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Maximal Torus

Let G = U(n) = {g € GL(n,C), gg* = 1}, where g* = gt. G is the group of n x n
unitary matrices. It is compact: g = (u;;) € G iff Y uipuy; = 6;; where u* = (up;) = (W)
Hence g € Gl(n,C) liesin U(n) iff 3 w;puj, = d;5. Since in the above equation only continuous
functions are involved, G is a closed subset of C™. Also by setting i = j, we get >, uir Ui = 1
or 3.5 |ik|*=n. Hence U(n) is bounded. Thus G is a compact group.

The most basic fact about the structure of G is the following:

Theorem 1. Given u € G, there exists an x € G such that zuz~' = diag (€', -, er), for
0<6; <2r.

Notice first that 7' = {diag (e'?1,---,e¥"):0 < 0; <27} C G and that T ~ S' x --- x S,
an n-torus. How is Theorem 1 proved? Choose A = ¢ as a zero of the characteristic equation
det(AI —u) = 0. Thus there is a non-zero e such that ue = ce. We may assume that e = e;
is a unit vector. If W := ei, then W is invariant under u:

(uw, e1) = (w,u"er) = <w,u*161> = <w,5*161> =0.

Thus, u | is a unitary map. By induction, we have an O.N. basis of W, say {ei1,...e,}
consisting of eigenvectors, say, ue; = €je; for 2 < n.
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Note that the diagonal entries in t = zux™", are the eigenvalues of the given matrix u.

They are unique only up to a permutation i.e., by effecting a permutation o of the eigenvectors
(which we assume to be orthonormal) we shall get to = (t5(1),-- -, tomn)) = oxur~!. To see
this more explicitly: for o € Sy, the group of permutations, set oe; = €,(;). Then o extends to
a linear transformation on C"; in fact, o € U(n). (Why?) If we take y = ox, then yuy'(e;)

yuy L(e;)) = ozurlol(e;)
= olzuz~ (e;-1(3))]
= O 1()C1()

= Coml()%C ()

= 6071(2-)62'
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Thus yuy ' = diag (€,-1(1) - - - s Eo—1(n))-
Put this in a different way, we have shown that
G= U gTgt.
geG

T is known as a mazximal torus of G. Thus every element of G is conjugate to an element of
T.

Now given a u € T C G, when do we have zux™! = yuy~!, for 2,y € G?

1 1

Lruz ™y =u e (y lo)juy'z) t=ue y

zur t=yuy oy x € Za(u),

where Zg(u) is the centralizer of v in G. If we further assume u has distinct eigenvalues, then
y~lz € T. (Note that for u € T, T C Zg(u).)
If we set
T, = {teT:thas distinct eigenvalues }
= {tET:ti:t]’i’L’:j}.
then 7, is an open dense subset of 7. We set
Gr=JoTrg™".
geG

Any element of G, is said to be regular. G\ G, consists of singular elements. Note that G,
is open. (Why?)

Weyl Integral Formula

Consider now the map ¢ : G/T x T, — G, given by (,t) + xtx~!. The map 7 is well-
defined (as we have seen earlier). For any u € G, there exists precisely n! = |S,,| elements,
ti; 1 < 1 < n! such that zt;z=! = w. (All of them are related via S,-action as defined
earlier). We want to claim that for integration purpose, G, is a good enough subset of G.
ie., Gs = G\ G, is negligible for measure theoretic reasons.

If this can be done, then G, can be ‘parametrized’ by the product (G/T') x T, and we can
compute the [jacobian| of the map 1, call it w(z,t) so that the Haar measure on G can be

written as: /G Fg)dg = / (/(f@m—l)w(x,t)dt) dz,

We show that Gy is negligible by showing that the dimension of G, is n? — 3. Note that
dim G = n?. (See below.)

in an obvious notation.

The ‘best’ singular element in 7' can be written in the form (e,¢,e3,---€,) € # €; for
1 # j,3 < 1,57 <n. Then any element that commutes with a singular element of the above
form can be represented by

air Qa2

Q21 Q22 where [ ¢11 12 ceU(2)
a3 ’ Q21 (22

Qp



Thus the set C of all elements that commute with the given singular element has (n —2)+4 =
n+ 2 dimensions. Hence dim G/C = n% — (n+2) = n? —n —2. The set S, of the best singular
elements in 7" has dimension (n—1). Since ¥: G/C x S, — G is surjective on the best singular
elements in G, the set of such elements has dimension n? —n —2+ (n — 1) =n? — 3.

Now if we take any other singular element, say, of the form (e,e,6,e4,...,6,) or (61 =
€9,63 = €1,...,En), then the C corresponding to such element will have dimension > n+2 so
that G/C will have dimension < n? — (n+2) and the set of such elements in T has dimension
<n—2 < n—1 and hence, under 1, elements which are worse than the best singular element
will have dimension < n? — 3.

In any case, thus, dim G — G, < n?, and hence G, is a good set for integration.

Thus we have: G, is an open dense subset of G, with dim G \ G, < dim G and

Vv:G/T x T, — G, is a |S,| — fold covering.

Computation of the Jacobian of :

We want to identity the tangent space g of G at 1 € G. Let t — x(t) be a curve in G such
that x(0) = 1. Since x(¢)x(t)* = 1, we have

4
dt
+

(x(Ox(®)* lt=0 = 0

)
Le. ¥/ + X (X" li=o
or X'(0)"+¥(0) = o.

That is, x’(0) is a skew-hermitian matrix.

Thus g consists of all skew-hermitian matrices and dimg g = n?. t = Ty(T), the tangent
space of T" at 1, can be identified with the set of diagonal matrices in g, i.e., t = {(i61,- -, i0,) :
0; € R}. Also, if p = T1(G/T) is the tangent space to G/T at the identity coset then p is the
span of

{X:(x 22—z x):2€C},

where z is in the (i, k)-th place, i < k. Note that for t € T, and X as above in p, we have
tXt = (t;/tp) X.

We are now ready to compute the Jacobian of ¢: For h € t, we have

d d
g o texpsh) iy = - (atespsha™) |
= £(xt:v_1x exp shz ! |s—o
d
= xtx_lg(a: exp shz 1) |s=o
= atzl.
For X € p, we can compute, for X = X, a basic element of p,
d d 1
d—w(ﬂsexp sX,t) |s=0 = d—(x exp sXtexp(—sX).x7 ") |s=0
s s



= :L'Xm_l — xtx:):_l
= att ' Xtz — st aya!
xtw_la:t_lxtx_l - xtx_lxxa:_l

= xtwil(xtflx(xtfl)il —axz ).

At x = e, we have

d%q,z)(exp sX,t) =t(t 71Xt — X) =t ((tp/t: — 1)X).

But note that CXj; is a complex 1-dimensional space and hence on this 1-dimensional C
space, when we consider it as a 2-dimensional real vector space, the linear map dv is of the

form
<(tk/t(i)) -1 (tk/t?)—1>

B <tk/tb_ " i 1))

te—ti
- tk=ti |
0 75

Remark: Let a € C*. The Jacobian of the map z — az on C is |a/?.

le—t;
t; 0

0 th—t;

Thus dip(;7,1) on the space Ti7(G |7)PT1(T) can be written as

and hence o
ljacobian| = AA = w(r,t) where A = H(ti — tk).
i<k

At other points (z7,t) the above calculation shows that w(z,t) = w(1,t), so that the
|jacobian|-density needed for the change of variable formula is given as w(z,t) = AA.

Thus we have proved the Weyl integral formula:

_ L
1Sul Jayr

[ tto)ds < /T Fota Y AR() dt) da. (1)

In particular if f is a class-function i.e., f(zgz~!) = f(g) for all z,g € G, then we have

1 _
. f(g)dg = o0 / FOA)A(t)dL. (2)

(Here dt is the normalized Haar measure on T, dz then G-invariant measure on G/T').



Weyl Character Formula

We can use the Weyl integral formula for the class-function to write down all the irreducible
characters of U(n).

Let x be an irreducible character of GG, i.e. the character of an irreducible representation of
G. We make a series of observations from which we deduce the explicit form of the characters:

1

1) x is a class-function and G = UgT'g~" imply that it is enough to know y |7.

2) Sp acts on T as we have seen earlier, and t = (t,---,t,) and (t,(1),..t5(n)) = to ave
conjugate and hence x(t) = x(ts)-

3) Let (m, H) be the irreducible representation such that x. = x. When we restrict
m to T, then (7 |p,H) is a unitary representation of the compact, abelian group 7' and
hence H splits as a direct sum @ H; such that (7 |p, H) = &(7 |1, H;), and (7 |p, H;) is an
irreducible 1-dimensional representation of 7' = S' x --- x S'. We know all the irreducible
1-dimensional representations of T. They are of the form (¢, ... ¢e¥n) s eimbittirntn
where (r1,...,7,) € Z". We write this, as x,(t) = ", for r = (r1,---,r,) € Z". 0 =
(01,---.,0,) € ([0,2m))", 70 = 3 ,r;0;. Choosing as a basis for H, a non zero vector from each
X ()
Xs (1)

one of the H;, we can write 7(t) = for r,s,--- € Z" so that

Xx(t) = x(t)
Xr(t) + xs(t) + - -
_ ei'r.@ + 61’5.9 4.

In particular, y |7 is a finite Fourier series. Also each representation x, in 7 |7 can have
multiplicity C' > 1. Hence collecting them together, we may write x |7 (t) = Ce?™? 4 C"e?? +
., C,clezt,

4) Let P = {r € Z", where x, occurs in x |7} we call P the set of weights of 7. We
have the lexicographic ordering on P : 7 = (ry,...,r,) > s = (s1,...,8y) if the first non-zero
difference r; — s; > 0. Since the lexicographic order is a total order and since P is a finite
set, we have a highest element, say, r € P :r > s, for any s € P\ {r} (i.e.,r > s, # s). The
coefficient C of x, in x | is a positive integer.

We observe that x |7 (t) = Cx,(t) + C'xs(t) + - -+ and x |7 (0.t) = x |7 (¢) and

Xs(0.t) = el ) — 5 1 (1),
where
o s)=0"1(s1, -, 50) = (8o-1(1)s -+ So—1(n) )

for any s € Z". We deduce that whenever s € P, we also have 0~ 's € P and that the
coefficients of ¥s and 9,1, in x |7 are the same for any o € S,,.



In other words S,-acts on P as above and
X\T—c(z@ e (z@ o
O'ESn O'ESn

This is referred to as the S,- symmetry of 9 |r.

5). By Schur’s orthogonality relations, we know that x is an irreducible character iff
fG xX = 1. Since x is a class-function, we have, by Weyl integral formula.

_ ! o
/Gx(g)x(g)dg— ’Sn’/TX(t)A(t)x(t)A(t)dt.

This suggests that we consider the function. £(t) = x(¢t)A(t). We first observe that A is an
Sp-antisymmetric function: A(o.t) =sgn (o). A(t), for o € S,,. For, if o0 = (¢,i + 1),

Alot) = (t1 —ta) - (tis1 — i) - = —A(L).

This is true for all transpositions and hence for all o € S,.

Since y was already observed to be S,,-symmetric their product £ is S,,- anti-symmetric.
Also note that, in &, ‘the highest term’ is of the form C(e(rtn=101er2+(n=2)02) ..y and the
coefficient of this highest term is the same positive integer C' which occurs in x = C'x, + - - -.
Also note that if any s appears in € with coefficient €’ that is, € = --- 4+ C"e"? + ... then
o - s also appears in £ with coefficient sgn (0).C.

6. What are the simplest S,,-anti-symmetric functions on 7" one can think of ?

Given ¢ = ({1, --£,) € Z™. We form the elementary S,-anti-symmetric sum

&(0) = sgn (o)™, 0.l = (o) bo(n))-

O'GSn

Note that unless ¢; are mutually distinct, £, = 0 and that we can write
§(0) = det(ty) = (1), t= (", ) = (t1,-+ tn).
In particular, A = §,_1,...1,0 an elementary anti-symmetric sum.
7). Now in £ = xA, if we denote the highest weight ((r; +n — j)) = (¢;) = ¢, then
E=C& + -+, where C,--- € Z, and C > 0.

That is, (7% occurs in ¢ with coefficient sgn (¢)C for any o € S,,. Also 0./ < ¢, for any
o # 1,0 €S,. So, in particular, for o0 = (i,i+ 1),00 <l = l; > liy1 = {4 > lo--- > {,. We
can now repeat the above argument of anti-symmetry to £ — &, and so that we can write

E=Cty+C¥p +---, with C,C*, e ZT,C >0

and £ > 01 > ...



8). For any m,{ € Z",t # m, Xm and xy are distinct irreducible characters of 1" and so
fT XmXedt = 0. Hence fT &€, = 01mn!. Since x is an irreducible character,

1= / x(@)%(9)dg

T

1

= — [ xSRIt
n! Jr

= 7’]L-!\/I‘(C§Z+01X£1+'”) (CE + CYEp+ ) dt

= (C?*+0%+.- ) =1

Therefore, C =1,C' = ... = 0. Hence £ = & or
(a.0)()
\(t) = =50 (Z)e , fort €T,

Thus x is explicitly written for ¢ € T).. Since x |p is, anyhow, a trigonometric polynomial
(see 3) and x(t), for t € T is also a trigonometric polynomial, y extends uniquely to all of
T. The leading term of the finite Fourier series x |r is ¢{*---t/», r; = {; — (n — j), and so
r1 > ro > ---. Recall that r is called the highest weight of the representation. Since &y, when
£ and r are related as above, uniquely determines &, it follows that r uniquely determines the

representation.

9). Given r = (ry---ry) € Z" with 1y > 79 > --- > 1. We can form x, = ¥¢. Is x,

an irreducible character? Yes, it is always, since ¥, is a continuous class-function on G and
[ x+¢ps =0 for any s € Z", with s > --- > s,, and r # s.

10). The dimension d(r) of the representation whose highest weight is r and whose char-
acter is given by x, = £ |a, is given by x,(e). But the expression we got for x, is valid only
for regular elements and 1 ¢ G,.. But observe that (1) = 0 and so we have an indeterminate
form of the type 0/0. So we can apply L’'Hopital type argument.

Weyl’s dimension formula

Recall that if x is the character of a finite dimensional representation then x(e) is the
dimension of that representation. Now the Weyl’s character formula for the irreducible rep-
resentation (with » = (ry,---,ry,) as highest weight) of U(n) is given by

N Z sgn (J) . .ei(o.é).t
X( ) - ngn (O.)ei(a‘p).t ’
where v € T, is a regular element (that is, with distinct eigenvalues), {1 =r; + (n — 1),0s =
ro+(n—2)-+-ly_1=rp_1+1,4, =1ry,o runs through S,. Since e € T}., we cannot evaluate
x(e) by substituting ¢ = e in the above formula. Notice that both the numerator and the
denominator become zero at e. We can hence use the L’Hopital’s rule.

Observe that, in our earlier notation, £(f1,---,£,) = 3. sgn (o) Ce@ 01t +Loem)bn)

also be written as

, can

; 0,

R ¢
. = (ti] )
¢ ln

th .ot



i(n—1)0 .

If we set t, = (e -,€ 1) then we have

: . ff(tp)
=1 t,) =1 ]
e G%X( p) el—lg%fp(tp)
Now
&lt,) = ) sgn ()i la) (=101t Lo m)fn)
fp(tg) = Z sgn (O-)ei(pd(l)fl91+~--+pg(n)fn9n)
Or,
ein=100,  i(n—1)0ty
&lty) = i0tn . o0
1 - 1
eifnﬂn—l . el[n&pn
fp(tp) = il20n—1 o 1
eelanq . 1

and so §,(tr) = &(ty).
Also, &p(t) = [T;cr(t1 — tk) = [[;<x(t; — tx) and hence

E(ty) = H(ewje — ety = H((Ej — l,)0 + higher order terms).
i<k i<k

&oltp) _ _ Tljcn((6i—Ek)0+) . Coltp) _ (6i—=t) ._
Hence £ = I, oul(n—s-tm—myar— Therefore imoo gy = 11,0 Gy = d(r).

The branching law for U(n)

Let G = U(n). If we consider H = {g € U(n) : g.e,, = e, where e, is the n-th elt of the
usual o.n. basis of C"}, then H ~ U(n — 1)
H=][ <g (1)> ;a € U(n—1)}. Thus we consider U(n—1) as a subgroup of U(n). By Weyl’s
character formula we know all the irreducible characters of U(n).

Now, if (7, V') is an irreducible representation of G, then (7 g, V) is a (f.d) representation
of the compact group U(n — 1), and hence is a direct sum of irreducible representations of H.
We ask: How does it decompose?

Note that if x, is the character of 7 of G then xr |g= mixs,, where © |g= ®m,o;0;
irreducible representation of H. By Schur’s theory we know that o; is determined completely
by Xs;- By Weyl’s character formula we know all the irreducible characters of G and those
of H. Also we know x; is determined completely by x,,. By Weyl’s character formula we
know all the irreducible characters of G and those of H. Also we know x |r and x4, |rnm
determine x and chi,, (and hence 7 and o; completely). (Note that 7'N H is the maximal
torus of H). So it is enough to write down the decomposition x = > m;x,, on T'N H. Note
that TN H = {t:t(e) :t(el---ﬁn) 10, :0} ort= (tl,--'tn_l,l. ’ t; |: IVvte T NH.



Now the denominator is given by

D(tl,--',tnfl,(tl—1)(t2—1).(7§n,1—1) : 1
ty o tpq 1
Recall that D(t) can be written as a determinant | to --- 1 t1 . So subtract
t, th—1 -+ t2 01

the last column of D(t) from each of the previous ones and factor the resulting (n — 1) order
determinant. (Recall D(t) = the difference product = mj<4(t; —t;). Then 1  follows trivially.
In fact, the proof is given above).

To divide the numerator by (t; — 1).(t,—1 — 1). We subtract the 2nd column from the
Ist, 3rd from the 2nd, ... and n-th from (n — 1) -th. Then the last row is (0,---0,1). The
definition is then reduced to one of order n — 1. Now divide each elt. in the j-th row by
(tj — 1), using

th—t2 ) =t 14 thy.

Of course we assume x = xy¢, where £ = ({1---£y)
by >0y > - >l b € L.
Therefore the resulting expression is, for t € H N'T
xe(t) =ttt el g
But this is the sum of all (n — 1) x (n — 1) determinants of the form | ¢"t ---¢"»=1 |,

6137'1Z£2>T22£3>"‘>7’n—126n-

Since p = £ — p is the highest weight of the representation with irreducible ch. xy, fi =
gi — (n — ;)
So if we subtract (n — j) from r;, then we get f’ as the highest weight of x,, an irreducible
character of V(n — 1). Thus we have proved

Theorem: If f = (f1,--- fn) is the highest weight of an irreducible representation of G,
then that representation when restricted to H becomes a direct sum of irreducible represen-
tations of H with highest weight f’, where f and f’ are related as follows: f; > fi>fo>
2 fp1 2 fo
Home Work

1). G a connected loc. cpt. gp. I' a discrete subgroup of GI' C center (G). If [G,G] is
dense in G.d if G | T is compact then G is compact.

2). G a compact s.s. connected Lie group with Lie algebra . If every representation of
is the differential of a representation of GG, then G is simply connected.

3). Show that the two sheeted (or any non-trivial) covering group G of G = SL(2,R)
does not have a faithful representation.



(Hints: 1) There does exist such non-trivial covering groups of SL(2,R). 2) G¢c = SL(2,C)
is simply connected. 3). Remember Weyl’s theorem on the con. between representation of
groups and those of the Lie algebras).

4). Let x be the character of an irreducible representation of a compact group G. Then
x(a)x(b) = dimx(e)/ X(waxlb)dm(/ do =1).
G G

Conversely any of its fn.p satisfying ¢(a)¢(b) = [ p(zaz~'bdz is, but for a scalar,an irre-
ducible character.

5). Any irreducible representation of a compact group on a Banach (or any ‘decent’ top
vector space) is finite dimensional.

Note: 1) Make an honest attempt to solve those on your own.
2) In case of inability to solve any, ask me to give you hints.
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