the line which passes through c(t) in the direction of c′(t).
We verified this in the case of a hyperbola. The verification for the other conic
sections was left as home-work.

7. The magnitude, that is the norm, of the vector c′(t) is known as the speed. Using
this notion we motivated the definition of the length `(c) of a curve c : [a, b]→ Rn.

`(c) :=

∫ b

a

∥∥c′(t)∥∥ dt.
8. We defined a reparameterization of a curve.

9. We motivated and proved that the length of a curve does not change by reprama-
terization.

Items 1–9 were done on 9 January 2008 (9:40 A.M. – 11 A.M).

10. I pointed out the mistakes in the assignment on the mean value theorem.

11. We again discussed the differentiability of a linear map T : Rm → Rn and showed
that DT (a) = T for a ∈ Rn.

12. We showed the differentiability of the map f : Rn × Rn → R given by f(x, y) :=
x · y ≡ 〈x, y〉. We proved that Df(a, b)(h, k) = a · k + b · h.

13. A regular curve is one for which c′(t) 6= 0 for t in the domain. Note that this
dependes on the ‘parametrization’ and not on the trace, track or the image. For
instance, the x-axis in R2 can be parametrized in two ways: c1(t) := (t, 0) and
c3(t) = (t3, 0) for t ∈ R. While c1 is a regular curve, c3 is not. Can you think of a
non-regular parametrization of the parabola y = x2? (We did this in the class!)

14. The standard parametrizations of a line segment, a circle, and other conic sections
are regular.
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15. Let c : [a, b]→ Rn be a regular curve. Let L := `(c). Then the function

h : [a, b]→ [0, L], given by h(s) :=

∫ s

a

∥∥c′(τ)
∥∥ dτ,

is an increasing function, is a homeomorphism (and diffeomorphism) of [a, b] onto
[0, L]. If g is its inverse, we then proved that the reparametrized curve σ := c ◦ g
is of unit speed.

16. We looked at some trivial examples of repametrizing regular curves to unit speed
curves. While we can theoretically say that it is possible to repametrize any regular
curve to a unit speed curve, in practice this could be quite difficult. For example,
look at the case of an ellipse.

Items 10–16 were done on 10 January 2008 (9:40 A.M. – 11 A.M).

17. Exercise: Find the unit speed parameterization of the logarithmic spiral c(t) =
et(cos t, sin t). Ans:

σ(s) :=

((
1 +

s√
2

)
cos

(
log

(
1 +

s√
2

))
,

(
1 +

s√
2

)
sin

(
log

(
1 +

s√
2

)))
.

18. The following are the references for our course along with those mentioned in the
syllabus.
1. A. Pressley: Elementary Differential Geometry
2. A. Gray: Modern Differential Geometry of Curves and Surfaces
3. do Carmo: Differential Geometry of Curves and Surfaces

19. Find the unit speed parameterization of the helix γ(t) := (a cos t, a sin t, bt). Ans:
σ(s) := (a cos(s/c), a sin(s/c), b(s/c)) where c :=

√
a2 + b2.

20. Exercise: Let γ : [a, b] → Rn be a unit speed curve. Let σ : [c, d] → Rn be a
reparameterization of γ such that σ is also of unit speed. Show that there exists
t0 ∈ R such that σ(t) = γ(±t+ t0). What is the geometric meaning of t0? (Think
in terms of trains and speed.)

21. Consider the set {(x, y) ∈ R2 : x2− y3 = 0}. Give a parametrization of the curve.

22. Consider curve obtained as the intersection of the sphere x2 + y2 + z2 = 16 and
the cylinder x2 + (y − 2)2 = 4. Parametrize the curve.

23. We motivated the concept of curvature. We arrived at the following requirements
of a notion of curvature:

– The curvature of a (parametrized) curve must be a real valued function of the
parameter.

– The curves should be parametrized in some standard way. If the speed is
higher, it is likely that the curve may appear to be more curved. We decided
to consider only the curves with unit-speed parametrization.

– The curvature is local in the sense that whether the curve is curved at (pa-
rameter) point and if so how much depends only on the behaviour of the curve
around the point.

– The straight line must have have curvature zero.

– The circles are uniformly curved so that the curvature must be a constant
function of the parameter.
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– Circle with higher radius must have less curvature than the one with smaller
radius.

24. We saw that the norm of the vector ‖c′′(t)‖ is a likely candidate for curvature
function for a unit speed curve c.

25. When we tried to formulate the analogous concept for surfaces in R3, we found
that the easier notion would be to understand the curvature as the rate of change
of a unit normal field.

26. So we settled on the definition: κ(s) := ‖N ′(s)‖, where N(s) is a normal field on
the unit-speed curve.

Items 21–26 were done on 16 January 2008 (10 A.M. – 11 A.M.).

27. After reviewing the last item, we grappled with two questions: (i) How to choose
a unit normal at each point? (ii) How to choose it in a consistent way?

28. We let N(s) denote the unit vector obtained from the unit tangent vector γ′(s) by
rotation by π/2 in the anti-clockwise direction. Letting γ′(s) := (x′(s), y′(x)), and
using the rotation matrix, we arrived at N(s) = (−y′(s), x′(s).

29. Since 〈N(s), N(s)〉 = 1 for all s, we saw by differentiation that N ′(s) is orthogonal
to N(s). Since we are in R2, this means that

N ′(s) = k(s)(x′(s), y′(s)), (4)

We define the curvature k(s) of a unit speed curve γ(s) = (x(s), y(s)) by the
equation (4).

30. If c(t) = (x(t), y(t)) is a curve not-necessarily with unit speed, we arrived at the
following formula for the curvature k(t):

k(t) =
y′′(t)x′(t)− x′′(t)y′(t)

(x′(t)2 + y′(t)2)3/2
. (5)

31. As an exercise, you were asked to draw pictures of some plane curves such as
conics, guess the behaviour of the curvature function and check out your intuition
by computing the curvature explicitly.

32. We discussed the geometric significance of the sign of the curvature. You are
asked to test out the case of the graph of a function when considered as a curve
t 7→ (t, f(t)) for t ∈ [a, b].

Items 27–32 were done on 17 January 2008 (9:40 A.M. – 11 A.M.).
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33. We continued with the last item. To gain intution, we looked at the circle, sine
curve and a hyperbola. The sign of the curvature is same as that of f ′′(t). Since
f ′′ is continuous, if f ′′(t0) > 0, then it remains so in a neighbourhood of t0. This
means that the curve is ‘convex’ on this neighbourhood. Similar consideration
applies when f ′′(t) < 0.

34. If a smooth (or continuous) function k : [0, L] → R is given, does there exist a
smooth (or C2) curve γ : [0, L]→ R2 with unit speed whose curvature is k?

35. We wanted to tackle the special case when k = 0. One of you suggested: solve for
x and y in the equation x′′y′ = x′y′′. We applied a little geometry to the problem.
Zero curvature means that the unit normal field is a constant, which in turn means
that the unit tangent field is a constant, say, (u0, v0). That is, γ′(t) = (u0, v0). To
get back γ, we integrate the vector valued function t 7→ (u0, v0).

36. We saw how to define the integral of a continuous function f : [a, b] → H, where

H is a Hilbert space. The value
∫ b
a f(t) dt is the unique vector v such that the

following holds: 〈∫ b

a
f(t) dt, w

〉
=

∫ b

a
〈f(t), w〉 dt for all w ∈ H. (6)

In the case when H = Rn, the integral is seen to be as follows:∫ b

a
f(t) dt =

(∫ b

a
f1(t) dt, . . . ,

∫ b

a
fn(t) dt

)
where f = (f1, . . . , fn).

37. We derived the following important inequality: Let f : [a, b] → H be continuous.
Then ∥∥∥∥∫ b

a
f(t) dt

∥∥∥∥ ≤ ∫ b

a
‖f(t)‖ dt. (7)

38. We used the last inequality (7) to prove the following: Let p, q ∈ Rn. Let c(t) :=
p + t(q − p) be the straight line curve joining p and q. Then `(c) = ‖q − p‖. If
γ : [a, b]→ Rn is any (piecewise smooth ) curve joining p and q, that is, if γ(a) = p

and γ(b) = q, then `(γ) ≥ ‖q − p‖. Hint: q − p = γ(b)− γ(a) =
∫ b
a γ
′(t) dt.

39. We returned to the problem in Item 34. Let ψ(s) :=
∫ s
0 k(τ) dτ . Let γ : [0, L]→ R2

be defined as follows:

γ(s) :=

(∫ s

0
cos(ψ(t)) dt,

∫ s

0
sin(ψ(t)) dt

)
.

(Do you recall how we arrived at this?)

40. The other problem which we raised was whether there is any uniqueness assertion
to the question of Item 34. A closer look at k = 0 and k = 1 prompted one of you
to say that the curves are unique up to a rotation and/or a translation or up to a
rigid motion. We decided to take this up later in a more general setting.

On the way, we wondered why only rotation figured and why not any reflection in
the assertion on uniqueness.
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41. We started the study the geometry of unit speed curves in R3. Since γ′′(s) ·γ′(s) =
0, we decided to call the unit vector n(s) in the direction of γ′′(s) as the unit
normal provided γ′′(s) 6= 0. If we let t(s) = γ′(s), then we wanted to enlarge t,n
so that we get an O.N. basis of R3. In fact, one of you suggested that we consider
t,n, t× n. The geometry of space curves is the study of the rate of change of this
O.N. basis.

Items 33–41 were done on 19 January 2008 (10:15 A.M. – 11:50 A.M.).

42. We continued the study of space-curves. We defined the curvature (necessarily
positive) by the equation: t′(s) = κ(s)n(s). There were two choices of a unit
vector which is perpendicular to both t and n. Which one to choose? We recalled
how we chose n in the case of a plane curve.

43. Let V be an n-dimensional real vector space. We say that two ordered bases
v := {v1, . . . , vn} and w := {w1, . . . , wn} of V define the same orientation if the
unique linear endomorphism T of V such that Tvi = wi has positive determinant,
This defines an equivalence relation on the set of ordered bases of V . There are
two equivalence classes. We choose one and say that it defines an orientaion of V .
Any basis which lies in the orientation is said to be positively oriented. Otherwise,
it is said to be negatively oriented.

44. When V = Rn, the standard orientation of Rn is the equivalence class to which
the standard basis belongs.

Using this convention, we looked at some exmples of bases in R2 ad R3 which are
positively orieted and negatively oriented. In general, if v and w are of oppposite
orientation, then v and w := {w2, w1, w3, . . . , wn} are positively oriented. So are v
and {−w1, w2, . . . , wn}.

45. On the way, we discovered how to write down all the orthogonal 2×2 matrices, their
classification into rotations and reflections. Rotations are orientation preserving
while reflectons are not. (When do you say a linear map T : Rn → Rn is orientation
preserving (or reversing)?)

46. Returning to space curves, we choose the unique (unit) vector b(s) such that
{t(s),n(s),b(s)} is a positively oriented O.N. basis of R3. (Why does it exist?)
The vector b(s) is called the binormal to the curve at s. The triad {t(s),n(s),b(s)}
is called the Frenet frame to γ at s.

47. What do we mean the study of differential geometry of curves in R2 and R3?
We (re)interpreted it as the study of the (rate of) change in the Frenet frame
({t(s),n(s)} in the case of plane curves and {t(s),n(s),b(s)} in the case of space
curves. We know t′(s) = γ′′(s) = κ(s)n(s). We need to compute n′ and b′ in
terms of the Frenet frame.

48. We recalled that in an i.p.s. V , x =
∑n

i=1 〈x, vi〉 vi where {v1, . . . , vn} is an O.N.
basis of V .

49. To compute n′(s) and b′(s) and in particular to find the ‘coordinates’, we differ-
entiated identities such as n · n = 1, n · b = 0, n · t = 0 etc. We found that b′ is a
multiple of n.

Items 42–49 were done on 22 January 2008 (9:45 A.M. – 11 A.M.).
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50. We continued with the last item and derived the (Serret-)Frenet Formulas:

t′(s) = κ(s)n(s)
n′(s) = −κ(s)t(s) +τ(s)b(s)
b′(s) = −τ(s)n(s)

(8)

51. If the torsion of a unit speed-curve in R3 is zero, then it is a plane curve.

52. Since we defined b geometrically (and algebraically), we need to ensure that s 7→
b() is smooth.

53. We defined the cross-product v × w of 2 vectors in R3 by the equation

〈u, v × w〉 = det(v, w, u) for all u ∈ R3.

54. Find formulas for the curvature and torsion of a regular space curve which is not-
necessarily parametrized by arc-length.

55. If a unit speed curve lies on a sphere of radius R, then the curvature at any point
should be at least 1/R.

56. Let γ be a unit speed curve. Assume that all the tangent lines to the curve pass
through a (fixed) point.Then γ is a straight line. (How many such points are there
through which such a curve passes?)

Items 50–56 were done on 23 January 2008 (9:45 A.M. – 11 A.M.).

57. Geometrically we expect that the curvature and the torsion of a helix to be con-
stant. This was verified by computation.

58. If γ is a unit speed curve in the plane with constant curvature k, then γ is a circle.
We proved this by solving the system(

t′

n′

)
=

(
0 −k
k 0

)(
t
n

)
.

59. If γ is a unit speed curve with constant curvature, the extra condition we need to
impose on γ to ensure that it is a circle was found to be τ = 0. This follows easily
from Item 51 and Item 58.

This was also seen in a more geometric way. Hint: Consider γ(s) + (1/k)n(s).
(How was this motivated?)

60. We formulated a results on the existence and uniqueness result for space curves.

61. If γ1 and γ2 are two unit speed curves (say, with [0, L] as the common domain)
in R3 which have the same curvature and the torsion we wanted to prove that
one is got by a rigid motion from the other. What was the translation part? It
is ±(γ2(0) − γ1(0)). What was the rotation part? It is the orthogonal (why?)
linear transformation, say A, which took the Frenet frame (t1(0),n1(0),b1(0)) to
(t2(0),n2(0),b2(0)). What is the determinant of A? We found that detA = 1.
Why is this a rotation and what we mean by a rotation in R3? We wanted to show
that A has 1 as an eigen value.

Items 57–61 were done on 24 January 2008 (10 A.M. – 11 A.M.).
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62. We continued with the last item. Since the characteristic polynomial of A is a
polynomial of degree 3 with real coefficients, it has a real root by the intermediate
value theorem. Since the characteristic values of an orthogonal matrix are of
modulus one, this real root must be either 1 or −1. If it is −1, then the other
two roots cannot be non-real. (Why?) If they are real, they must be 1 and −1.
(Why?) We explained how this leads us to conclude that such an A must be a
rotation of a plane.

In classical mechanics, this known as Euler’s theorem: Any such A has an axis of
rotation.

63. We may now assume that γ1(0) = γ2(0), t1(0) = At2(0), n1(0) = An2(0) and
b1(0) = Ab2(0) where A is a rotation. We proved that

t1(s) = At2(s),n1(s) = An2(s) and b1(s) = Ab2(s) for s ∈ [0, L].

Hint: Show that ‖t1(s)−At2(s)‖2 + ‖n1(s)−An2(s)‖2 + ‖b1(s)−Ab2(s)‖2 is a
constant using the Frenet formulas and the orthogonality of A.

This proves the ‘uniqueness’ part: if two space curves γi : [0, L]→ R3 are such that
κ1(s) = κ2(s) and τ1(s) = τ2(s) for all s ∈ [0, L], then there exists a rigid motion
taking one to the other.

64. Let A : Rn → Rn be linear.Let f : [a, b]→ Rn be continuous. We proved∫ b

a
(A ◦ f)(t) dt = A ◦

(∫ b

a
f(t) dt

)
.

We used the defining equation (6) to prove this.

65. Existence part is proved by invoking the (global) existence theorem for a linear
system of ODE. Look at the Frenet formulas (8). (I was not sure whether you
were aware of ‘global’ result!)

Items 62–65 were done on 29 January 2008 (10 A.M. – 11 A.M.).

• Tangent Spaces

1. If S ⊂ Rn and p ∈ S, we denote by TpS, the tangent space at p to S and define it
to be the collection of all tangent vectors c′(0) where c : (−ε, ε) → S is a smooth
curve with c(0) = p:

TpS := {v ∈ Rn : ∃c : (−ε, ε)→ S with c(0) = p and v = c′(0)}

2. As c(t) = p for all t has 0 as the tangent vector, TpS 6= ∅. Also, if v ∈ Tp, then
λv ∈ TpS for any λ ∈ R. Thus TpS is a subset of Rn which is nonempty and closed
under scalar multiplication.

3. Does TpS contain nonero vectors? Not necessarily. We have TxQ = {0} for any
x ∈ Q and TxC = {0} for any x in the Cantor set C.

4. If v1, v2 ∈ TpS, can we conclude v1 + v2 ∈ TpS? No, we cannot. If S = {xy = 0},
the union of the axes in R2, then e1, e2 ∈ T(0,0)S, but e1 + e2 /∈ T(0,0)S.
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5. Whether TpS contains nonzero vectors or whether it is closed under (vector) addi-
tion (so that it becomes a vector space) depends on some geometric properties of
S. We look at some special cases below which are very important for differential
geometry and for which the tangent spaces are vector spaces.

6. If S = U is an open subset of Rn, then Tp(S) = Rn.

7. If S is a the vector subspace H := {x ∈ Rn : x · a = 0} for some nonzero a ∈ Rn,
then TpS = H. If v ∈ TpS, then v ∈ H with a correpsonding curve c, then
c(t) · a = 0 for all t. Differentiating this equation we get v ∈ H.

More generally, if W := w +H is a plane, then TpW = H.

8. Exercise: Let W ≤ Rn be a vector subspace. Identify TpW . The same question if
S is a coset of W in Rn.

9. Consider S = Sn−1 := {x ∈ Rn : x · x = 1}. Then v ∈ TpS iff v ⊥ p. Enough to
show that v ⊥ p is of unit norm, then v ∈ TpS. Consider the curve which is the
intersection of the sphere S with the two dimensional subspace span {p, v}. It is
parametrized as t 7→ cos tp+ sin tv.

Items 1–9 were done on 30 January 2008 (9:45 A.M. – 11 A.M.).

10. We went through the argument of the last item and observed that we can prove a
partial generalization. Let U ⊂ Rn be open. Let f : Rn → Rm be smooth. Assume
that q ∈ Im (f). Let p ∈ S := f−1(q). Then TpS ⊂ kerDf(p).

We did this in two steps. First when m = 1 and then the general case. When
m = 1, we wrote the result in the form TpS ⊂ (grad f(p))⊥.

Under an extra assumption on q, we shall later prove that TpS − kerDf(p).

11. Let U ⊂ Rnbe open and f : U → R be smooth. Let S be the “surface” in Rn+1

defined as the graph of f : S = {(x, f(x)) : x ∈ U}. If γ is a curve in S, and if we
write γ(t) = (x(t), f(x(t)), then c(t) := x(t) is a curve in U . This sets up a 1-1
correspondence between curves in S and those in U .

12. Let n = 2. Let

γ(t)) = (x(t), y(t), z(t)) = (x(t), y(t), f(x(t), y(t))), and hence c(t) = (x(t), y(t)),

then

γ′(t) =

(
x′(t), y′(t),

∂f

∂x
x′(t) +

∂f

∂y
y′(t)

)
= x′(t)

(
1, 0,

∂f

∂x

)
+ y′(t)

(
0, 1,

∂f

∂y

)
= x′(t)∂x + y′(t)∂y, say.

In particular,γ′(0) = x′(0)∂x + y′(0)∂y. Thus any tangent vector to S is a linear
combination of ∂x and ∂y. Note that the coefficients are the components of the
tangent vector c′(0)!

∂x and ∂y are the tangent vectors to S that correspond to the curves (x, b, f(x, b))
and (a, y, f(a, y)).

13. Thus, if we wish to show that w = u∂x + v∂y ∈ TS , we need only consider a
curve c in U passing through (a, b) whose tangent vector is (u, v). This is easy.
For example, consider c(t) = (a, b) + t(u, v) so that γ(t) = (c(t), f(c(t)). We have
γ′(0) = w. Hence TpS is the two dimensional vector space spanned by ∂x and ∂y.
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14. (n = 2 continued.) Also, note that

∂x × ∂y =

(
−∂f
∂x
,−∂f

∂y
, 1

)
the ‘normal’ to the tangent plane.

15. In the general case of the graph of a function f : Rn → R, if we let

∂i =

(
0, . . . , 1, 0, . . . , 0,

∂f

∂xi

)
where 1 is at the i-th place,

then γ′(0) =
∑n

i=1 x
′
i(0)∂i. Proceeding as in the 2-dimensional case, if w =

∑
i ui∂i

s to be shown as a tangent vector in TpS, we may consider c(t) = p + tu and
γ(t) = (c(t), f(c(t)).

Items 10–15 were done on 31 January 2008 (9:45 A.M. – 11 A.M.).

16. Exercise: Let f : Rn → Rk be smooth. Let S be the graph of f . Identify TpS for
any p ∈ S and hence conclude that TpS is n-dimensional real vector space.

17. Notation as in Item 10. We wanted to impose conditions so that TpS = kerDf(p).
We arrived at the condition that Df(p) must be of maximal rank. We say that 0
is a regular value of f if for each p ∈ f−1(0), we have Df(p) is of maximal rank.

18. The idea of the proof of the last item is to recognize S locally as a graph of a
smooth function on an n-dimensional domain. This is essentially Implicit Function
Theorem.

19. We recalled the implicit function theorem in the following form:

Let Ω ⊂ Rn+k = Rn × Rk be open. Let f : Ω→ Rk be C1. Assume that for some
(a, b) ∈ Ω where a ∈ Rn and b ∈ Rk we have

1. f(a, b) = 0.
2. D2f(a, b) is nonsingular.

Then there exists a neighbourhood Ω′ of (a, b) in Rn × Rk, an open set U ⊂ Rn

containing a and a C1-map g on U such that
i. D2f(x, y) is nonsingular for all (x, y) ∈ Ω′,
ii. {(x, y) ∈ Ω′ : f(x, y) = 0} = {(x, g(x)) : x ∈ U}.

20. We started with the proof.

Items 16–20 were done on 6 February 2008 (10:00 A.M. – 11 A.M.).

21. We completed the proof of the implicit function theorem.

22. Implicit function theorem says that a level set f−1(0) is locally a graph (with
appropriate assumptions on the value 0).

23. We completed the proof of the following statement: Let f : Rn+k → Rk be smooth.
Let 0 ∈ Im (f) be regular. Let S := f−1(0). Then TpS = kerDf(p) for any p ∈ S.

24. The tangent plane to S at p is defined as the coset p+ TpS, that is, the translate
(by p) of the tangent space.

25. Exercise: Let S be the graph of a function f : R2 → R. Identify the tangent plane
to S at p = (a, b, f(a, b)). Do you recognize the significance of your result?

Items 21–25 were done on 7 February 2008 (9:45 A.M. – 11 A.M.).
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26. We compute the tangent spaces to some concrete sets using the last result.

27. Let f : Rn+1 → R be given by f(x) := x · x − 1. Then f−1(0) = Sn is the unit
sphere. Since Df(p)(v) = v · grad f(p), we see that TpS

n = (grad f(p))⊥, as we
have already seen in Item 9.

Exercise: Identify TpS where p ∈ S := {x ∈ Rn+1 : x · x = R2}.
28. Let S = {(x, y, z) ∈ R3 : x2 + y2 = 1} and let p = (x0, y0, z0) ∈ S. We have

TpS = {v ∈ R3 : v · (x0, y0, 0) = 0}.

Note that there exist 2 special curves through p whose tangent vectors at p form
a basis of TpS.

29. We now look at a more abstract example. Let S = O(n,R), the group of all n× n
orthogonal matrices. Let S(n,R) be the set of n × n symmetric matrices. We
show that TIS is the set of all skew-symmetric matrices of size n × n. Consider
F : M(n,R) → S(n,R) given by F (X) = XXT − I. Then S = F−1(0). The only
issue here is to compute DF (I).

30. Note that if X is an n × n skew-symmetric matrix, then c(t) := etX is a curve in
O(n,R) passing through I with c′(0) = X.

31. Can you identify the tangent space TAO(n,R) for A ∈ O(n,R)?

Items 26–31 were done on 8 February 2008 (10 A.M. – 11 A.M.).

32. Let U(n) := {A ∈M(n,C) : A is unitary}. Compute TIU(n).

33. The notion of tangent occurs even in differential calculus in a subtle way. To start
with, if we wish to compute the directional derivative Dvf(p) of a differentiable

function, we employ the difference quotient: f(p+tv)−f(p)
t . The numerator is the

composition of f with the straight line curve `(t) := p + tv. This curve has the
property that `(0) = p and `′(0) = v. Also, we note that the directional derivative
is d

dtf ◦ `(t) |t=0. If γ is any curve with the same properties γ(0) = p and g′(0) = v,
then again we get (by an application of the chain rule)

Dvf(p) =
d

dt
f ◦ γ(t) |t=0 .

34. The importance of tangent space in differential geometry is as follows. Let f : U ⊂
Rn → R be differentiable at p ∈ U . To know Df(p) it is enough to know Df(p)(v).
The latter is the directional derivative Dvf(p) and to compute it, we can use any
curve γ such that γ(0) = p and γ′(0) = v. (This follows by a trivial application
of the chain rule.) Hence v, which is fed to Df(p), can be thought of a tangent
vector to U at p! That is, the domain of Df(p) is TpU .

Also, the image Df(p)(v) is the tangent vector to the curve f ◦ γ at f(p). Thus
the codomain of Df(p) is the tangent space Tf(p)V if f : U → V is differentiable.

Thus the derivative may be thought of as a linear map from the tangent space TpU
to the tangent space Tf(p)V .

This way of looking at the derivative of a map leads us to the definition of the
derivative of a map between two surfaces.
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35. We now use our knowledge of TpS of a level set to bring out the underlying geometry
of the method of Lagrange multipliers. First of all look at the following examples
in a geometric way.

(a) Find the extrema of the function g(x, y) = x subject to the constraint f(x, y) :=
x2 + y2 − 1 = 0.

(b) Find the extrema of the function g(x, y) = x2 + y2 subject to the constraint
f(x, y) := ax+ by + c = 0

(c) Find the extrema of the function g(x, y) = x2 + y2 subject to the constraint
f(x, y) := xy − c = 0.

(d) Find the extrema of the function g(x, y) = xy subject to the constraint
f(x, y) := x+ y − c = 0.

(e) Find the extrema of the function g(x, y) = x2 + y2 subject to the constraint
f(x, y) := (x/a)2 + (y/b)2 − 1 = 0.

(f) Find the extrema of the function g(x, y) = ‖p− x‖2 subject to the constraint
f(x) := x · a− d = 0, where a ∈ Rn is a unit vector, p ∈ Rn fixed, and d ∈ R.

36. In each of the examples of the last item, the (constrained) extrema of the function
g occurs at point at which both the level sets f and g meet tangentially. Reformu-
ating this in terms of the normals, this means that at a point of extrema, we have
grad g is a scalar multiple of the gradient of f . This is the essence of the method
of Lagrange multipliers.

Items 32–36 were done on 15 February 2008 (10 A.M. – 11 A.M.).
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• Surfaces

1. We motivated how to assign dimension to some of the easy subsets of Rn.

2. A (nonempty) subset S ⊂ Rn is called a surface in Rn if for each p ∈ S, there exists
an open neighbourhood U of p in Rn, an open set V ⊂ R2 and a homeomorphism
f : V → U ∩ S.

3. Examples of surfaces:

(a) A nonempty open set V ⊂ R2 is a surface in R2.

(b) More generally, if W ⊂ Rn is a two dimensional vector subspace and V is an
open set in W (with the subspace topology on W ), then V is a surface in Rn.

(c) A typical example is the sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. If we let
U±i := {(x1, x2, x3) ∈ S : ±xi > 0}, i = 1, 2, 3, then each of these six sets is
open in S and is homeomorphic to the open unit disk in R2. Also, any p ∈ S
will lie in at least one of these open sets.

(d) The cylinder {(x, y, z) ∈ R3 : x2 + y2 = 1} is a surface. We did this in two
ways. On the way, we learnt a bit of real analysis centering around continuous
increasing function, their inverese, the domain of inverse functions such as
cos−1 and sin−1.

(e) Let U ⊂ R2 be open. Let f : U → Rk be a (continuous, or better still smooth)
map. Then the graph G(f) := {x, f(x)) ∈ R2 × Rk = Rk+2} is a surface in
Rk+2.
On the way, we also saw that if f : X → Y is a continuous function between
two topological spaces, then X and the graph of f (with the subspace topology
inherited as a subset of x× Y ) are homeomorphic.

(f) Let f : R3 → R be a smooth map with 0 as a regular value. Then the level
set S := f−1(0) is ‘locally’ a graph of a function defined on an open set in
R2. Hence S is a surface in R3. This was seen earlier, as an application of the
implict function theorem, when we discussed the tangent spaces.

(g) Let S ⊂ Rn be a surface and S′ ⊂ Rm be homomorphic to S. Then S′ is a
surface.

4. We can mimic the definition of a surface to define k dimensional objects in Rn.
They are the ones where each point has a neighbourhood which is homeomorphic
to an open set in Rk. They are called k dimensional (topological) submanifolds
in Rn. Thus a topological two dimensional manifold S is nothing other than a
surface.

Items 1–4 were done on 16 February 2008 (10 A.M. – 11:45 A.M.).

5. A nonempty subset S ⊂ Rn is said to be a smooth k-dimensional submanifold
of Rn if for each p ∈ S there exists a triple (Up, ϕp, Up) where Up is an open set
containing p, Vp ⊂ Rk is open and ϕp : Vp → Up is a homeomorphism with the
following property: The map ϕp : Vp → Rn is smooth o rank k.

6. A topological space M is said to be a smooth k-dimensional manifold if for each
p there exists a triple (Up, ϕp, Vp) where Up 3 p is open, Vp ⊂ Rk is open and
ϕp : Up → Vp is a homeomorphism. The triples {(Up, ϕp, Vp) : p ∈ M} satisfy the
following compatibility condition (on the transition functions): whenever Up∩Uq 6=
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∅, the map ϕq ◦ ϕ−1p : ϕp(Up ∩ Uq)→ ϕq(Up ∩ Uq) is a diffeomorphism of the open
sets.

7. Let W ⊂ Rn be a k-dimensional vector subspace. Then W is a k-dimensional
submanifold of Rn. It is also a smooth k-manifold.

8. Any topological k-manifold with an atlas of a single chart is obviously a smooth
k-manifold.

9. In particular, the graph of a smooth function f : U ⊂ Rk → Rn is a smooth
k-manifold.

10. We saw that the sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} admits an atlas with two
charts (stereographic projections): U± := Sn \ {±en+1} with ϕ± as the stereo-
graphic projections.

11. Let U±i := {x ∈ Sn : xi > 0 or xi < 0}. Let B denote the open ball B(0, 1) in Rn.
Let ϕ±i : U±I → B be defined by

ϕ(x) := (x1, . . . , xi−1, x̂i, xi+1, . . . , xn+1)

Then the collection {(U±i , ϕ
±
i ) : 1 ≤ i ≤ n+ 1} is an atlas with 2(n+ 1) charts.

12. There exists no atlas for Sn with a single chart.

13. There exists an atlas consisting of uncountably many charts. The domains of these
charts are Up := {x ∈ Sn : x · p > 0}.

14. There exists an atlas for the cylinder x2 +y2 = 1 in R3 consisting of a single chart.
(Exercise.)

15. The sphere in Rn+1 with the atlas of stereographic projections is a smooth n-
manifold. We explicitly wrote down the transition function: ϕ− ◦ϕ−1+ : Rn \ {0} →
Rn \ {0} is given by x 7→ x/ ‖x‖2.

Items 5–15 were done on 21, 22, 26 and 27 February 2008 (10 A.M. – 11:00
A.M.).

16. We wish to show that any smooth k-dimensional submanifold of Rn is a smooth
manifold.

17. We proved the following theorem. Let S ⊂ Rn be a smooth k-dimensional subman-
ifold of Rn. Let (V, ϕ, U) be a chart in S. Let W ⊂ Rm be open and F : W → Rn

be smooth. Assume that F (W ) ⊂ U . Then the map ϕ−1 ◦ F : W → V is smooth.

For a proof, we refer the reader to my article “Four Applications of IFT”.

18. Using the last item, we showed that the transition maps of a smooth k-submanifold
of Rn are smooth. Hence Item 16 is proved.

Items 16–18 were done on 17 March 2008 (10 A.M. – 11:00 A.M.).

19. We defined smooth functions on any smooth manifold.

20. Let S ⊂ Rn be a smooth submanifold. There are a lot of smooth functions on S.

(a) Let U be an open set containing S. Assume that g : U → R be smooth. Let f
be the restriction of g to S. Then f is smooth on S.

(b) Two important classes of functions obtained this way are:

16



– Let f : S ⊂ Rn → R be given by f(x) := ‖x‖2. (This is a constant on
the spheres with center at the origin. But we also saw that these are not
constant functions if the centre is nonzero vector. Do you recall how we
proved this? )

– Let u ∈ Rn be of unit norm. Let hu : S → R be given by hu(x) := x · u.
hu is called a height function in the u-direction.

Items 19–20b were done on 18 March 2008 (10 A.M. – 11:00 A.M.).

21. Theorem. A function f : S → R is smooth iff for each p ∈ S, there exists an open
set U 3 p in R3 and a smooth function g : U → R such that g = f on S ∩ U .

See my article ‘Four Applications’ for a proof.

22. Let Si ⊂ Rni be ki-dimensional smooth manifold. A continuous map F : S1 → S2
is said to be smooth at p ∈ S1 if for some chart (V2, ϕ2, U2) containing F (p), and
a chart (V1, ϕ1, U1) containing p with F (U1) ⊂ U2, the map ϕ−12 ◦F ◦ϕ1 : V1 → V2
is smooth at p1 := ϕ−11 (p).

F is smooth on S1 if F is smooth at each p ∈ S1.
Question: Do we require Si to be smooth submanifolds of Euclidean spaces?

23. Let S be a k-dimensional smooth manifold. Let (V, ϕ, U) be a chart. Then F :=
ϕ : V → S is a smooth map.

24. Keep the notation of the last item. The map G := ϕ−1 : U → Rk is smooth.

25. Let S1 be the unit sphere in R3 minus the poles. Consider the cylinder S2 given
by x2 + y2 = 1 in R3. Define a map F : S1 → S2 as follows. Given p ∈ S1 let F (p)
be the point of intersection of the line joining the point on the z-axis closest to p
and p with the cylinder. In terms of coordinates we have

F (cosu cos v, cosu sin v, sinu) = (cos v, sin v, sinu).

(Derive this expression!) Then F is smooth.

26. Think of an obvious smooth map from the plane z = 0 to the plane given by
ax+ by + cz = d with c 6= 0.

27. Think of an (obvious) smooth map from SR(a) := {x ∈ Rn+1 : ‖x− a‖ = R} to the
unit sphere S = S1(0). Students gave x 7→ (x − a)/R and interpreted the map in
terms of concepts from Linear Algebra. The (differential) geometric interpretation
is that the map takes each point of SR(a) to the outgoing unit normal at that
point.

28. A smooth map from a surface to the unit sphere which assigns to each point of the
surface a unit normal at that point is called a normal map or Gauss map. Such a
map exists locally always, but may not exist on the entire surface. (This involves
the notion of orientability.)

29. For the cylinder x2+y2 = 1 in R3, a unit normal map is given by (x, y, z) 7→ (x, y, 0)
and hence is ‘of rank’ 1.

30. What is the meaning of the phrase that a map f : S1 → S2 is of rank r?

Items 22–30 were done on 19 March 2008 (10 A.M. – 11:00 A.M.).

31. We recalled the geometric interpretation of the derivative of a smooth map, the
domain and codomain of the derivative etc.
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32. We showed that if S ⊂ Rn is a smooth k-manifold, then TpS is a k-dimensional
vector space. This was based on some observations. Fix a chart (V, ϕ, U) around p.
There is a bijection between the smooth curves in V passing through p′ := ϕ−1(p)
and those in U through p. The map ϕ is a diffeomorphism of V onto U .

33. In fact, we proved the following theorem:
Theorem. Let S ⊂ Rn be a smooth k-manifold Let p ∈ S and (V, ϕ, U) be a chart
containing p. Then TpS = Dϕ(Rk) = Dϕ(q) (TqV ) where ϕ(q) = p.

34. What is the significance of the last theorem? The left side, namely, TpS is defined
intrinsically whereas the right side Dϕ(q)(Rk) depends on the parameterization
chosen. In the case of surfaces, in classical books, the tangent vector ∂u is denoted
by Xu. The reason for this is that the patch ϕ is denoted by ϕ(u, v) = x(u, v) and
so Xu is the partial derivative of x with respect to u. Also, the condition on the
rank of Dϕ(q) is formulated as Xu ×Xv is nonzero!

Items 31–34 were done on 20 March 2008 (10 A.M. – 11:00 A.M.).

35. Let Si ⊂ Rni be a smooth ki-manifold. We defined the derivative of a smooth map
F : S1 → S2 as follows:

DF (p) : TpS1 → TF (p)S2 given by DF (p)(v) := (F ◦ c)′(0)

where c is a smooth curve in S1 such that c(0) = p and c′(0) = v.

Exercise: Show that DF (p) is well-defined and that DF (p) is linear.

36. We computed the derivative of some concrete smooth maps seen earlier in Items
26 and 27.

37. Let f : {z = 0} ⊂ R3 → R be smooth. There exists a smooth g : R3 → R such that
g |{z=0}= f .

38. Let f : S := {x ∈ Rn+1 : ‖x‖ = 1} → R be smooth. Then there exists a smooth
function g : Rn+1 \ {0} → R which extends f .

39. The extensions defined above are examples of a set-theoretic principle. If f : X → Z
is a given map, and Y is a nonempty set, then we have g : X × Y → Z given by
g(x, y) = f(x). Under g, the entire fibre {x} × Y is mapped to f(x).

40. Let S be the right circular cylinder x2 + y2 = 1 in R3. Let f : S → R be
smooth. Let U = R3 \ {z-axis}. Then we have an extension g of f to U given
by g(x, y, z) = f(x/r, y/r, z), where r2 = x2 + y2. We interpreted this function in
terms of cylindrical coordinates. We also saw how this is another example of the
principle enunciated in Item 39: g(r, θ, z) = f(θ, z).

41. We proved the following theorem. Let S ⊂ Rn be a smooth k-manifold. Let
f : S → R be smooth. Given p ∈ S, there exists an open set U 3 p in Rn and a
smooth function g : U → R such that f = g |S.

See Theorem 5 of my article “Four Applications of Inverse Function Theorem”.

Items 35–41 were done on 25 March 2008 (10 A.M. – 11:00 A.M.).

42. We proved that any k-dimensional smooth submanifold of Rn is locally the graph
of a smooth function defined on an open subset of Rk taking values in Rn−k.

43. The last item gives another proof of the fact that the tangent space at any point
of a smooth k-dimensional submanifold of Rn is a real vector space of dimension
k.
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44. Based on our experience with the plane and space curves, we wish to define the
curvature at a point p on the surface in R3 to be the ‘rate of change of a unit normal
field’. But then we need to ensure the existence (at least locally) of a smooth unit
normal field around a given point.

45. Let S ⊂ R3 be a smooth surface. Let (V, ϕ, U) be a chart containing p. The tangent
vectors to the u and v parameter curves are denoted by Xu and Xv respectively.

Recall that the if ϕ(u0, v0) = p, and if we write ϕ(u, v) = (x(u, v), y(u, v), z(u, v)),
then the the u-curve through p is

cu(t) := ϕ(u0 + t, v) = (x(u0 + t, v), y(u0 + t, v), z(u0 + t, v))

so that

Xu = Dϕ(u0, v0)(e1) =

(
∂x

∂u
(u0, v0),

∂y

∂u
(u0, v0),

∂z

∂u
(u0, v0)

)
.

Similar considerations apply to Xv. Since the rank of Dϕ(u0, v0) is 2, we see that
Xu and Xv form a basis of TpS. We thus have a smooth unit normal field on U :

Nq :=
Xu ×Xv

‖Xu ×Xv ‖
, where ϕ(u, v) = q.

46. On any connected neighbourhood of p, there exist at most two smooth unit normal
fields.

47. We have two obvious choices of assigning a real number to a given 2×2 real matrix,
namely, its determinant and the trace. In our quest to define the curvature at point
on the surface at a real number, we are faced with the question: Which one of the
two (determinant and trace of DN(p)) to choose?

48. Gauss defined the curvature as the limit of Area(N(U))
Area(U) as the open neighbourhoods

U of p ‘converge’ to {p}.
49. We looked at the examples of a plane ax + by + cz = d, spheres SR(a) and the

cylinder x2 + y2 = 1 in R3. Using Gauss’ definition, we found the respective
curvatures are 0, 1/R2 and 0.

Items 42–49 were done on 27 March 2008 (10 A.M. – 11:00 A.M.).
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