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Let {Xi : i ∈ I} be a family of nonempty sets. A choice function f is a map f : I → ∪iXi

such that f(i) ∈ Xi for each i ∈ I. The axiom of choice says that there always exists a choice
function. Another way of saying is that the Cartesian product

∏
i∈I Xi is nonempty.

Why do we need the axiom of choice? When set theoretic concepts were being introduced,
there was a need for an assurance that if an infinite collection of nonempty sets are give, we
can choose an element from each set of the collection. To understand this, let an infinite
collection of pairs of shoes be given. Then we can select the left shoe from each of this pair.
On the other hand, if we are given an infinite collection of pairs of socks, there is not definite
way of selecting a sock from each of the pairs. We belabour the idea by a few more examples.
If we are given a collection of nonempty subsets of N, we can select the least element from
each subset. If we are given a collection of nonempty intervals, we can choose the mid-point
of each interval. If we are given a collection of nonempty subsets of R, there is no definite
choice of elements from each set of the collection!

Definition 1. A relation ≤ on a set X is said to be a partial order if (i) it is reflexive, that
is, x ≤ x for all x ∈ X, (ii) is is transitive, that is, if x ≤ y and y ≤ z, then x ≤ z and (iii) it
is antisymmetric, that is, if x ≤ y and y ≤ x, then x = y.

Let (P,≤) be a partially ordered set. A subset C is said to be a chain if (C,≤) is a totally
ordered set.

A chain C is a partially ordered set P is said to be an initial segment if x, y ∈ P with
x ≤ y and y ∈ C, then x ∈ C, that is, C contains along with any element y ∈ C all elements
which are less than y.

A totally ordered set C is said to be well-ordered iff every nonempty subset of C has a
least element.

Ex. 2. Give at least a couple of examples for each of the concepts above.

Ex. 3. A subset A of a well-ordered chain C is an initial segment iff either A = C or there
exists an element x ∈ C such that A = {y ∈ C : y < x}.

Lemma 4. If C is a collection of well-ordered subsets of a partially ordered set P such that
for all A,B ∈ C, either A is an initial segment of B or B is an initial segment of A, then
C := ∪X∈CX is well-ordered. Furthermore, any A ∈ C is an initial segment of C.
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Proof. First of all observe that C is totally ordered. For, if x, y ∈ C, then there exist chains
A and B such that x ∈ A and y ∈ B. Using the hypothesis, we may assume without loss of
generality that A is an initial segment of B. Since B is a totally-ordered, it follows that x
and y can be compared.

We show that C is well-ordered. Let ∅ ⊂ A ⊂ C. Then A ∩B 6= ∅ for some B ∈ C. Then
for any such B, the nonempty subset A ∩ B of the well-ordered set B has a least element.
Call it mB. We claim that all these elements mB coincide. Let B and D be any two elements
of C such that A ∩B 6= ∅ and A ∩D 6= ∅. Without loss of generality we may assume that B
is an initial segment of D. Hence A ∩ B ⊂ A ∩ D. Hence mB ≥ mD. Since B is an initial
segment of D and mD ≤ mB it follows that mD ∈ B. Hence mD ∈ A ∩ B. Since mB is the
minimum of A ∩ B, we see that mD ≥ mB. We therefore conclude that mB = mD thereby
establishing our claim. Let m be the common element mB for any B ∈ C with A ∩ B 6= ∅.
We claim that m is the least element of A. Let a ∈ A. Let B ∈ C be such that a ∈ B. Then
a ∈ A ∩B and hence m = mB ≤ a

To complete the proof, we need to show that any B ∈ C is an initial segment of C. Let
b ∈ B. Let x ∈ C be such that x ≤ b. We must show that x ∈ B. Let D ∈ C be such that
x ∈ D. Now there are two possibilities: (i) either B is an initial segment of D or (ii) D is an
initial segment of B. In the first case, since b ∈ B and x ≤ b, it follows that x ∈ B. In the
second case, D ⊂ B and hence x ∈ B!

Theorem 5. The following are equivalent:
(i) (Axiom of Choice) If {Xi : i ∈ I} is a nonempty family of nonempty sets, then

∏
i∈I Xi

is nonempty.
(ii) (Zorn’s Lemma) If P is a nonempty partially ordered set with the property that very

chain in P has an upper bound then P has maximal element.
(iii) (Well-Ordering Principle) Given any set X, there exists an order ≤ on X such that

(X,≤) is a well-ordered set.

Proof. We shall prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). Let P be as in the statement (ii). We shall prove the result by contradiction.
Let us therefore assume that P has no maximal element. If S is any chain in P , let B(S)
denote the set of upper bounds for S. We observe that B(S) contains at least one upper
bound for S that does not lie in S. Assume on the contrary that all the upper bounds for S
lie in S. Let b be an upper bound for S. Then we claim that b is a maximal element of P .
For, otherwise, there is a β ∈ P such that β > b. But then β is an upper bound for S which
cannot lie in S since β > b and b is an upper bound for S. Let B′(S) denote the set of upper
bounds for S that do not belong to S. By the axiom of choice, there exists a function ϕ from
the set S of all chains in P to the set {B′(S) : S ∈ S} such that for each S ∈ S, ϕ(S) is an
upper bound for S that does not lie in S.

Now fix an element a ∈ P . Let C denote the set of all subsets S of P with the following
properties:

(a) S is a well-ordered chain of P .
(b) a is the least element of S.
(c) For any proper nonempty initial segment Ix ⊂ S, the least element of S \ Ix is ϕ(Ix).

Observe that {a} ∈ C so that C 6= ∅. It is easily seen that if S and T are in C, then one of
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them is an initial segment of the other. For, if A is the union of all common initial segments
of S and T , then A = Ix = Iy for some x ∈ S and y ∈ T . If A is a proper subset of both S
and T , then ϕ(A) is the least element of S \A and T \A. Note that by (c), the element ϕ(A)
lies in S as well as T . But then A∪{ϕ(A)} will be an initial segment common to both S and
T . This contradicts the ‘maximality’ of A. Hence A must be equal to one of S and T , say S.
Then S is an initial segment of T .

We now let C := ∪S∈CS. By the lemma, C is a well-ordered chain satisfying the conditions
(a) and (b). It also satisfies the condition (c) (and hence is a member of C). For, if Ix is a
proper initial segment of C, then there exists y ∈ C \ Ix. By the very definition of C, we can
find B ∈ C such that y ∈ B. By what we observed above, Ix is a proper initial segment of
B. Hence, by (c), ϕ(Ix) is the least element of B \ Ix. As B itself is an initial segment of C,
ϕ(Ix) is also the least element of C \ Ix. Thus C satisfies (a)-(c) and hence is an element of
C.

If C ′ := C ∪ {ϕ(C)}, then C ′ also lies in C. Hence C ′ ⊂ C and in particular, ϕ(C) ∈ C, a
contradiction to our definition of ϕ. This completes the proof of (i) ⇒ (ii).

(ii) ⇒ (iii). Let X be given. Let A be the set of all well-ordered subsets (A,≤A) of X.
Then C is nonempty. We define a partial order on C by setting (A,≤A) � (B,≤B) iff A ⊂ B,
≤B is an ‘extension’ of ≤A and (A,≤A) is an initial segment of (B,≤B). It is easy to see
that one can apply Zorn’s lemma to get a maximal element (Y,≤Y ) in A. If Y 6= X, then
choose x0 ∈ X \ Y . Then Y0 := Y ∪ {x0} admits an obvious extension ≤0 of ≤Y such that
(Y,≤Y ) � (Y0,≤0), contradicting the maximality of Y .

(iii) ⇒ (i). Let a family {Xi : i ∈ I} of nonempty sets be given. By (ii) there exists a
well-order on each of the Xi’s. Let f(i) be the least element of Xi with respect to this order.
Then f is a choice function.
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eliminate the less precise statements and prompted me to write a clearer version of the proof.
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