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In this article we define the index or the winding number of a loop in S1 based at 1. Its
geometric interpretation is it quantifies the number of times the loop winds or goes around
the circle. We assume the path lifting and homotopy lifting properties of a covering space.

We start with a lemma which is very basic to what follows.

Lemma 1. Let p : (E, e) → (B, b) be a covering map. Assume that E is simply connected.
Then there is a bijection ϕ : π1(B, b)→ p−1(b).

Proof. We define ϕ : π1(B, b) → p−1(b) by setting ϕ([c]) := γ(1), where γ is the lift of c
starting at e. We need to show that ϕ is well-defined. That is, if c1 also represents [c] and γ1
is left of c1 starting at e then γ(1) = γ1(1).

Let c0 and c1 be homotopic loops in B based at b. Let H := {ct} be a homotopy of c0 to
c1 with end points fixed. Applying the homotopy lifting lemma, we get a lift of H, say, F .
The paths γt(s) := F (t, s) are lifts of the paths ct. We claim that all the paths start at e.
For, observe that the path t 7→ F (t, 0) is the lift of the constant path at b: t 7→ H(t, 0). Hence
by the uniqueness of the lifts, the lift must coincide with the constant path at e. Similarly,
the map t 7→ F (t, 1) is the unique lift in E, starting at y := F (0, 1) of the constant path at b.
Hence y = F (t, 1) for all t. In particular, the lift γt of ct in E starting at e all terminate at y.

We therefore conclude that the terminal point of all loops in the same homotopy class
coincide. Thus ϕ is well-defined.

We now show that ϕ is onto. Let y ∈ p−1(b). Let γ be a path in E which goes from e to
y. Let c := p ◦ γ. Then c is a loop, γ is a lift of c and ϕ([c]) = γ(1) = y.

We now show that ϕ is one-to-one. Let c0 and c1 be loops in B based at b with ϕ([c0]) =
ϕ([c1]). Let γi be lifts of ci in E starting at e. Since ϕ([ci]) = γi(), we see that γ0(1) = γ1(1).
Consequently, the path γ0γ

−1
1 is a loop at e. Since E is simply connected, there is a homotopy

F from γ0γ
−1
1 to the constant loop at e. But then H := p ◦ F is a homotopy from c0 ◦ c−1

1 to
the constant loop at b. In particular, [c0] = [c1] and hence ϕ is one-to-one.

Definition 2. Let p : (R, 0) → (S1, 1) be the covering map given by p(t) = e2πit. Let c be
a loop in S1 based at 1. Then the lift of c is a map h : [0, 1] → R such that h(0) = 0 and
e2πih(t) = c(t), for 0 ≤ t ≤ 1. The terminal point h(1) is necessarily an integer, which is called
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the index of c. We denote this integer by ind (c). Thus ind (c) ∈ p−11. Note that the index
depends only on the homotopy class of the loop in view of Lemma 1.

Theorem 3. 1) Two loops c and γ in S1 based at 1 are in the same homotopy class iff they
have the same index.
2) The map [c] 7→ ind (c) is an isomorphism of π1(S

1, 1) and Z.

Proof. 1) is already observed and is included here only for reference.

2) We need only show that ϕ is a homomorphism: ind (c1 · c2) = ind (c1) + ind (c2) for
loops ci based at 1. Choose lifts hj : [0, 1] → R such that hj(0) = 0 and cj(t) = e2πihj(t), for
0 ≤ t ≤ 1. Define

h(t) :=

{
h1(2s), 0 ≤ t ≤ 1/2,

h1(1) + h2(2t− 1), 1/2 ≤ t ≤ 1.

Then h is continuous, h(0) = 0 and (c1 · c2)(t) = e2πih(t) for 0 ≤ t ≤ 1. Consequently,
ind (c1 · c2) = ind (c1) + ind (c2).

We now give applications of the index. We regard the unit ball B in R2 as the unit disk
in C. The applications will depend on the following

Lemma 4. Let f : B → S1 be a map such that f(1) = 1. Then the loop c defined by
c(s) = f(e2πis), 0 ≤ s ≤ 1 has index 0.

Proof. Define the loop γ(s) := e2πis in B. Then c = f ◦ γ. Since B is convex, c is homotopic
to the constant loop at 1 in S1. Hence ind (c) = 0 by Thm. 3.

Theorem 5 (No Retraction Lemma). There is no map f : B → S1 such that f(z) = z for
all z ∈ S1.

Proof. If there were such a map f , then the loop s 7→ e2πis in S1 would have index 0 by the
last lemma. However the index of this loop is 1.

We indicate a proof which is more standard in Algebraic Topology. Let j : S1 ↪→ B be the
inclusion. Since f ◦j is the identity map of S1, (f ◦j)∗ = f∗◦j∗ is the identity of Z ' π1(S1, 1).
However, since π1(B, 1) = 0, both f∗ and j∗ are both zero homomorphisms.

Theorem 6 (Brouwer Fixed Point Theorem). Any map f : B → B has a fixed point.

Proof. Suppose that f has no fixed point. For each z ∈ B, let g(z) be the point of S1 at which
the line starting from f(z) and passing through z meets S1. One shows that g : B → S1 is a
continuous map such that g(z) = z for all z ∈ S1. This contradicts Thm. 5.

Theorem 7 (Borsuk-Ulam Theorem). Let f : S2 → R2 be map. Then there exist antipodal
points ±x such that f(x) = f(−x).
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Proof. Define a map g : S2 → R2 by g(x) = f(x)− f(−x). We must show that g vanishes at
some point of S2. Note that g(−x) = −g(x).

Consider the map h : B → R2 by h(x, y) := (g(x, y,
√

1− x2 − y2). We note that h(−z) =
−h(z), for z ∈ S1. We plan to show that any map h from B to R2 satisfying h(−z) = −h(z)
vanishes at some point of B.

Suppose that such an h does not vanish at all on B. Then

ϕ(z) :=
h(z)|h(1)|
|h(z)|h(1)

, z ∈ B,

is map ϕ : B → S1 with the following properties: (i) ϕ(−z) = −vfi(z), (ii) ϕ(1) = 1. By
Lemma 1, the loop c(s) := ϕ(e2πis) has index 0.

We arrive at a contradiction by showing that the index of c is odd.

Let k : [0, 1] → R be the lift of ϕ starting at 0. Then ind (ϕ) = k(1). Property (i) of ϕ
shows that

exp(2πik(s+ 1/2)) = − exp[2πik(s)] = exp[2πi (k(s) + 1/2)], 0 ≤ s ≤ 1/2.

For each fixed s ∈ [0, 1/2], the number k(s + 1/2) − k(s) − 1/2 is an integer. Since this is a
continuous function of s and has discrete range, it is a constant, say, n. Thus

k(s+ 1/2)− k(s) = n+ 1/2, 0 ≤ s ≤ 1/2.

Then

ind (c) = k(1) = k(1)− k(1/2) + k(1/2)− k(0)

= n+ 1/2 + n+ 1/2 = 2n+ 1.

This contradiction establishes the theorem.

A physical interpretation of this result is that at any given instant of time, there are two
antipodal points on the surface of the earth at which the temperatures are the same.

Corollary 8. No subset of R2 is homeomorphic to S2.

Proof. Thm. 7 tells us that there can be no one-to-one continuous map of S2 into R2.

Corollary 9 (Invariance of Domain). The open disks in R2 cannot be homeomorphic to open
balls in Rn for n ≥ n.

Proof. If f : Dn → D2 is a homeomorphism, then f maps Sn−1 = ∂Dn homeomorphically
into D2. Whence it follows that there exists a homeomorphism of S2 onto a subset of R2.
This contradicts Corollary 8.

The next result is concerned with the division of volumes of objects in R3 by planes. It
derives its picturesque name from its interpretation: It is possible, with a single knife stroke,
to cut two pieces of bread and a piece of ham each into equal halves, no matter how irregular
their shapes are or how askew their relative locations.
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Theorem 10 (Ham Sandwich Theorem). Let Ei, 1 ≤ i ≤ 3, be Lebesgue measurable nonempty
subsets of R3. Then there exists a plane in R3 which divides each of them into sets of equal
measure.

Proof. Let u ∈ S2. Let L be the line Ru. Then there is a unique point lying on L such that
the plane through the point and perpendicular to u divides E1 into two parts of equal volume.
We indicate a plausible reason for this. Intuitively, one moves a point tu forward along L and
observes that the part of E1 behind the plane is a continuous function of t which increases
from 0 to m(E1). The point required is the point tu at which h(p) is exactly half the volume
m(E1)/2. We denote by g1(u) this value of t so that g1 is a map from S2 to R. One knows
that g1 is continuous and by very construction g1(−u) = −g1(u) for u ∈ S2. Similarly, gi,
i = 2, 3 are defined. We want to show that there is a u ∈ S2 at which all gi’s take the same
value.

Define a map f(u) := (g1(u)−g2(u), g1(u)−g3(u)) from S2 to R2. It suffices to show that
f vanishes at some point of S2. Using the fact that gi(−u) = −gi(u) for 1 ≤ i ≤ 3, we infer
that f(−x) = −f(x) for all x ∈ S2.

By Borsuk-Ulam theorem, there is a point u ∈ S2 such that f(−u) = f(u). But since
f(−u) = −f(u), we see that f(u) = 0.

Ex. 11. Let A, B and C be open balls in R3. Describe the plane in R3 which divides each
of the balls in half by volume. When is the plane unique?

Ex. 12. If A and B are bounded connected open sets in R3 and p ∈ R3, then there exists a
plane passing through p and dividing the two sets in half by volume.

Ex. 13. A space X is said to have the fixed point property iff any continuous map from X
to itself has a fixed point. Show that if X has fixed point property and Y is homeomorphic
to X then Y has fixed point property.

Ex. 14. A subspace Y of X is a retract of X if there is a continuous map f : X → Y with
f(y) = y for all y ∈ Y . Show that the unit ball Bn ⊂ Rn has the fixed point property iff its
boundary Sn−1 is a retract of Bn.

Ex. 15. Let A be a 3 × 3 matrix with positive real entries. Then A has a positive real
eigenvalue.
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