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The theorem states conditions under which a sequence (fn) of continuous functions on a
closed and bounded interval [a, b] has a subsequence which is uniformly convergent on [a, b].
The proof uses Cantor’s diagonal trick. The reader might have seen a proof of uncountability
of [0, 1] using the non-terminating decimal expansion and the diagonal trick.

We shall briefly explain the proof of uncountability of [0, 1]. Assume that [0, 1] is count-
able. Since it is an infinite set, there exists a bijection f : N→ [0, 1]. We let xn := f(n).
Let xn = 0.xn1xn2 . . . xnk . . . be its decimal expansion. Note that the numbers of the
form k/10n admit two decimal expansion which represent the same number. For exam-
ple, 1/2 = 0.5 = 0.49999 . . .. We form y = 0.y1y2 . . . where y1 is any number between
0 and 8 and y1 6= x11. The next decimal digit y2 is chosen from 0 and 8 and y2 6= x22.
Then y ∈ [0, 1]. Therefore, y = xn for some n. But then the n-th decimal digits of y and
xn differ! (The subtle point of the proof is that the real number y can admit only one
decimal expansion as 9’s are excluded as its decimal digits.)

Let us first try to see consequences of a uniformly convergent sequences of continuous
functions. Let fn ⇒ f on [a, b]. Let Mn > 0 be such that for all x ∈ [a, b], we have
|fn(x)| ≤ Mn. Given ε > 1, there exists N ∈ N such that for k ≥ N and x ∈ [a, b] we have
|fk(x)− fN (x)| < 1. Hence we see that

∀k ≥ N, ∀x ∈ [a, b], we have |fk(x)| ≤ 1 +MN .

If we take M := max{M1,M2, . . . ,MN−1, 1 +MN}, we then have |fn(x)| ≤ M for all n ∈ N
and x ∈ [a, b]. That is {fn} is “uniformly bounded”.

Keep the assumptions of the last paragraph. Let ε > 0 be given. For each n, we have
δn > 0 due to the uniform continuity of fn corresponding to ε/3:

|x− y| < δn =⇒ |fn(x)− fn(y)| < ε/3. (1)

For the same ε > 0, we have an N ∈ N such that

k ≥ N, x ∈ [a, b] =⇒ |fk(x)− fN (x)| < ε/3. (2)

Let δ := min{δ1, . . . , δN}. Then δ > 0. We claim that

∀n ∈ N, x, y ∈ [a, b] with |x− y| < δ we have |fn(x)− fn(y)| < ε.
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For 1 ≤ n ≤ N , the claim is obviously true, since δ ≤ δn. If k > N , then we observe

|fk(x)− fk(y)| ≤ |fk(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− fn(y)|
< ε/3 + ε/3 + ε/3,

where we used (2) to estimate the first and the thrid terms while (1) was used to estimate
the middle term.

These observations suggest the following definitions.

Definition 1. We say that a family of F of functions from a set X ⊂ R to R is uniformly
bounded if there exists M > 0 such that for all f ∈ F and x ∈ X we have |f(x)| ≤M .

We say that F is (uniformly) equicontinuous if for any ε > 0, there exists δ > 0 such that
for all f ∈ F and for all x, y ∈ X we have

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Observe that any member f of the family is uniformly continuous on X .

Example 2. If the family consists of only one function f , then it is equicontinuous iff f is
uniformly continuous on X .

Example 3. Recall that one easy way of finding a uniformly continuous function on [a, b] is
to find a function f which is differentiable on [a, b] and such that f ′ is bounded on [a, b]. This
suggests the next example. Let F be a family of differentiable functions on [a, b] such that
all their derivatives are bounded by M : for all f ∈ F and x ∈ [a, b], we have |f ′(x)| ≤ M .
Then the family is equicontinuous. Given ε > 0, choose δ > 0 such that δ < ε/M . Let f ∈ F
and x, y ∈ [a, b] with |x− y| < δ. Then we observe

|f(x)− f(y)| =
∣∣f ′(z)(x− y)∣∣ ≤M |x− y| < Mδ < ε.

Example 4. Let g : [a, b] × [c, d] → R be continuous. For each y ∈ [c, d], we define fy(x) :=
g(x, y). We claim that the family {fy : y ∈ [c, d]} is equicontinuous on [a, b]. Let ε > 0 be
given. Since g is uniformly continuous on the closed and bounded rectangle [a, b]× [c, d], for
any given ε > 0, there exists a δ > 0 such that

d((x1, y1) < (x2, y2)) < δ =⇒ |g(x1, y1)− g(x2, y2)| < ε.

In particular, if |x1 − x2| < δ, then d((x1, y), (x2, y)) < δ. Consequently,

|fy(x1)− fy(x2)| = |g(x1, y)− g(x2, y)| < ε.

Example 5. Let fn, f : [a, b]→ R be continuous functions. Assume that fn ⇒ f on [a, b]. The
paragraph before the definition shows that the family {fn} is equicontinuous.

Theorem 6 (Arzela-Ascoli). Let fn : [a, b] → R be a sequence of (continuous) functions. As-
sume that the family {fn : n ∈ N} is uniformly bounded on [a, b] and (uniformly) equicon-
tinuous on [a, b]. Then there exists a subsequence of (fn) which is uniformly convergent on
[a, b].

Remark 7. Arzela-Ascoli is a Bolzano-Weierstrass type theorem for a sequence of functions.
No wonder that Bolzano-Weierstrass theorem is decisively used in the proof below!
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Proof. Let M > 0 be such that for all n and x ∈ [a, b] we have |fn(x)| ≤ M . Since the set
Q ∩ [a, b] of rationals in [a, b] is countable, using a bijection of this set with N, we can list
the set Q ∩ [a, b] as a sequence (rn) of rationals.

We are now going to find a subsequence of (fn) which will converge pointwise on Q∩[a, b].
The idea of the proof is similar to that of the proof of Bolzano-Weierstrass theorem for R2

(which says that any bounded sequence ((xn, yn)) in R2 has a convergent subsequence.).
Since (xn) is a bounded sequence of real numbers, there exists a convergent subsequence
(xnk

). Recall that this is same as saying that there exists an infinite subset S1 ⊂ N such
that the subsequence (xn)n∈S1

is convergent. We consider the bounded sequence (ynk
)

and by Bolzano Weierstrass there exists an infinite subset S2 ⊂ S1 ⊂ N such that
(yn)n∈S2

is convergent. It follows that the subsequence ((xn, yn))n∈S2
is convergent.

The sequence (fn(r1)) is a bounded sequence of real numbers. By Bolzano-Weierstrass
theorem, there exists a convergent subsequence. Thus, there exists an infinite subset S1 ⊂ N
such that the sequence (fn(r1))n∈S1 is convergent. Using the well-ordering principle, we may
exhibit S1 as {k11 < k12 < · · · < k1n · · · }. It is most appropriate to denote this subsequence
by (fk1n(r1)) ≡ (fk11(r1), fk12(r1), . . . , fk1n(r1), . . .). But following the tradition, we denote
this subsequence as (f1n(r1)). Now consider the bounded sequence (f1n(r2)) = (fn(r2))n∈S1 .
We have a convergent subsequence. There exists an infinite subset S2 ⊂ S1 ⊂ N such that
the sequence (fn(r2))n∈S2 is convergent. We denote this subsequence by (f2n(r2)). Note
that the sequence f2n(r1) is also convergent. Proceeding this way, we arrive a subsequence
(fmn(rm)) which is convergent subsequence of (f(m−1)n(rm−1)). Note again that the se-
quences (fmn(rj)) are convergent for 1 ≤ j ≤ m. Consider the sequence (fmn(rm+1)). This
bounded sequence will have a convergent subsequence (f(m+1)n(rm+1)). This goes on for
all m ∈ N. We thus end up with a sequence of sequences (f1n(x)), . . . , (fmn(x)) such that
(i) for each m, the sequence (fmn(x)) is a subsequence of (f(m−1)n(x)) and (ii) the sequence
(fmn(rj)) is convergent for 1 ≤ j ≤ m.

Consider the subsequence (fnn) := (f11, f22, . . .). This sequence has the property that
for each m, the sequence (fnn(rm)) is convergent. That is, the sequence (fnn) is point-wise
convergent on the set of rationals in [a, b]. Note that so far, we have only used the uniform
boundedness of the sequence (fn).

We now exploit the uniformly equicontinuity of the sequence (fn) to show that (fnn) is
uniformly convergent on [a, b]. Of course, we should expect the density of rationals to play
a role! Given ε > 0, let δ > 0 be such that |x− y| < δ implies |fn(x)− fn(y)| < ε/3 for
all n ∈ N. We can find a partition a < s1 < · · · < sk−1 < sk < b such that each of the
subintervals is of length less than δ and the nodes sj , 1 ≤ j ≤ k are rationals.

We subdivide [a, b] into some k subintervals each of length (b−a)/k < δ/2. By the density
of rationals, we can find a rational sj in the j-th subinterval

(
a+ j−1

k (b− a), a+ j
k (b− a)

)
for 0 ≤ j < k. Let tj := a+ j

k (b− a). We now concentrate on the partition a < s1 < s2 <
· · · < sk < b of [a, b]. We have |a− s1| < δ/2, |b− sk| < δ/2 and

|sj − sj−1| ≤ |sj − tj−1|+ |tj−1 − sj−1| ≤ (tj − tj−1) + (tj−1 − tj−2) <
δ

2
+
δ

2
= δ.

Thus each of the partitioning subinterval is of length at most δ.
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Hence if x ∈ [a, b] lies in the j-th subinterval, then |x− sj | < δ. Hence if x ∈ [a, b] and sj is
chosen so that |x− sj | < δ, then we have

|fnn(x)− fnn(sj)| < ε/3. (3)

Since (fnn(r)) is convergent for each rational r ∈ [a, b], given ε > 0, there exists N ∈ N
such that

∀m,n ≥ N, 1 ≤ j ≤ k we have |fmm(sj)− fnn(sj)| < ε/3. (4)

With these observations, we now show that (fnn) is uniformly Cauchy on [a, b]. Let
x ∈ [a, b]. Choose j such that |x− sj | < δ. We obtain, for m,n ≥ N ,

|fnn(x)− fmm(x)| ≤ |fnn(x)− fnn(sj)|+ |fnn(sj)− fmm(sj)|+ |fmm(sj)− fmm(x)|

<
ε

3
+
ε

3
+
ε

3
= ε. (5)

We have used (3) to estimate the first and the last terms while we used (4) to estimate the
middle term.

Remark 8. Did you observe that we employed the curry-leaf trick in (5)? The sj chosen to
‘suit’ the x under consideration was the curry leaf!

Remark 9. The first part of the proof above generalizes to the following situation. If X
is a metric space with a countable dense subset, then any uniformly bounded sequence of
functions will have a subsequence (fnn) which converges point-wise on the countable dense
subset.

The second part can be carried over to any “totally bounded” metric space. These are
the spaces in which for any δ > 0, we can find a finite set A ⊂ X such that for any x ∈ X ,
there exists a ∈ A such that d(x, a) < δ.

To state a general version of the theorem and also to cast the theorem in proper per-
spective we need some notation. Let X be a compact metric space. The set C(X,R) of
continuous functions from X to R is a real vector space. We endow C(X,R) with the norm
‖f ‖∞ ≡ ‖f ‖ := lub {|f(x)| : x ∈ X}. This induces a metric defined by d(f, g) := ‖f − g‖.
Under this metric, the space is complete in the sense that any Cauchy sequence is conver-
gent. Ascoli theorem characterizes the compact subsets of this metric space as the subsets of
functions which are (uniformly) equicontinuous, closed (in the metric topology) and bounded
in the metric (which is same as uniformly bounded, as defined earlier).

One has various characterizations of compact subsets of a metric space. One of them
says that a subset K ⊂ X (X any metric space) is compact iff it is complete and totally
bounded. One may use this characterization to give an alternate proof of Arzela-Ascoli. We
refer the reader to our book “Topology of Metric Spaces” for a more detailed discussion and
examples.

Remark 10. An often overlooked point of the proof is: Why (fnn) is a subsequence? Note
that if we agree to write Sk := {nk,1 < nk,2 < · · · < nk,r < nk,r+1 < · · · }, then by induction
we can show that nk,k < nk+1,k+1 for k ∈ N. (Note that then fkk := fnkk

, see how ugly the
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notation turns out to be!) Let us start proving that n1,1 < n2,2. Note that n21 ∈ S1 and since
n11 is the least element of S1, we know that n21 ≥ n11. Hence n22 > n21 ≥ n11.

Assume, by induction, that we have shown that nr,r > nr−1,r−1 for 1 ≤ r ≤ k. and that
nk,r ≥ nk−1,r , 1 ≤ r ≤ k− 1. Then we have nk+1,k+1 > nk+1,k ≥ nk,k . The result now follows
by induction.
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