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Maximal Torus

Let G = U(n) = {g ∈ GL(n,C), gg∗ = 1}, where g∗ = gt. G is the group of n × n
unitary matrices. It is compact: g = (uij) ∈ G iff

∑
uiku

∗
kj = δij where u∗ = (u∗kj) = (ujk).

Hence g ∈ Gl(n,C) lies in U(n) iff
∑
uikujk = δij . Since in the above equation only continuous

functions are involved, G is a closed subset of Cn2
. Also by setting i = j, we get

∑
kuikuik = 1

or
∑

i

∑
k |ik|2= n. Hence U(n) is bounded. Thus G is a compact group.

The most basic fact about the structure of G is the following:

Theorem 1. Given u ∈ G, there exists an x ∈ G such that xux−1 = diag (eiθ1 , · · · , eiθn), for
0 ≤ θi ≤ 2π.

Notice first that T = {diag (e1θ1 , · · · , eiθn) : 0 ≤ θj ≤ 2π} ⊆ G and that T ≈ S1×· · ·×S1,
an n-torus. How is Theorem 1 proved? Choose λ = ε as a zero of the characteristic equation
det(λI − u) = 0. Thus there is a non-zero e such that u e = εe. We may assume that e = e1

is a unit vector. If W := e⊥1 , then W is invariant under u:

〈uw, e1〉 = 〈w, u∗e1〉 =
〈
w, u−1e1

〉
=
〈
w, ε−1e1

〉
= 0.

Thus, u |W is a unitary map. By induction, we have an O.N. basis of W , say {e1, . . . en}
consisting of eigenvectors, say, uej = εjej for 2 ≤ n.

Note that the diagonal entries in t = xux−1, are the eigenvalues of the given matrix u.
They are unique only up to a permutation i.e., by effecting a permutation σ of the eigenvectors
(which we assume to be orthonormal) we shall get tσ = (tσ(1), . . . , tσ(n)) = σxux−1. To see
this more explicitly: for σ ∈ Sn, the group of permutations, set σei = eσ(i). Then σ extends to
a linear transformation on Cn; in fact, σ ∈ U(n). (Why?) If we take y = σx, then yuy−1(ei)

yuy−1(ei) = σxux−1σ−1(ei)

= σ[xux−1(eσ−1(i))]

= σεσ−1(i)eσ−1(i)

= εσ−1(i)σeσ−1(i)

= εσ−1(i)ei
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Thus yuy−1 = diag (εσ−1(1), . . . , εσ−1(n)).

Put this in a different way, we have shown that

G =
⋃
g∈G

gTg−1.

T is known as a maximal torus of G. Thus every element of G is conjugate to an element of
T .

Now given a u ∈ T ⊆ G, when do we have xux−1 = yuy−1, for x, y ∈ G?

xux−1 = yuy−1 ⇔ y−1xux−1y = u⇔ (y−1x)u(y−1x)−1 = u⇔ y−1x ∈ ZG(u),

where ZG(u) is the centralizer of u in G. If we further assume u has distinct eigenvalues, then
y−1x ∈ T . (Note that for u ∈ T , T ⊆ ZG(u).)

If we set

Tr = {t ∈ T : t has distinct eigenvalues }
= {t ∈ T : ti = tj ⇒ i = j}.

then Tr is an open dense subset of T . We set

Gr =
⋃
g∈G

gTrg
−1.

Any element of Gr is said to be regular. G \Gr consists of singular elements. Note that Gr
is open. (Why?)

Weyl Integral Formula

Consider now the map ψ : G/T × Tr → Gr given by (x, t) 7→ xtx−1. The map ψ is well-
defined (as we have seen earlier). For any u ∈ Gr, there exists precisely n! = |Sn| elements,
ti, 1 ≤ 1 ≤ n! such that xtix

−1 = u. (All of them are related via Sn-action as defined
earlier). We want to claim that for integration purpose, Gr is a good enough subset of G.
i.e., Gs = G \Gr is negligible for measure theoretic reasons.

If this can be done, then Gr can be ‘parametrized’ by the product (G/T )×Tr and we can
compute the |jacobian| of the map ψ, call it w(x, t) so that the Haar measure on G can be
written as: ∫

Gr

f(g)dg =

∫ (∫
(f(xtx−1)w(x, t)dt

)
dx,

in an obvious notation.

We show that Gs is negligible by showing that the dimension of Gs is n2 − 3. Note that
dim G = n2. (See below.)

The ‘best’ singular element in T can be written in the form (ε, ε, ε3, · · · εn) εi 6= εj for
i 6= j, 3 ≤ 1, j ≤ n. Then any element that commutes with a singular element of the above
form can be represented by

α11 α12

α21 α22

α3

αn

 , where

(
α11 α12

α21 α22

)
∈ U(2)
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Thus the set C of all elements that commute with the given singular element has (n−2)+4 =
n+2 dimensions. Hence dimG/C = n2− (n+2) = n2−n−2. The set Sb of the best singular
elements in T has dimension (n−1). Since ψ:G/C×Sb → G is surjective on the best singular
elements in G, the set of such elements has dimension n2 − n− 2 + (n− 1) = n2 − 3.

Now if we take any other singular element, say, of the form (ε, ε, ε, ε4, . . . , εn) or (ε1 =
ε2, ε3 = ε1, . . . , εn), then the C corresponding to such element will have dimension > n+ 2 so
that G/C will have dimension < n2− (n+ 2) and the set of such elements in T has dimension
≤ n−2 < n−1 and hence, under ψ, elements which are worse than the best singular element
will have dimension < n2 − 3.

In any case, thus, dim G−Gr < n2, and hence Gr is a good set for integration.

Thus we have: Gr is an open dense subset of G, with dim G \Gr < dim G and

ψ:G/T × Tr → Gr is a |Sn| − fold covering.

Computation of the Jacobian of ψ:

We want to identity the tangent space g of G at 1 ∈ G. Let t→ χ(t) be a curve in G such
that χ(0) = 1. Since χ(t)χ(t)∗ = 1, we have

d

dt
(χ(t)χ(t)∗ |t=0 = 0

i.e. χ′(t)∗ + χ′(t)χ(t)∗ |t=0 = 0

or χ′(0)∗ + χ′(0) = 0.

That is, χ′(0) is a skew-hermitian matrix.

Thus g consists of all skew-hermitian matrices and dimR g = n2. t = T1(T ), the tangent
space of T at 1, can be identified with the set of diagonal matrices in g, i.e., t = {(iθ1, · · · , iθn) :
θj ∈ R}. Also, if p = T1(G/T ) is the tangent space to G/T at the identity coset then p is the
span of

{X : ( ∗ z − z ∗ ) : z ∈ C},

where z is in the (i, k)-th place, i < k. Note that for t ∈ T , and X as above in p, we have
tXt−1 = (ti/tk)X.

We are now ready to compute the Jacobian of ψ: For h ∈ t, we have

d

ds
ψ(x, t exp sh) |s=0 =

d

ds
(xt exp shx−1) |s=0

=
d

ds
(xtx−1x exp shx−1 |s=0

= xtx−1 d

ds
(x exp shx−1) |s=0

= xtx−1.

For X ∈ p, we can compute, for X = Xik, a basic element of p,

d

ds
ψ(x exp sX, t) |s=0 =

d

ds
(x exp sXt exp(−sX).x−1) |s=0
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= xχtx−1 − xtχx−1

= xtt−1Xtx−1 − xtx−1xχx−1

= xtx−1xt−1χtx−1 − xtx−1xχx−1

= xtx−1(xt−1χ(xt−1)−1 − xχx−1).

At x = e, we have

d

ds
ψ(exp sX, t) = t(t−1Xt−X) = t ((tk/ti − 1)X) .

But note that CXik is a complex 1-dimensional space and hence on this 1-dimensional C
space, when we consider it as a 2-dimensional real vector space, the linear map dψ is of the
form (

(tk/ti)− 1 0
0 (tk/ti)− 1

)
=

(
tk/ti − 1 0

0 (ti/tk − 1)

)
=

(
tk−ti
ti

0

0 tk−ti
tk

)
.

Remark: Let α ∈ C∗. The Jacobian of the map z 7→ αz on C is |α|2.

Thus dψ(1T,1) on the space T1T (G |T )⊕T1(T ) can be written as



tk−ti
ti

0

0 tk−ti
tk

. . .

1
1


and hence

|jacobian| = ∆∆ = ω(r, t) where ∆ =
∏
i<k

(ti − tk).

At other points (xT, t) the above calculation shows that ω(x, t) = ω(1, t), so that the
|jacobian|-density needed for the change of variable formula is given as ω(x, t) = ∆∆.

Thus we have proved the Weyl integral formula:∫
Gr

f(g)dg =
1

|Sn|

∫
G/T

(∫
T
f(xtx−1)∆∆(t) dt

)
dx. (1)

In particular if f is a class-function i.e., f(xgx−1) = f(g) for all x, g ∈ G, then we have∫
Gr

f(g)dg =
1

| Sn |

∫
f(t)∆(t)∆(t)dt. (2)

(Here dt is the normalized Haar measure on T, dx then G-invariant measure on G/T ).
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Weyl Character Formula

We can use the Weyl integral formula for the class-function to write down all the irreducible
characters of U(n).

Let χ be an irreducible character of G, i.e. the character of an irreducible representation of
G. We make a series of observations from which we deduce the explicit form of the characters:

1) χ is a class-function and G = ∪gTg−1 imply that it is enough to know χ |T .

2) Sn acts on T as we have seen earlier, and t = (t, · · · , tn) and (tσ(1),···tσ(n)) = tσ are
conjugate and hence χ(t) = χ(tσ).

3) Let (π,H) be the irreducible representation such that χπ = χ. When we restrict
π to T , then (π |T , H) is a unitary representation of the compact, abelian group T and
hence H splits as a direct sum ⊕Hi such that (π |T , H) = ⊕(π |T , Hi), and (π |T , Hi) is an
irreducible 1-dimensional representation of T = S1 × · · · × S1. We know all the irreducible
1-dimensional representations of T . They are of the form (eiθ1 , · · · , eiθn) 7→ eir1θ1+···+irnθn ,
where (r1, . . . , rn) ∈ Zn. We write this, as χr(t) = eirθ, for r = (r1, · · · , rn) ∈ Zn. θ =
(θ1, · · · , θn) ∈ ([0, 2π))n, rθ =

∑
jrjθj . Choosing as a basis for H, a non zero vector from each

one of the Hi, we can write π(t) =


χr(t)

χs(t)
. . .

χ
. . .

 for r, s, · · · ∈ Zn so that

χπ(t) = χ(t)

= χr(t) + χs(t) + · · ·
= eir.θ + eis.θ + · · ·

In particular, χ |T is a finite Fourier series. Also each representation χr in π |T can have
multiplicity C ≥ 1. Hence collecting them together, we may write χ |T (t) = Ceir.θ +C ′eisθ +
· · ·, C,C1 ∈ Z+.

4) Let P = {r ∈ Zn, where χr occurs in χ |T } we call P the set of weights of π. We
have the lexicographic ordering on P : r = (r1, . . . , rn) ≥ s = (s1, . . . , sn) if the first non-zero
difference rj − sj ≥ 0. Since the lexicographic order is a total order and since P is a finite
set, we have a highest element, say, r ∈ P : r > s, for any s ∈ P \ {r} (i.e., r ≥ s, r 6= s). The
coefficient C of χr in χ |T is a positive integer.

We observe that χ |T (t) = Cχr(t) + C ′χs(t) + · · · and χ |T (σ.t) = χ |T (t) and

χs(σ.t) = e(is1tσ(1)+···) = χσ−1(s)(t),

where
σ−1(s) = σ−1(s1, · · · , sn) = (sσ−1(1), . . . , sσ−1(n)),

for any s ∈ Zn. We deduce that whenever s ∈ P , we also have σ−1s ∈ P and that the
coefficients of ψs and ψσ−1s in χ |T are the same for any σ ∈ Sn.
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In other words Sn-acts on P as above and

χ |T= C

(∑
σ∈Sn

χσ.r

)
+ C ′

(∑
σ∈Sn

ψσ.s

)
+ · · · .

This is referred to as the Sn- symmetry of ψ |T .

5). By Schur’s orthogonality relations, we know that χ is an irreducible character iff∫
G χχ = 1. Since χ is a class-function, we have, by Weyl integral formula.∫

G
χ(g)χ(g)dg =

1

| Sn |

∫
T
χ(t)∆(t)χ(t)∆(t)dt.

This suggests that we consider the function. ξ(t) = χ(t)∆(t). We first observe that ∆ is an
Sn-antisymmetric function: ∆(σ.t) = sgn (σ). ∆(t), for σ ∈ Sn. For, if σ = (i, i+ 1),

∆(σ.t) = (t1 − t2) · · · (ti+1 − ti) · · · = −∆(t).

This is true for all transpositions and hence for all σ ∈ Sn.

Since χ was already observed to be Sn-symmetric their product ξ is Sn- anti-symmetric.
Also note that, in ξ, ‘the highest term’ is of the form C(ei(r1+n−1)θ1er2+(n−2)θ2) · · ·) and the
coefficient of this highest term is the same positive integer C which occurs in χ = Cχr + · · ·.
Also note that if any s appears in ξ with coefficient C ′, that is, ξ = · · · + C ′eisθ + · · ·, then
σ · s also appears in ξ with coefficient sgn (σ).C.

6. What are the simplest Sn-anti-symmetric functions on T one can think of ?

Given ` = (`1, · · · `n) ∈ Zn. We form the elementary Sn-anti-symmetric sum

ξ`(θ) =
∑
σ∈Sn

sgn (σ)eσ.`).θ, σ.` = (`σ(1),···, `σ(n)).

Note that unless `i are mutually distinct, ξ` = 0 and that we can write

ξ`(θ) = det(t
`j
i ) = (t

`j
i ), t = (eiθ1 , · · · , eiθn) = (t1, · · · , tn).

In particular, ∆ = ξn−1,···,1,0 an elementary anti-symmetric sum.

7). Now in ξ = χ∆, if we denote the highest weight ((rj + n− j)) = (`j) = `, then

ξ = Cξ` + · · · , where C, · · · ∈ Z, and C > 0.

That is, ei(σ.`)θ occurs in ξ with coefficient sgn (σ)C for any σ ∈ Sn. Also σ.` < `, for any
σ 6= 1, σ ∈ Sn. So, in particular, for σ = (i, i+ 1), σ.` < `⇒ `i > `i+1 ⇒ `1 > `2 · · · > `n. We
can now repeat the above argument of anti-symmetry to ξ − ξ` and so that we can write

ξ = Cψ` + C1ξ`1 + · · · , with C,C1,∈ Z+, C > 0

and ` > `1 > · · ·.
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8). For any m, ` ∈ Zn, ` 6= m, χm and χ` are distinct irreducible characters of T and so∫
T χmχ`dt = 0. Hence

∫
T ξ`ξm = δl,mn!. Since χ is an irreducible character,

1 =

∫
Gr

χ(g)χ(g)dg

=
1

n!

∫
T
χ(t)δ(t)χ(t)δ(t)dt

=
1

n!

∫
T

(
Cξ` + C1χ`1 + · · ·

) (
Cξ` + C1ξ` + · · ·

)
dt

= (C2 + C ′2 + · · ·) = 1.

Therefore, C = 1, C1 = · · · = 0. Hence ξ = ξ` or

χ(t) =

∑
sgn (σ)e(σ.`)(t)

∆
, for t ∈ Tr.

Thus χ is explicitly written for t ∈ Tr. Since χ |T is, anyhow, a trigonometric polynomial
(see 3) and χ(t), for t ∈ T i is also a trigonometric polynomial, χ extends uniquely to all of
T . The leading term of the finite Fourier series χ |T is tr11 · · · trnn , rj = `j − (n − j), and so
r1 ≥ r2 ≥ · · ·. Recall that r is called the highest weight of the representation. Since ξ`, when
` and r are related as above, uniquely determines ξ, it follows that r uniquely determines the
representation.

9). Given r = (r1 · · · rn) ∈ Zn with r1 ≥ r2 ≥ · · · ≥ rn. We can form χr = χ`
∆ . Is χr

an irreducible character? Yes, it is always, since χr is a continuous class-function on G and∫
χrψs = 0 for any s ∈ Zn, with s1 ≥ · · · ≥ sn and r 6= s.

10). The dimension d(r) of the representation whose highest weight is r and whose char-
acter is given by χr = ξ |∆, is given by χr(e). But the expression we got for χr is valid only
for regular elements and 1 /∈ Gr. But observe that ξ`(1) = 0 and so we have an indeterminate
form of the type 0/0. So we can apply L’Hopital type argument.

Weyl’s dimension formula

Recall that if χ is the character of a finite dimensional representation then χ(e) is the
dimension of that representation. Now the Weyl’s character formula for the irreducible rep-
resentation (with r = (r1, · · · , rn) as highest weight) of U(n) is given by

χ(t) =

∑
sgn (σ) · · · ei(σ.`).t∑

sgn (σ)ei(σ.ρ).t
,

where γ ∈ Tr is a regular element (that is, with distinct eigenvalues), `1 = r1 + (n− 1), `2 =
r2 + (n− 2) · · · `n−1 = rn−1 + 1, `n = rn, σ runs through Sn. Since e ∈ Tr, we cannot evaluate
χ(e) by substituting t = e in the above formula. Notice that both the numerator and the
denominator become zero at e. We can hence use the L’Hopital’s rule.

Observe that, in our earlier notation, ξ(`1, · · · , `n) =
∑

sgn (σ)ei(`σ(1)θ1+···+`σ(n)θn), can
also be written as 

t`11 · · · t`nn
t`12 · · · t`nn
...
t`1n · · · t`n1

 = (t
`j
i ).

7



If we set tp = (ei(n−1)θ, · · · , eiθ, 1) then we have

χ(e) = lim
θ→0

χ(tρ) = lim
θ→0

ξ`(tρ)

ξρ(tρ)
.

Now

ξ`(tρ) =
∑

sgn (σ)ei(`σ(1)(n−1)θ1+···`σ(n)θn)

ξρ(t`) =
∑

sgn (σ)ei(ρσ(1)`1θ1+···+ρσ(n)`nθn)

Or,

ξ`(tρ) =

 ei(n−1)θ`n · · · ei(n−1)θ`n

eiθ`n · · · eiθ

1 · · · 1



ξρ(tρ) =

 ei`n.θn−1 · · · ei`nθ.ρn

ei`2θn−1 · · · 1
e`1θn−1 · · · 1


and so ξρ(t`) = ξ`(tρ).

Also, ξρ(t) =
∏
i<k(t1 − tk) =

∏
j<k(tj − tk) and hence

ξρ(t`) =
∏
j<k

(ei`jθ − ei`kθ) =
∏
j<k

((`j − `k)θ + higher order terms).

Hence
ξ`(tρ)
ξρ(tρ) =

∏
j<k((`j−`k)θ+···)∏

j<k((n−j−(n−k))θ+···) . Therefore limθ→0
ξ`(tρ)
ξρ(tρ) =

∏
j<k

(`j−`k)
(k−j) := d(r).

The branching law for U(n)

Let G = U(n). If we consider H = {g ∈ U(n) : g.en = en where en is the n-th elt of the
usual o.n. basis of Cn}, then H ' U(n− 1)

H =
∫ ( a 0

0 1

)
; a ∈ U(n−1)}. Thus we consider U(n−1) as a subgroup of U(n). By Weyl’s

character formula we know all the irreducible characters of U(n).

Now, if (π, V ) is an irreducible representation of G, then (π |H , V ) is a (f.d) representation
of the compact group U(n− 1), and hence is a direct sum of irreducible representations of H.
We ask: How does it decompose?

Note that if χπ is the character of π of G then χπ |H= miχσi , where π |H= ⊕miσiσi
irreducible representation of H. By Schur’s theory we know that σi is determined completely
by χσi . By Weyl’s character formula we know all the irreducible characters of G and those
of H. Also we know χi is determined completely by χσi . By Weyl’s character formula we
know all the irreducible characters of G and those of H. Also we know χ |T and χσi |T∩H
determine χ and chiσi (and hence π and σi completely). (Note that T ∩ H is the maximal
torus of H). So it is enough to write down the decomposition χ =

∑
miχσi on T ∩H. Note

that T ∩H = {t = t(θ) = t(θ1 · · · θn) : θn = 0} or t = (t1, · · · tn−1, 1. | ti |= 1∀t ∈ T ∩H.
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Now the denominator is given by

D(t1, · · · , tn−1, (t1 − 1)(t2 − 1).(tn−1 − 1) : 1

Recall that D(t) can be written as a determinant

 t1 · · · tn−1 1
t2 · · · 1 t1
t, tn−1 · · · t2 t1

 . So subtract

the last column of D(t) from each of the previous ones and factor the resulting (n− 1) order
determinant. (Recall D(t) = the difference product = πi<g(ti− tj). Then 1 follows trivially.
In fact, the proof is given above).

To divide the numerator by (t1 − 1).(tn−1 − 1). We subtract the 2nd column from the
Ist, 3rd from the 2nd, ... and n-th from (n − 1) -th. Then the last row is (0, · · · 0, 1). The
definition is then reduced to one of order n − 1. Now divide each elt. in the j-th row by
(tj − 1), using

t`1 − t`2/t−1 = t`1 − 1 + · · ·+ t`2.

Of course we assume χ = χ`, where ` = (`1 · · · `n)

`1 > `2 > · · · > `n, `i ∈ Z.

Therefore the resulting expression is, for t ∈ H ∩ T

χ`(t) =| t`1−1 + · · ·+ t`2 , t`2−1 + · · ·+ t`3 · · · | .

But this is the sum of all (n− 1)× (n− 1) determinants of the form | tr1 · · · trn−1
n |.

`1 ⊃ r1 ≥ `2 > r2 ≥ `3 > · · · > rn−1 ≥ `n.

Since ρ = ` − ρ is the highest weight of the representation with irreducible ch. χ`, fi =
`i − (n− i).
So if we subtract (n − j) from rj , then we get f ′ as the highest weight of χr, an irreducible
character of V (n− 1). Thus we have proved

Theorem: If f = (f1, · · · fn) is the highest weight of an irreducible representation of G,
then that representation when restricted to H becomes a direct sum of irreducible represen-
tations of H with highest weight f ′, where f and f ′ are related as follows: f1 ≥ f1

1 ≥ f2 ≥
· · · ≥ f ′n−1 ≥ fn′ .
Home Work

1). G a connected loc. cpt. gp. Γ a discrete subgroup of GΓ ⊆ center (G). If [G,G] is
dense in G.d if G | Γ is compact then G is compact.

2). G a compact s.s. connected Lie group with Lie algebra . If every representation of
is the differential of a representation of G, then G is simply connected.

3). Show that the two sheeted (or any non-trivial) covering group G̃ of G = SL(2,R)
does not have a faithful representation.
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(Hints: 1) There does exist such non-trivial covering groups of SL(2,R). 2)GC = SL(2,C)
is simply connected. 3). Remember Weyl’s theorem on the con. between representation of
groups and those of the Lie algebras).

4). Let χ be the character of an irreducible representation of a compact group G. Then

χ(a)χ(b) = dimχ(e)

∫
G
χ(xax−1b)dx(

∫
G
dx = 1).

Conversely any of its fn.ϕ satisfying ϕ(a)ϕ(b) =
∫
ϕ(xax−1bdx is, but for a scalar,an irre-

ducible character.

5). Any irreducible representation of a compact group on a Banach (or any ‘decent’ top
vector space) is finite dimensional.

Note: 1) Make an honest attempt to solve those on your own.
2) In case of inability to solve any, ask me to give you hints.
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