
Chinese Remainder Theorem

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

Theorem 1 (Chinese Remainder Theorem). Let R be a principal ideal domain. Let p1, . . . , pn
be pairwise relatively prime elements of R. Let xi, 1 ≤ i ≤ n be arbitrary elements of R.
Then there exists x ∈ R such that x ≡ xi (mod pi) for each i. If y also has this property then
x ≡ y (mod p1 · · · pn).

Proof. We claim that there exist elements yi, 1 ≤ i ≤ n, such that

yi ≡ 1 (mod pi), and yi ≡ 0 (mod pj) for j 6= i.

If they exist, we let x := x1y1 + · · ·+ xnyn, then x is as required.

As a first guess, we consider qi := p1 · · · p̂i · · · pn. Then pi and qi are relatively prime.
Hence there exist ai, bi ∈ R such that aiqi + bipi = 1. If we take yi := aiqi, then yi is as
required.

The last claim (concerning ‘uniqueness’) is easily seen. if x and y both satisfy the congru-
ences, then each pi divides x− y. Since pi are pairwise relatively prime, the product p1 · · · pn
divides x− y.

Remark 2. Note that the proof is constructive in the sense it gives us an algorithm to solve
the system of simultaneous congruences. See Examples below.

Example 3. A concrete example. What is the least positive integer n which leaves 2,3,2
respectively as remainders when divided by 3,5 and 7? This was a problem posed by Sun-Tsu
in the first century.

We are required to solve the simultaneous congruences x ≡ 2 (mod 3), x ≡ 3 (mod 5) and
x ≡ 2 (mod 7). We follow the method outlined in the proof of Theorem 1.

We have p1 = 3, p2 = 5 and p3 = 7 and q1 = 35, q2 = 21 and q3 = 15. We are looking for
yi such that yi ≡ 1 (mod pi) and yi ≡ 0 (mod qi), for 1 ≤ i ≤ 3. We shall do this example in
detail.

The congruences
y1 ≡ 1 (mod 3) and y1 ≡ 0 (mod 35)

has 70 as a solution.

The congruences
y2 ≡ 1 (mod 5) and y2 ≡ 0 (mod 21)
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has 21 as a solution.

The congruences
y3 ≡ 1 (mod 7) and y1 ≡ 0 (mod 15)

has 15 as a solution. Hence x = x1y1 + x2y2 + x3y3 = 2 × 70 + 3 × 21 + 2 × 15 = 233 is a
solution. Since p1p2p3 = 105, we see that 23 = 233− 2× 105 is the smallest solution.

Example 4. This is due to Bhaskara in 6th century. A basket contains n eggs. If the eggs are
removed 2,3,4,5, or 6 at a time, then the number of eggs that remain in the basket are 1,2,3,4
or 5 respectively. If the eggs are removed 7 at a time, then no eggs remain. What is the
smallest number n of eggs that could have been in the basket at the start of this procedure?

We need to solve the simultaneous congruences

x ≡ 2 (mod 3)

x ≡ 3 (mod 4)

x ≡ 4 (mod 5)

x ≡ 5 (mod 6).

We cannot apply CRT directly here. (Why?) We may solve the system of the first three
congruences as in the last example. We have p1 = 3, p2 = 4 and p3 = 5 and q1 = 20,
q2 = 15 and q3 = 12. We are looking for yi such that yi ≡ 1 (mod pi) and yi ≡ 0 (mod qi), for
1 ≤ i ≤ 3.

We find that y1 = 40, y2 = 45 and y3 = 36 are obvious solutions. We have x = 359 ≡
59 (mod 60). Hence 59 is the smallest solution for the first 3 congruences. It turns out that it
is also a solution of the fourth.

Ex. 5. Find all solutions of x ≡ 2 (mod 3), x ≡ 1 (mod 4) and x ≡ 3 (mod 5).

A more general version is the following. We need a definition. We say that two ideals
I and J of a ring R are comaximal if I + J = R. An obvious example is a pair of distinct
maximal ideals or nonzero primes ideals in a PID.

Theorem 6. Let R be a ring with identity. Let Ij, 1 ≤ j ≤ n be ideals of R such Ii + Ij = R
for i 6= j, that is, Ij’s are pairwise comaximal ideals. Then the map

f : R→ (R/I1)× · · · × (R/In) defined by f(r) := (r + I1, . . . , r + In)

is an onto homomorphism with ker f = I1 ∩ · · · ∩ In.

Proof. That the map is a ring homomorphism is trivial to check. So is the claim about the
kernel. We need only establish that f is onto.

Thus, given ri, 1 ≤ i ≤ n, we need to find r ∈ R such that r ≡ ri (mod Ii). We adapt the
proof in the last theorem.

We find si ∈ Ii such that si ≡ 1 (mod Ii) and si ≡ 0 (mod∩j 6=iIj). Let us do this when
n = 2 and reduce the general case to this.
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Since I1 + I2 = R, there exist a1, a2 ∈ I1 such that a1 + a2 = 1. We let r = a2r1 + a1r2.
Then

r ≡ a2r1 (mod I1) ≡ r1 (mod I1)

r ≡ a1r2 (mod I2) ≡ r21 (mod I2).

In the above, we used the observation that since a2 ≡ 1 (mod I1), multiplying this congruence
by r1, we obtain a2r1 ≡ r1 (mod I1).

Now we turn to n ≥ 3. Since Ii + Ik = 1, for each j 6= 1, there exist aj ∈ I1 and bj ∈ Ij
such that aj + bj = 1. Consider the product 1 =

∏
j 6=i(aj + bj). Except the term b2 · · · bn, all

other term involve some aj and hence all these (other) terms lie in I1. On the other hand,
b2 · · · bn ∈ I2 ∩ · · · ∩ In. We conclude that 1 ∈ I1 + ∩j 6=1Ij and hence I1 + ∩j 6=1Ij = R. From
the n = 2 case above, there exists s1 ∈ I1 such that s1 ≡ 1 (mod I1) and s1 ≡ 0 (mod∩j 6=1Ij).

Since Ii + Ij = 1 for j 6= i, we can argue as in the case when i = 1 to obtain si ∈ Ii such
that

si ≡ 1 (mod Ii) and si ≡ 0 (mod∩j 6=iIj).

We can prove that Ii +∩j 6=iIj = R as follows. Let J := ∩j 6=iIj . If Ii + J 6= R, then there

exists a maximal ideal P such that Ii + J ⊂ P . Since I1 · · · Îi · · · In ⊂ Ij for each j 6= i,

it follows that I1 · · · Îi · · · In ⊂ J . Hence the product of the ideals Ij , j 6= i, lies in the

prime ideal P and hence at least one Ij ⊂ P . Since j 6= i, we have R = Ij + Ii ⊂ P , a

contradiction.

If we let r := r1s1 + · · ·+ rnsn, then r is as required.

We now give some examples of applications of CRT.

Example 7. Let n = n1 · · ·nk be decomposition of n ∈ N into pairwise relatively prime
integers ni. Then as rings

Zn ' Zn1 ⊕ · · · ⊕ Znk
.

We also have U(Zn) = ⊕k
j=1U(Znj ).

Example 8. Let F be a field. Let αi ∈ F , 1 ≤ i ≤ n be distinct elements in F . Consider
f(x) := (x− α1) · · · (x− αn). Then

F [x]/(f(x)) ' Fn, as F [x]/((x− α)) ' F.

Example 9. Let R be a PID. Let a = upm1
1 · · · pmn

n be the unique factorization of a nonzero
nonunit element a (with u being a unit). Then we have ring isomorphism

R/(a) ' (R/(pm1
1 ))× · · · × (R/(pmn

n )) .

Example 10. This is an application the Euler’s totient function ϕ : N→ N . Recall that, for
any natural number n, the value of ϕ(n) is the number of natural numbers k with 1 ≤ k ≤ n
which are relatively prime to n.

Observe that in terms of algebra, ϕ(n) is the number of elements in U(Zn), the group of
units in the ring Zn,
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For example, if p is a prime, then ϕ(p) = p − 1. More generally, if n = pk, then ϕ(pk) =
pk−1(p − 1). For, if 1 ≤ k ≤ n is such that gcd(n, k) > 1, then k must be a multiple of p:
p, 2p, . . . , pk − p. There are pk−1 of such numbers. So, ϕ(pk) = pk − pk−1.

It follows (from Example 7) that ϕ(mn) = ϕ(m)ϕ(n) if m and n are relatively prime.

If n = pm1
1 · · · p

mk
k is the prime decomposition, we arrive the following explicit formula for

ϕ(n):

ϕ(n) =

k∏
j=1

p
mj−1
j (pj − 1) = n

∏
p|n

(
1− 1

p

)
where the product is taken over all primes p dividing n.

Ex. 11. Let R be a commutative ring with 1. Assume that Ij , 1 ≤ j ≤ n, are pairwise
comaximal. Then we have

I1 · · · In = I1 ∩ · · · ∩ In.

We prove this by induction. It is clear that I1I2 ⊂ I1 ∩ I2. To prove the reverse inclusion, let
x ∈ I1 ∩ I2. Write 1 = a1 + a2 ∈ I1 + I2 = R. Then x = xa1 + xa2 ∈ I1.I2

Assume that n ≥ 3 and let J := I1 · · · In−1 = I1 ∩ · · · ∩ In−1. We have already seen (in
the course of proof of Theorem 6 that J + In = R. Hence by n = 2 case, we have

I1 ∩ · · · ∩ In−1 ∩ In = J ∩ In = JIn = I1 · · · In−1In.

Ex. 12. This is CRT in the context of modules. Let Nj , 1 ≤ j ≤ k be submodules of an
R-module M . Assume that

Ni + (N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nk) = R.

Prove that M/ ∩kj=1 Nj ' (M/N1)⊕ · · · ⊕ (M/Nk).

Remark 13. Some other concepts which are related to the Bezout type identity which we
needed in the proofs above are partition of unity, resolution of identity, idempotent elements,
projection maps relative to a direct sum and Lagrange interpolation. We explain the last one
leaving the others for the exploration by the reader.

If we are given a self-adjoint linear map T over a finite dimensional inner product space V
(over R or C), the spectral theorem allows us to decompose V into an orthogonal direct sum
of eigenspaces. If λj , 1 ≤ j ≤ k are the distinct (necessarily real) eigenvalues, the Lagrange
interpolation gives rise to the polynomials

pi(x) :=

∏
j 6=i(x− λj)∏
j 6=i(λi − λj)

.

Note that pi(λj) = δij and the operators pi(T ) satisfy

I = p1(T ) + · · ·+ pk(T ),

the so-called (spectral) resolution of the identity. Each pi(T ) projects V onto the eigenspace
of λi.
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