Row Rank of a Matrix Equals its Column Rank

S. Kumaresan kumaresa@gmail.com

Let *F* be a field. If you wish, you may take $F = \mathbb{R}$, the field of real numbers in the sequel.

Let $F^{m \times n}$ be the set of matrices of type $m \times n$ with values in *F*.

We consider $F^{1 \times n}$ as the *n*-dimensional vector space F_{row}^n .

We consider $F^{m \times 1}$ as the *m*-dimensional vector space F^m_{col} consisting of all column vectors

$$(y_1, \dots, y_m)^t := \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$
 with $y_i \in F$ for $1 \le i \le m$.

Let $A = (a_{ij}) \in F^{m \times n}$ be an $m \times n$ matrix over a field F. We denote by A_i , the *i*-throw of A: $A_i := (a_{i1}, \ldots, a_{in})$. The *j*-th column of A is denoted by A'_i and is given by $(a_{1j}, \ldots, a_{mj})^t$.

We usually consider the row-vectors A_i as elements of the *n*-dimensional vector space F_{row}^n consisting of all row vectors (x_1, \ldots, x_n) with $x_i \in F$ for $1 \le i \le n$. We may consider F_{row}^n as the *n*-dimensional vector space $F^{1 \times n}$ consisting of matrices of type $1 \times n$ with entries in *F*.

The row rank of the matrix *A* is the number of elements in a maximal linearly independent subset of $\{A_i : 1 \le i \le m\}$. Let $W_r \subset F_{row}^n$ be the vector subspace spanned by the vectors A_i , $1 \le i \le m$. The subspace W_r is known as the row-subspace of the matrix *A*. Then the row rank of *A* is dim W_r .

Similar considerations apply to the column vectors A'_j . The column rank of the matrix A is the number of elements in a maximal linearly independent subset of $\{A'_j : 1 \le j \le n\}$. The subspace W_c spanned by $\{A'_j : 1 \le j \le n\}$ is known as the column space of the matrix A. The the column rank of A is nothing other than dim W_c .

The result of the tile says that the column and row ranks of a matrix are equal.

We give a simple proof of this result which is also visually appealing. The proof depends on the following two observations which you might have learned earlier in a course on linear algebra.

Observation 1. Let *V* be a vector space over *F*. Let $S := \{v_1, ..., v_k\} \subset V$. Let *W* be the vector subspace spanned by *S*. That is, *W* consists of all finite linear combinations of the from $\sum_i c_i v_i$, $c_i \in F$. Then dim $V \le qk$.

This follows from the well-known result that there exists a subset $B \subset S$ which is a basis of V. (Recall that nay basis is a minimal spanning set!)

Observation 2. Let the notation be as in Observation 1. Let $Z \le V$ be a vector subspace of V such that $V \subseteq W$. Then dim $Z \le \dim W \le k$.

With the preliminaries over, we are ready to state and prove the theorem.

Theorem 3. The row rank and the column rank of a matrix A are equal.

Proof. Let *r* be the row rank of *A*.

Let $B_1, ..., B_r$ be a set of linearly independent rows of A. Let us write $B_i = (b_{i1}, ..., b_{ij}, ..., b_{in})$. Then any *i*-th row of A is a linear combination of B's. We write these linear combinations explicitly.

$$(a_{11}, \dots, a_{1n}) = c_{11}(b_{11}, \dots, b_{1j}, \dots, b_{1n}) + \dots + c_{1r}(b_{r1}, \dots, b_{rj}, \dots, b_{rn})$$

$$\vdots$$

$$(a_{i1}, \dots, a_{in}) = c_{i1}(b_{11}, \dots, b_{1j}, \dots, b_{1n}) + \dots + c_{ir}(b_{r1}, \dots, b_{rj}, \dots, b_{rn})$$

$$\vdots$$

$$(a_{m1}, \dots, a_{mn}) = c_{m1}(b_{11}, \dots, b_{1j}, \dots, b_{1n}) + \dots + c_{mr}(b_{r1}, \dots, b_{rj}, \dots, b_{nj})$$

Let us read these vertically and write the j-th column of this array of equations.¹ We get

$$\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} = \begin{pmatrix} c_{11} \\ c_{21} \\ \cdots \\ c_{m1} \end{pmatrix} b_{1j} + \dots + \begin{pmatrix} c_{1r} \\ c_{2r} \\ \cdots \\ c_{mr} \end{pmatrix} b_{rj}, \quad \text{for } 1 \le j \le n$$
$$= b_{1j}C_1 + \dots + b_{rj}C_r, \quad \text{say.}$$

That is, the columns are linear combinations of C_k , $1 \le k \le r$. Hence the maximum number of linearly independent columns is at most r, the row rank of A. Thus the column rank of A is less than or equal to the row rank of A.

We have made use of the Observations. Let W be the vector subspace of F_{row}^m spanned by the the column vectors C_1, \ldots, C_r . Then $W \le W_c$ is a vector subspace of W. By Observation 1, dim $W \le r$ and by Observation 2, dim $W_c \le r$.

Starting with columns, we may prove that the row rank of *A* is less than or equal ot the column rank of *A*. Or, we observe that the column rank (respectively, row rank) of A^T is the row rank (respectively, column rank) of *A*. Thus we get

row-rank of
$$A$$
 = column rank of A^T ≤ row rank of A^T = column rank of A .

Hence both the ranks are equal.

This article may be downloaded from https://4dspace.mtts.org.in/ea

¹If you remove the brackets of the terms on the left side and stack the rows, you get the matrix *A*.