Weyl's Integral and Character Formulas for $U(n)$

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Maximal Torus

Let $G = U(n) = \{g \in GL(n, \mathbb{C}), g g^* = 1\}$, where $g^* = \overline{g^t}$. G is the group of $n \times n$ unitary matrices. It is compact: $g = (u_{ij}) \in G$ iff $\sum u_{ik} u_{kj}^* = \delta_{ij}$ where $u^* = (u_{kj}^*) = (\overline{u}_{jk})$. Hence $g \in Gl(n,\mathbb{C})$ lies in $U(n)$ iff $\sum u_{ik}\overline{u}_{jk} = \delta_{ij}$. Since in the above equation only continuous functions are involved, G is a closed subset of \mathbb{C}^{n^2} . Also by setting $i = j$, we get $\sum_k u_{ik} \overline{u}_{ik} = 1$ or $\sum_i \sum_k |ik|^2 = n$. Hence $U(n)$ is bounded. Thus G is a compact group.

The most basic fact about the structure of G is the following:

Theorem 1. Given $u \in G$, there exists an $x \in G$ such that $xux^{-1} = \text{diag}(e^{i\theta_1}, \dots, e^{i\theta_n})$, for $0 \leq \theta_i \leq 2\pi$.

Notice first that $T = \{ \text{diag}(e^{1\theta_1}, \dots, e^{i\theta_n}) : 0 \le \theta_j \le 2\pi \} \subseteq G$ and that $T \approx S^1 \times \dots \times S^1$, an *n*-torus. How is Theorem 1 proved? Choose $\lambda = \varepsilon$ as a zero of the characteristic equation $\det(\lambda I - u) = 0$. Thus there is a non-zero e such that $u e = \varepsilon e$. We may assume that $e = e_1$ is a unit vector. If $W := e_1^{\perp}$, then W is invariant under u:

$$
\langle uw, e_1 \rangle = \langle w, u^* e_1 \rangle = \langle w, u^{-1} e_1 \rangle = \langle w, \varepsilon^{-1} e_1 \rangle = 0.
$$

Thus, u |w is a unitary map. By induction, we have an O.N. basis of W, say $\{e_1, \ldots e_n\}$ consisting of eigenvectors, say, $ue_j = \varepsilon_j e_j$ for $2 \leq n$.

Note that the diagonal entries in $t = xux^{-1}$, are the eigenvalues of the given matrix u. They are unique only up to a permutation i.e., by effecting a permutation σ of the eigenvectors (which we assume to be orthonormal) we shall get $t_{\sigma} = (t_{\sigma(1)}, \ldots, t_{\sigma(n)}) = \sigma x u x^{-1}$. To see this more explicitly: for $\sigma \in S_n$, the group of permutations, set $\sigma e_i = e_{\sigma(i)}$. Then σ extends to a linear transformation on \mathbb{C}^n ; in fact, $\sigma \in U(n)$. (Why?) If we take $y = \sigma x$, then $yuy^{-1}(e_i)$

$$
yuy^{-1}(e_i) = \sigma xux^{-1}\sigma^{-1}(e_i)
$$

= $\sigma[xux^{-1}(e_{\sigma^{-1}(i)})]$
= $\sigma\varepsilon_{\sigma^{-1}(i)}e_{\sigma^{-1}(i)}$
= $\varepsilon_{\sigma^{-1}(i)}\sigma e_{\sigma^{-1}(i)}$
= $\varepsilon_{\sigma^{-1}(i)}e_i$

Thus $yuy^{-1} = \text{diag}(\varepsilon_{\sigma^{-1}(1)}, \ldots, \varepsilon_{\sigma^{-1}(n)}).$

Put this in a different way, we have shown that

$$
G=\bigcup_{g\in G}gTg^{-1}.
$$

T is known as a maximal torus of G. Thus every element of G is conjugate to an element of $T₁$

Now given a $u \in T \subseteq G$, when do we have $xux^{-1} = yuy^{-1}$, for $x, y \in G$?

$$
xux^{-1} = yuy^{-1} \Leftrightarrow y^{-1}xux^{-1}y = u \Leftrightarrow (y^{-1}x)u(y^{-1}x)^{-1} = u \Leftrightarrow y^{-1}x \in Z_G(u),
$$

where $Z_G(u)$ is the centralizer of u in G. If we further assume u has distinct eigenvalues, then $y^{-1}x \in T$. (Note that for $u \in T$, $T \subseteq Z_G(u)$.)

If we set

$$
T_r = \{t \in T : t \text{ has distinct eigenvalues }\}
$$

=
$$
\{t \in T : t_i = t_j \Rightarrow i = j\}.
$$

then T_r is an open dense subset of T. We set

$$
G_r = \bigcup_{g \in G} gT_r g^{-1}.
$$

Any element of G_r is said to be regular. $G \setminus G_r$ consists of singular elements. Note that G_r is open. (Why?)

Weyl Integral Formula

Consider now the map $\psi: G/T \times T_r \to G_r$ given by $(x,t) \mapsto xtx^{-1}$. The map ψ is welldefined (as we have seen earlier). For any $u \in G_r$, there exists precisely $n! = |S_n|$ elements, $t_i, 1 \leq 1 \leq n!$ such that $xt_i x^{-1} = u$. (All of them are related via S_n -action as defined earlier). We want to claim that for integration purpose, G_r is a good enough subset of G . i.e., $G_s = G \setminus G_r$ is negligible for measure theoretic reasons.

If this can be done, then G_r can be 'parametrized' by the product $(G/T) \times T_r$ and we can compute the |jacobian| of the map ψ , call it $w(x, t)$ so that the Haar measure on G can be written as:

$$
\int_{G_r} f(g) dg = \int \left(\int (f(xtx^{-1})w(x,t)dt) \right) dx,
$$

in an obvious notation.

We show that G_s is negligible by showing that the dimension of G_s is $n^2 - 3$. Note that dim $G = n^2$. (See below.)

The 'best' singular element in T can be written in the form $(\varepsilon, \varepsilon, \varepsilon_3, \cdots \varepsilon_n)$ $\varepsilon_i \neq \varepsilon_j$ for $i \neq j$, $3 \leq 1, j \leq n$. Then any element that commutes with a singular element of the above form can be represented by

$$
\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ & & \alpha_3 \\ & & & \alpha_n \end{pmatrix}, \text{ where } \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \in U(2)
$$

Thus the set C of all elements that commute with the given singular element has $(n-2)+4=$ $n+2$ dimensions. Hence dim $G/C = n^2 - (n+2) = n^2 - n - 2$. The set S_b of the best singular elements in T has dimension $(n-1)$. Since $\psi: G/C \times S_b \to G$ is surjective on the best singular elements in G, the set of such elements has dimension $n^2 - n - 2 + (n - 1) = n^2 - 3$.

Now if we take any other singular element, say, of the form $(\varepsilon, \varepsilon, \varepsilon, \varepsilon_4, \dots, \varepsilon_n)$ or $(\varepsilon_1 =$ $\varepsilon_2, \varepsilon_3 = \varepsilon_1, \ldots, \varepsilon_n$, then the C corresponding to such element will have dimension $> n+2$ so that G/C will have dimension $\langle n^2-(n+2)$ and the set of such elements in T has dimension $\leq n-2 < n-1$ and hence, under ψ , elements which are worse than the best singular element will have dimension $\langle n^2 - 3 \rangle$.

In any case, thus, dim $G - G_r < n^2$, and hence G_r is a good set for integration.

Thus we have: G_r is an open dense subset of G, with dim $G \setminus G_r <$ dim G and

 $\psi: G/T \times T_r \to G_r$ is a $|S_n|$ – fold covering.

Computation of the Jacobian of ψ :

We want to identity the tangent space g of G at $1 \in G$. Let $t \to \chi(t)$ be a curve in G such that $\chi(0) = 1$. Since $\chi(t)\chi(t)^* = 1$, we have

$$
\frac{d}{dt}(\chi(t)\chi(t)^*|_{t=0} = 0
$$

i.e. $\chi'(t)^* + \chi'(t)\chi(t)^*|_{t=0} = 0$
or $\chi'(0)^* + \chi'(0) = 0$.

That is, $\chi'(0)$ is a skew-hermitian matrix.

Thus **g** consists of all skew-hermitian matrices and $\dim_{\mathbb{R}} \mathfrak{g} = n^2$. $\mathfrak{t} = T_1(T)$, the tangent space of T at 1, can be identified with the set of diagonal matrices in \mathfrak{g} , i.e., $\mathfrak{t} = \{ (i\theta_1, \dots, i\theta_n) :$ $\theta_i \in \mathbb{R}$. Also, if $\mathfrak{p} = T_1(G/T)$ is the tangent space to G/T at the identity coset then p is the span of

$$
\{X: (* \ z-\overline{z} \ *): z \in \mathbb{C}\},\
$$

where z is in the (i, k) -th place, $i < k$. Note that for $t \in T$, and X as above in p, we have $tXt^{-1} = (t_i/t_k)X$.

We are now ready to compute the Jacobian of ψ : For $h \in \mathfrak{t}$, we have

$$
\frac{d}{ds}\psi(x, t \exp sh) \mid_{s=0} = \frac{d}{ds}(xt \exp shx^{-1}) \mid_{s=0}
$$

$$
= \frac{d}{ds}(xt^{-1}x \exp shx^{-1} \mid_{s=0})
$$

$$
= xtx^{-1}\frac{d}{ds}(x \exp shx^{-1}) \mid_{s=0}
$$

$$
= xtx^{-1}.
$$

For $X \in \mathfrak{p}$, we can compute, for $X = X_{ik}$, a basic element of \mathfrak{p} ,

$$
\frac{d}{ds}\psi(x\exp sX,t)\mid_{s=0} = \frac{d}{ds}(x\exp sXt\exp(-sX).x^{-1})\mid_{s=0}
$$

$$
= x\chi tx^{-1} - xt\chi x^{-1}
$$

\n
$$
= xtt^{-1}Xtx^{-1} - xtx^{-1}x\chi x^{-1}
$$

\n
$$
= xtx^{-1}xt^{-1}\chi tx^{-1} - xtx^{-1}x\chi x^{-1}
$$

\n
$$
= xtx^{-1}(xt^{-1}\chi (xt^{-1})^{-1} - x\chi x^{-1}).
$$

At $x = e$, we have

$$
\frac{d}{ds}\psi(\exp sX, t) = t(t^{-1}Xt - X) = t((t_k/t_i - 1)X).
$$

But note that $\mathbb{C}X_{ik}$ is a complex 1-dimensional space and hence on this 1-dimensional $\mathbb C$ space, when we consider it as a 2-dimensional real vector space, the linear map $d\psi$ is of the form

$$
\begin{pmatrix}\n(t_k/t_i) - 1 & 0 \\
0 & \overline{(t_k/t_i) - 1}\n\end{pmatrix}\n= \begin{pmatrix}\nt_{k/t_i} - 1 & 0 \\
0 & (ti/t_k - 1)\n\end{pmatrix}\n= \begin{pmatrix}\nt_{k-t_i} & 0 \\
0 & \overline{t_k - t_i} \\
0 & \overline{t_k}\n\end{pmatrix}.
$$

Remark: Let $\alpha \in \mathbb{C}^*$. The Jacobian of the map $z \mapsto \alpha z$ on \mathbb{C} is $|\alpha|^2$.

Thus
$$
d\psi_{(1T,1)}
$$
 on the space $T_{1T}(G|_T) \oplus T_1(T)$ can be written as\n
$$
\begin{pmatrix}\n\frac{t_k - t_i}{t_i} & 0 & \frac{t_k - t_i}{\bar{t}_k} \\
0 & \frac{t_k - t_i}{\bar{t}_k} & \ddots & \frac{1}{1}\n\end{pmatrix}
$$

and hence

$$
|jacobian| = \Delta \overline{\Delta} = \omega(r, t) \text{ where } \Delta = \prod_{i < k} (t_i - t_k).
$$

At other points (xT, t) the above calculation shows that $\omega(x, t) = \omega(1, t)$, so that the |jacobian|-density needed for the change of variable formula is given as $\omega(x, t) = \Delta \overline{\Delta}$.

Thus we have proved the Weyl integral formula:

$$
\int_{G_r} f(g) dg = \frac{1}{|S_n|} \int_{G/T} \left(\int_T f(xtx^{-1}) \Delta \overline{\Delta}(t) dt \right) dx.
$$
\n(1)

In particular if f is a class-function i.e., $f(xgx^{-1}) = f(g)$ for all $x, g \in G$, then we have

$$
\int_{G_r} f(g) dg = \frac{1}{|S_n|} \int f(t) \Delta(t) \overline{\Delta}(t) dt.
$$
\n(2)

(Here dt is the normalized Haar measure on T, dx then G-invariant measure on G/T).

Weyl Character Formula

We can use the Weyl integral formula for the class-function to write down all the irreducible characters of $U(n)$.

Let χ be an irreducible character of G, i.e. the character of an irreducible representation of G. We make a series of observations from which we deduce the explicit form of the characters:

1) χ is a class-function and $G = \bigcup gTg^{-1}$ imply that it is enough to know $\chi |_{T}$.

2) S_n acts on T as we have seen earlier, and $t = (t, \dots, t_n)$ and $(t_{\sigma(1)}, t_{\sigma(n)}) = t_{\sigma}$ are conjugate and hence $\chi(t) = \chi(t_{\sigma}).$

3) Let (π, H) be the irreducible representation such that $\chi_{\pi} = \chi$. When we restrict π to T, then $(\pi |_{T}, H)$ is a unitary representation of the compact, abelian group T and hence H splits as a direct sum $\oplus H_i$ such that $(\pi |_T, H) = \oplus (\pi |_T, H_i)$, and $(\pi |_T, H_i)$ is an irreducible 1-dimensional representation of $T = S^1 \times \cdots \times S^1$. We know all the irreducible 1-dimensional representations of T. They are of the form $(e^{i\theta_1}, \dots, e^{i\theta_n}) \mapsto e^{i r_1 \theta_1 + \dots + i r_n \theta_n}$, where $(r_1,\ldots,r_n) \in \mathbb{Z}^n$. We write this, as $\chi_r(t) = e^{ir\theta}$, for $r = (r_1,\cdots,r_n) \in \mathbb{Z}^n$. $\theta =$ $(\theta_1,\dots,\theta_n)\in([0,2\pi))^n, r\theta=\sum_jr_j\theta_j.$ Choosing as a basis for H, a non zero vector from each

one of the
$$
H_i
$$
, we can write $\pi(t) = \begin{pmatrix} \chi_r(t) & & & \\ & \chi_s(t) & & \\ & & \ddots & \\ & & & \chi \end{pmatrix}$ for $r, s, \dots \in \mathbb{Z}^n$ so that

$$
\chi_{\pi}(t) = \chi(t)
$$

= $\chi_r(t) + \chi_s(t) + \cdots$
= $e^{ir.\theta} + e^{is.\theta} + \cdots$

In particular, $\chi |_{T}$ is a finite Fourier series. Also each representation χ_{r} in $\pi |_{T}$ can have multiplicity $C \geq 1$. Hence collecting them together, we may write $\chi |_{T}(t) = Ce^{ir\theta} + C'e^{is\theta} + C'e^{is\theta}$ $\cdots, C, C^1 \in \mathbb{Z}^+.$

4) Let $P = \{r \in \mathbb{Z}^n, \text{ where } \chi_r \text{ occurs in } \chi |_T\}$ we call P the set of weights of π . We have the lexicographic ordering on $P : r = (r_1, \ldots, r_n) \geq s = (s_1, \ldots, s_n)$ if the first non-zero difference $r_j - s_j \geq 0$. Since the lexicographic order is a total order and since P is a finite set, we have a highest element, say, $r \in P : r > s$, for any $s \in P \setminus \{r\}$ (i.e., $r \geq s$, $r \neq s$). The coefficient C of χ_r in $\chi |_T$ is a *positive* integer.

We observe that $\chi |_{T}(t) = C\chi_{r}(t) + C'\chi_{s}(t) + \cdots$ and $\chi |_{T}(\sigma,t) = \chi |_{T}(t)$ and

$$
\chi_s(\sigma.t) = e^{(is_1t_{\sigma(1)}+\cdots)} = \chi_{\sigma^{-1}(s)}(t),
$$

where

$$
\sigma^{-1}(s) = \sigma^{-1}(s_1, \cdots, s_n) = (s_{\sigma^{-1}(1)}, \ldots, s_{\sigma^{-1}(n)}),
$$

for any $s \in \mathbb{Z}^n$. We deduce that whenever $s \in P$, we also have $\sigma^{-1}s \in P$ and that the coefficients of ψ_s and $\psi_{\sigma^{-1}s}$ in $\chi |_{T}$ are the same for any $\sigma \in S_n$.

In other words S_n -acts on P as above and

$$
\chi |_{T} = C \left(\sum_{\sigma \in S_n} \chi_{\sigma,r} \right) + C' \left(\sum_{\sigma \in S_n} \psi_{\sigma,s} \right) + \cdots
$$

This is referred to as the S_n - symmetry of $\psi|_T$.

5). By Schur's orthogonality relations, we know that χ is an irreducible character iff $\int_G \chi \overline{\chi} = 1$. Since χ is a class-function, we have, by Weyl integral formula.

$$
\int_G \chi(g)\overline{\chi}(g)dg = \frac{1}{|S_n|}\int_T \chi(t)\Delta(t)\overline{\chi}(t)\overline{\Delta}(t)dt.
$$

This suggests that we consider the function. $\xi(t) = \chi(t)\Delta(t)$. We first observe that Δ is an S_n-antisymmetric function: $\Delta(\sigma,t) = \text{sgn}(\sigma)$. $\Delta(t)$, for $\sigma \in S_n$. For, if $\sigma = (i, i + 1)$,

$$
\Delta(\sigma.t) = (t_1 - t_2) \cdots (t_{i+1} - t_i) \cdots = -\Delta(t).
$$

This is true for all transpositions and hence for all $\sigma \in S_n$.

Since χ was already observed to be S_n -symmetric their product ξ is S_n - anti-symmetric. Also note that, in ξ , 'the highest term' is of the form $C(e^{i(r_1+n-1)\theta_1}e^{r_2+(n-2)\theta_2)}\cdots$ and the coefficient of this highest term is the same positive integer C which occurs in $\chi = C\chi_r + \cdots$. Also note that if any s appears in ξ with coefficient C', that is, $\xi = \cdots + C'e^{is\theta} + \cdots$, then $\sigma \cdot s$ also appears in ξ with coefficient sgn (σ) .C.

6. What are the simplest S_n -anti-symmetric functions on T one can think of ?

Given $\ell = (\ell_1, \dots \ell_n) \in \mathbb{Z}^n$. We form the elementary S_n -anti-symmetric sum

$$
\xi_{\ell}(\theta) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) e^{\sigma \cdot \ell \cdot \theta}, \quad \sigma \cdot \ell = (\ell_{\sigma(1), \dots, \ell_{\sigma(n)}}).
$$

Note that unless ℓ_i are mutually distinct, $\xi_\ell = 0$ and that we can write

$$
\xi_{\ell}(\theta) = \det(t_i^{\ell_j}) = (t_i^{\ell_j}), \quad t = (e^{i\theta_1}, \cdots, e^{i\theta_n}) = (t_1, \cdots, t_n).
$$

In particular, $\Delta = \xi_{n-1,\dots,1,0}$ an elementary anti-symmetric sum.

7). Now in $\xi = \chi \Delta$, if we denote the highest weight $((r_j + n - j)) = (\ell_j) = \ell$, then

$$
\xi = C\xi_{\ell} + \cdots, \text{ where } C, \dots \in \mathbb{Z}, \text{ and } C > 0.
$$

That is, $e^{i(\sigma,\ell)\theta}$ occurs in ξ with coefficient sgn $(\sigma)C$ for any $\sigma \in S_n$. Also $\sigma,\ell \leq \ell$, for any $\sigma \neq 1, \sigma \in S_n$. So, in particular, for $\sigma = (i, i + 1), \sigma.\ell < \ell \Rightarrow \ell_i > \ell_{i+1} \Rightarrow \ell_1 > \ell_2 \cdots > \ell_n$. We can now repeat the above argument of anti-symmetry to $\xi - \xi_{\ell}$ and so that we can write

$$
\xi = C\psi_{\ell} + C^1\xi_{\ell^1} + \cdots
$$
, with $C, C^1, \in \mathbb{Z}^+, C > 0$

and $\ell > \ell^1 > \cdots$.

8). For any $m, \ell \in \mathbb{Z}^n, \ell \neq m, \chi_m$ and χ_{ℓ} are distinct irreducible characters of T and so $\int_T \chi_m \chi_\ell dt = 0$. Hence $\int_T \xi_\ell \overline{\xi}_m = \delta_{l,m} n!$. Since χ is an irreducible character,

$$
1 = \int_{G_r} \chi(g)\overline{\chi}(g)dg
$$

\n
$$
= \frac{1}{n!} \int_T \chi(t)\delta(t)\overline{\chi}(t)\overline{\delta}(t)dt
$$

\n
$$
= \frac{1}{n!} \int_T (C\xi_{\ell} + C^1 \chi_{\ell^1} + \cdots) (C\overline{\xi}_{\ell} + C^1 \overline{\xi}_{\ell} + \cdots) dt
$$

\n
$$
= (C^2 + C'^2 + \cdots) = 1.
$$

Therefore, $C = 1, C^1 = \cdots = 0$. Hence $\xi = \xi_{\ell}$ or

$$
\chi(t) = \frac{\sum \operatorname{sgn}(\sigma)e^{(\sigma,\ell)(t)}}{\Delta}, \text{ for } t \in T_r.
$$

Thus χ is explicitly written for $t \in T_r$. Since $\chi |_T$ is, anyhow, a trigonometric polynomial (see 3) and $\chi(t)$, for $t \in T^i$ is also a trigonometric polynomial, χ extends uniquely to all of T. The leading term of the finite Fourier series $\chi |_{T}$ is $t_1^{r_1} \cdots t_n^{r_n}$, $r_j = \ell_j - (n - j)$, and so $r_1 \geq r_2 \geq \cdots$. Recall that r is called the highest weight of the representation. Since ξ_{ℓ} , when ℓ and r are related as above, uniquely determines ξ , it follows that r uniquely determines the representation.

9). Given $r = (r_1 \cdots r_n) \in \mathbb{Z}^n$ with $r_1 \geq r_2 \geq \cdots \geq r_n$. We can form $\chi_r = \frac{\chi_\ell}{\Delta}$. Is χ_r an irreducible character? Yes, it is always, since χ_r is a continuous class-function on G and $\int \chi_r \overline{\psi}_s = 0$ for any $s \in \mathbb{Z}^n$, with $s_1 \geq \cdots \geq s_n$ and $r \neq s$.

10). The dimension $d(r)$ of the representation whose highest weight is r and whose character is given by $\chi_r = \xi \mid_{\Delta}$, is given by $\chi_r(e)$. But the expression we got for χ_r is valid only for regular elements and $1 \notin G_r$. But observe that $\xi_{\ell}(1) = 0$ and so we have an indeterminate form of the type 0/0. So we can apply L'Hopital type argument.

Weyl's dimension formula

Recall that if χ is the character of a finite dimensional representation then $\chi(e)$ is the dimension of that representation. Now the Weyl's character formula for the irreducible representation (with $r = (r_1, \dots, r_n)$ as highest weight) of $U(n)$ is given by

$$
\chi(t) = \frac{\sum \operatorname{sgn}(\sigma) \cdots e^{i(\sigma,\ell).t}}{\sum \operatorname{sgn}(\sigma) e^{i(\sigma,\rho).t}},
$$

where $\gamma \in T_r$ is a regular element (that is, with distinct eigenvalues), $\ell_1 = r_1 + (n - 1), \ell_2 =$ $r_2 + (n-2) \cdots \ell_{n-1} = r_{n-1} + 1, \ell_n = r_n, \sigma$ runs through S_n . Since $e \in T_r$, we cannot evaluate $\chi(e)$ by substituting $t = e$ in the above formula. Notice that both the numerator and the denominator become zero at e. We can hence use the L'Hopital's rule.

Observe that, in our earlier notation, $\xi(\ell_1, \dots, \ell_n) = \sum \text{sgn}(\sigma) e^{i(\ell_{\sigma(1)}\theta_1 + \dots + \ell_{\sigma(n)}\theta_n)},$ can also be written as

$$
\begin{pmatrix} t_1^{\ell_1} & \cdots & t_n^{\ell_n} \\ t_2^{\ell_1} & \cdots & t_n^{\ell_n} \\ \vdots & & \vdots \\ t_n^{\ell_1} & \cdots & t_1^{\ell_n} \end{pmatrix} = (t_i^{\ell_j}).
$$

If we set $t_p = (e^{i(n-1)\theta}, \dots, e^{i\theta}, 1)$ then we have

$$
\chi(e) = \lim_{\theta \to 0} \chi(t_\rho) = \lim_{\theta \to 0} \frac{\xi_\ell(t_\rho)}{\xi_\rho(t_\rho)}.
$$

Now

$$
\xi_{\ell}(t_{\rho}) = \sum \text{sgn}(\sigma) e^{i(\ell_{\sigma(1)}(n-1)\theta_1 + \cdots + \ell_{\sigma(n)}\theta_n)}
$$

$$
\xi_{\rho}(t_{\ell}) = \sum \text{sgn}(\sigma) e^{i(\rho_{\sigma(1)}\ell_1\theta_1 + \cdots + \rho_{\sigma(n)}\ell_n\theta_n)}
$$

Or,

$$
\xi_{\ell}(t_{\rho}) = \begin{pmatrix} e^{i(n-1)\theta \ell_n} & \cdots & e^{i(n-1)\theta \ell_n} \\ e^{i\theta \ell_n} & \cdots & e^{i\theta} \\ 1 & \cdots & 1 \end{pmatrix}
$$

$$
\xi_{\rho}(t_{\rho}) = \begin{pmatrix} e^{i\ell_n \cdot \theta n - 1} & \cdots & e^{i\ell_n \theta \cdot \rho n} \\ e^{i\ell_2 \theta n - 1} & \cdots & 1 \\ e^{\ell_1 \theta n - 1} & \cdots & 1 \end{pmatrix}
$$

and so $\xi_{\rho}(t_{\ell}) = \xi_{\ell}(t_{\rho}).$

Also, $\xi_{\rho}(t) = \prod_{i \leq k} (t_1 - t_k) = \prod_{j \leq k} (t_j - t_k)$ and hence

$$
\xi_{\rho}(t_{\ell}) = \prod_{j < k} (e^{i\ell_j \theta} - e^{i\ell_k \theta}) = \prod_{j < k} ((\ell_j - \ell_k)\theta + \text{higher order terms}).
$$

Hence $\frac{\xi_{\ell}(t_{\rho})}{\xi_{\rho}(t_{\rho})} = \frac{\prod_{j < k}((\ell_j - \ell_k)\theta + \cdots)}{\prod_{j < k}((n-j-(n-k))\theta + \cdots}$ $\frac{\prod_{j. Therefore $\lim_{\theta\to 0}\frac{\xi_{\ell}(t_{\rho})}{\xi_{\rho}(t_{\rho})}=\prod_{j$$ $(\ell_j-\ell_k)$ $\frac{\ell_j-\ell_k}{(k-j)}:=d(r).$

The branching law for $U(n)$

Let $G = U(n)$. If we consider $H = \{g \in U(n) : g.e_n = e_n \text{ where } e_n \text{ is the n-th elt of the } \}$ usual o.n. basis of \mathbb{C}^n , then $H \simeq U(n - 1)$ $H = \int \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$; $a \in U(n-1)$. Thus we consider $U(n-1)$ as a subgroup of $U(n)$. By Weyl's character formula we know all the irreducible characters of $U(n)$.

Now, if (π, V) is an irreducible representation of G, then $(\pi |_H, V)$ is a (f.d) representation of the compact group $U(n-1)$, and hence is a direct sum of irreducible representations of H. We ask: How does it decompose?

Note that if χ_{π} is the character of π of G then $\chi_{\pi}|_H=m_i\chi_{\sigma_i}$, where $\pi|_H=\oplus m_i\sigma_i\sigma_i$ irreducible representation of H. By Schur's theory we know that σ_i is determined completely by χ_{σ_i} . By Weyl's character formula we know all the irreducible characters of G and those of H. Also we know χ_i is determined completely by χ_{σ_i} . By Weyl's character formula we know all the irreducible characters of G and those of H. Also we know $\chi |_{T}$ and $\chi_{\sigma_i} |_{T \cap H}$ determine χ and chi_{σ_i} (and hence π and σ_i completely). (Note that $T \cap H$ is the maximal torus of H). So it is enough to write down the decomposition $\chi = \sum m_i \chi_{\sigma_i}$ on $T \cap H$. Note that $T \cap H = \{t = t(\theta) = t(\theta_1 \cdots \theta_n) : \theta_n = 0\}$ or $t = (t_1, \cdots t_{n-1}, 1]$. $|t_i| = 1 \forall t \in T \cap H$.

Now the denominator is given by

$$
D(t_1,\dots,t_{n-1},(t_1-1)(t_2-1).(t_{n-1}-1): \qquad \qquad 1
$$

Recall that $D(\underline{t})$ can be written as a determinant $\sqrt{ }$ \mathcal{L} t_1 · · · t_{n-1} 1 t_2 \cdots 1 t_1 $t, t_{n-1} \cdots t_2 t_1$ \setminus . So subtract

the last column of $D(t)$ from each of the previous ones and factor the resulting $(n-1)$ order determinant. (Recall $D(t)$ = the difference product = $\pi_{i \leq g}(t_i - t_j)$. Then 1 follows trivially. In fact, the proof is given above).

To divide the numerator by $(t_1 - 1)(t_{n-1} - 1)$. We subtract the 2nd column from the Ist, 3rd from the 2nd, ... and n-th from $(n-1)$ -th. Then the last row is $(0, \dots, 0, 1)$. The definition is then reduced to one of order $n-1$. Now divide each elt. in the j-th row by $(t_i - 1)$, using

$$
t^{\ell_1}-t^{\ell_2}/_{t-1}=t^{\ell_1}-1+\cdots+t\ell_2.
$$

Of course we assume $\chi = \chi_{\ell}$, where $\ell = (\ell_1 \cdots \ell_n)$

$$
\ell_1 > \ell_2 > \cdots > \ell_n, \ell_i \in \mathbb{Z}.
$$

Therefore the resulting expression is, for $t \in H \cap T$

$$
\chi_{\ell}(t) = | t^{\ell_1 - 1} + \cdots + t^{\ell_2}, t^{\ell_2 - 1} + \cdots + t^{\ell_3} \cdots |.
$$

But this is the sum of all $(n-1) \times (n-1)$ determinants of the form $|t^{r_1} \cdots t_n^{r_n-1}|$.

$$
\ell_1 \supset r_1 \geq \ell_2 > r_2 \geq \ell_3 > \cdots > r_{n-1} \geq \ell_n.
$$

Since $\rho = \underline{\ell} - \rho$ is the highest weight of the representation with irreducible ch. $\chi_{\underline{\ell}}, f_i =$ $\ell_i - (n - \overline{i}).$

So if we subtract $(n-j)$ from r_j , then we get f' as the highest weight of χ_r , an irreducible character of $V(n-1)$. Thus we have proved

Theorem: If $f = (f_1, \dots, f_n)$ is the highest weight of an irreducible representation of G, then that representation when restricted to H becomes a direct sum of irreducible representations of H with highest weight \underline{f}' , where f and f' are related as follows: $f_1 \ge f_1^1 \ge f_2 \ge$ $\cdots \geq f'_{n-1} \geq f_{n'}$. Home Work

1). G a connected loc. cpt. gp. Γ a discrete subgroup of $G\Gamma \subseteq$ center (G) . If $[G, G]$ is dense in $G.d$ if $G | \Gamma$ is compact then G is compact.

2). G a compact s.s. connected Lie group with Lie algebra . If every representation of is the differential of a representation of G , then G is simply connected.

3). Show that the two sheeted (or any non-trivial) covering group \tilde{G} of $G = SL(2,\mathbf{R})$ does not have a faithful representation.

(Hints: 1) There does exist such non-trivial covering groups of $SL(2,\mathbf{R})$. 2) $G_{\mathbb{C}} = SL(2,\mathbb{C})$ is simply connected. 3). Remember Weyl's theorem on the con. between representation of groups and those of the Lie algebras).

4). Let χ be the character of an irreducible representation of a compact group G. Then

$$
\chi(a)\chi(b) = \dim_{\chi(e)} \int_G \chi(xax^{-1}b)dx \bigl(\int_G dx = 1\bigr).
$$

Conversely any of its $fn.\varphi$ satisfying $\varphi(a)\varphi(b) = \int \varphi(xax^{-1}bdx$ is, but for a scalar,an irreducible character.

5). Any irreducible representation of a compact group on a Banach (or any 'decent' top vector space) is finite dimensional.

Note: 1) Make an honest attempt to solve those on your own. 2) In case of inability to solve any, ask me to give you hints.