

S Kumaresan Visiting Professor IIT-Kanpur

### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

May 26, 2020

### Welcome and Etiquette

Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

# SMILE!

- Welcome. Good Morning. Hope all of you are safe and well.
- By default, I have muted all of you.
- If you want to ask something, please use 'raise-hand'. I shall unmute you and you can ask your doubts.
- As in MTTS camps, I shall ask questions, pause a few seconds so that you can say the answers to yourself! (You are muted!)
- If the audio is bad/weak, please let me know.
- You can use 'private chat', if necessary, druing the sessions.

### Definition

- S Kumaresan Visiting Professor IIT-Kanpur
- A topological group is a triple (G,  $\tau$ , ·) such that (G,  $\tau$ ) is a topological space and (G, ·) is a group.
- Both these structures are inter-related in the sense that the group operations are continuous.
- The group multiplication  $G \times G \rightarrow G$  given by  $(x, y) \mapsto xy$  is continuous.
- The inversion map  $G \to G$  given by  $x \mapsto x^{-1}$  is continuous.

### Disciplines

#### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

The study of topological group is very basic for the following

- Harmonic Analysis
- Functional Analysis
- Differential Geometry
- Algebraic/Differential Topology
- Theoretical Physics.
- Believe me, Algebraic Number Theory!

### Examples

- S Kumaresan Visiting Professor IIT-Kanpur
- The most important example is ℝ<sup>n</sup> under addition with the standard topology.
- The multiplicative group of positive reals under the usual topology.
- The most significant example is  $GL(n, \mathbb{R})$  and  $GL(n, \mathbb{C})$ .
- We shall see more examples later.

### References

#### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

I grew up with a classic Pontryagin's Topological Groups (1946?). But there are modern books, which I have not really read!

Higgins: Topological Groups

Hewitt and Ross: Abstract Harmonic Analysis

There may be other books which contain a section on topological groups. For instance, books on Lie groups (?)

# Topological Subgroups of Topological Groups

#### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

**Question:** How do you define a topological subgroup of a topological group?

If H is a subgroup of a topological group, then H is a topological group with the subspace topology.

**Question:** Can you use this observation to list a few more topological groups?

# Topological Subgroups (Continued)

Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur The following subgroups (of the respective groups) are topological groups with the subspace topology.

- Let SL(n, K) denote the subgroup of GL(n, K) with determinant 1. Here K = R or K = C.
- Let  $O(n, \mathbb{R})$  denote the subgroup of  $GL(n, \mathbb{R})$  of all orthogonal matrices.
- Let U(n) denote the subgroup of all unitary matrices in  $GL(n, \mathbb{C})$ .
- Let  $SO(n, \mathbb{R})$  and  $SU(n, \mathbb{R})$  denote respectively the subgroups consisting of elements of  $O(n, \mathbb{R})$  and U(n) whose determinant is one.
- Let  $GL^+(n, \mathbb{R})$  denote the subgroup of all elements with positive determinant.
- Observe that  $O(n, \mathbb{R})$ ,  $SO(n, \mathbb{R})$ , U(n) and SU(n) are compact groups.

### Warm-up Exercises

- S Kumaresan Visiting Professor IIT-Kanpur
- The group T := {z ∈ C : |z| = 1}. Is it a topological group? What is the topology on it?
- Let G be any group. There are two obvious topologies on G. Which of them make G a topological group?
- Let G<sub>i</sub>, 1 ≤ i ≤ n, be topological groups. Is their product a topological group? What is the topology on it? Can you think of a generalization?
- Let G be a topological group. Let H ≤ G be a subgroup of G is there a natural way to make H a topological group?

### Playtime

#### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

- Fix a ∈ G. Consider L<sub>a</sub>: x → ax. What can you say of the map L<sub>a</sub>? How are L<sub>a</sub> and L<sub>a<sup>-1</sup></sub> are related?
- Let  $U \ni e$  be an (open) neighbourhood of  $e \in G$ . Let  $a \in G$ . What can you say of aU?
- Let  $V \ni a$  be open. Is V of the form aU for some  $u \ni e$ ?
- Do last two items remind you of some facts from the norm topology on any normed linear space, say, ℝ<sup>n</sup>?

$$B(a,r)=a+B(0,r).$$

If U is open and A is any set, what do you know about  $AU := \{ax : a \in A, x \in U\}$ ?

# Playtime (Continued)

- S Kumaresan Visiting Professor IIT-Kanpur
- If U is open what can you say of  $A^{-1} = \{x^{-1} : x \in U\}$ ?
- Let (G, ·) be a group, τ a topology on G. Assume that the map (x, y) → xy<sup>-1</sup> is continuous as a map from (G × G, τ × τ) to (G, τ). What would you like to conclude?
- Is there an obvious question you would like to ask?

### Neighbourhood Base at $e \in G$

Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur Let  $\mathcal{U}$  denote the set of all neighborhoods of  $e \in G$ . We list the properties of  $\mathcal{U}$ . U is called the fundamental neighbourhood system at  $e \in G$ .

**1**  $e \in U$  for all  $U \in \mathcal{U}$ .

2 If  $U_1, U_2 \in \mathcal{U}$ , then there exists  $U \in \mathcal{U}$  such that  $U \subset U_1 \cap U_2$ .

*Hint:* Use the continuity of the group multiplication at (e, e).

3 If  $U \in \mathcal{U}$ , there exists  $V \in \mathcal{U}$  such that  $VV^{-1} \subset U$ . *Hint:* Use the continuity of  $(x, y) \mapsto xy^{-1}$  at (e, e).

# Neighbourhood Base at $e \in G$ (Continued)

#### Topological Groups — An Introduction

- S Kumaresan Visiting Professor IIT-Kanpur
- If  $U \in \mathcal{U}$  and  $a \in U$ , then there exists  $V \in \mathcal{U}$  such that  $aV \subset U$ .
- 2 If  $U \in \mathcal{U}$  and  $a \in G$ , there exists  $V \in \mathcal{U}$  such that  $aVa^{-1} \subset U$ .

*Hint:* Use the continuity of  $L_a \circ R_{a^{-1}}$  at *e*.

Let G be any group. Let  $\mathcal{U}$  be a collection of subset of G satisfying the 5 conditions above. Then there is a natural topology on G which makes it into a topological group.

Question: What is the system of neighbourhoods at  $a \in G$ .

# Neighbourhood Base at $e \in G$ (Continued)

Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur

- 1 If  $U \in \mathcal{U}$  and  $a \in U$ , then there exists  $V \in \mathcal{U}$  such that  $aV \subset U$ .
- 2 If  $U \in \mathcal{U}$  and  $a \in G$ , there exists  $V \in \mathcal{U}$  such that  $aVa^{-1} \subset U$ .

*Hint:* Use the continuity of  $L_a \circ R_{a^{-1}}$  at *e*.

Let G be any group. Let  $\mathcal{U}$  be a collection of subset of G satisfying the 5 conditions above. Then there is a natural topology on G which makes it into a topological group.

 Question: What is the system of neighbourhoods at a ∈ G for the above mentioned topology? Answer: {aU : U ∈ U}.

# Topology and Subgroups

Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur Theorem

If H is a subgroup of G, then the closure  $\overline{H}$  is also a subgroup.

Proof.

- Easy, if *G* is metrizable.
- Let  $x, y \in \overline{H}$ ,  $U \in \mathcal{U}$ . To prove  $xyU \cap H \neq \emptyset$  and  $x^{-1}U \cap H \neq \emptyset$ .
- $\exists V \in \mathcal{U}$  such that  $xVyV \subset xyU$ . Why? Continuity of  $(x, y) \mapsto xy$ .
- Let  $z_1 \in xV \cap H$  and  $z_2 \in yV \cap H$ . (Why do they exist?) Then  $z_1z_2 = xv_1yv_2 \in H$  as well as  $z_1z_2 \in xVyV \subset xyU$ .

Let 
$$z \in U^{-1}x \cap H$$
. (Why does z exist?)  
Then  $z = u^{-1}x \in H$  and hence  $z^{-1} = x^{-1}u \in x^{-1}U \cap H$ .

# Topology and Subgroups (Continued)

- S Kumaresan Visiting Professor IIT-Kanpur
- If H is a normal subgroup of G, then the closure  $\overline{H}$  is also a normal subgroup.
- If H is an open subgroup of G, then H is closed.
  *Hint:* Consider the coset decomposition of G with respect to H. That is, observe that H = G \ ∪<sub>x∉H</sub>xH.

### Exercises

Topological Groups — An Introduction

- S Kumaresan Visiting Professor IIT-Kanpur
- Let *H* be a closed subgroup of finite index in a topological group. Prove that *H* is open.
- **2** Let G be a topological group and  $E \subset G$ . Show that

$$\overline{E} = \cap_{U \in \mathcal{U}} UE = \cap_{U \in \mathcal{U}} EU.$$

Question: Have you seen an analogous result earlier?

- 3 Let G be a topological group. Let  $\mathcal{U}$  be the neighbourhood base at e. Show that G is Hausdorff iff  $\cap_{U \in \mathcal{U}} = \{e\}$ . Choose  $V \in \mathcal{U}$  such that  $aV \cap bV = \emptyset$ . If  $z \in aV \cap bV$ , then  $a^{-1}b = v_1v_2^{-1} \in VV^1$ .
- 4 How will you define the uniform continuity of  $f: G \to \mathbb{C}$ on any topological group? (*G* need not be metrizable.)
- **5** Let G and H be topological groups. Prove that a group homomorphism  $f: G \rightarrow H$  is continuous iff it is continuous at e. (Have you seen an analogous result elsewhere?)

# Topology and Topological Groups (Continued)

#### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur Let G be a connected (topological) group. Let  $U = U^{-1}$  be a symmetric open set with  $e \in U$ . Then  $G = \bigcup_{n \in \mathbb{N}} U^n$ .

#### Proof.

Theorem

Why does such U exist? What does  $U^n$  denote? What is the relation between  $U^n$  and  $(U^n)^{-1}$ ? Let  $H := \bigcup_n U^n$ . Is it clear that each  $U^n$  is open? How about H? Is H a subgroup? Why is H closed? Why is H = G?

### Quotient w.r.t. a subgroup

- S Kumaresan Visiting Professor IIT-Kanpur
- Let  $H \leq G$  be a subgroup of a topological group.
- Let X := G/H denote the set of left cosets of the form aH. Let π: G → X be the quotient map a → aH.
- $\Omega \subset X$  is open if  $\pi^{-1}(\Omega)$  is open in *G*. This defines the quotient topology on *X*.
- $\pi \colon G \to X$  is , of course, continuous and also open.
- Let  $U \subset G$  be open . Then  $\pi(U) = \{aH; a \in U\}$ . Is it open in X? Observe  $\pi^{-1}(\pi(U)) = UH$  is open in G.

# When is G/H Hausdorff?

- S Kumaresan Visiting Professor IIT-Kanpur
- If G/H is Hausdorff, then  $\{eH\} \subset X$  is closed and hence  $H := \pi^{-1}(eH)$  is closed.
- Assume *H* is closed. Let  $aH \neq bH$ . Then  $a^{-1}b \notin H$ .
- Let  $U \in \mathcal{U}$  be such that  $a^{-1}bU \cap H = \emptyset$ . (Why does such a U exist?)
- There exists V ∈ U such that (aV)<sup>-1</sup>bV ⊂ a<sup>-1</sup>bU. (Why?) Use the continuity of (x, y) → x<sup>-1</sup>y.
- Conclude  $(aV)^{-1}bV \cap H \subset a^{-1}bU \cap H = \emptyset$ .
- $\pi(aV) \cap \pi(bV) = \emptyset$ . (Verify.)
- π(aV) and π(bV) are open sets containing aH and bH respectively.
- Theorem: The quotient space *G*/*H* is Hausdorff iff *H* is a closed subgroup.

# H and G/H connected implies G connected

Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur Assume that  $H \leq G$  is connected and G/H is connected.

- Let U and  $V := G \setminus U$  be proper open subsets of G.
- $\pi(U)$  and  $\pi(V)$  provide a 'disconnection' of G/H. Each of them is open. (Why?)  $\pi(U) \cap \pi(V) = \emptyset$ . (Why?) If  $aH \in \pi(U) \cap \pi(V)$ , then aH = xH with  $x \in U$  and aH = yH with  $y \in V$ . xH is connected. (Why?)  $xH \subset U \cup V$ . Hence  $xH \subset U$ . (Why?) Similarly,  $yH \subset V$ . Hence  $xH = yH \subset U \cap V$ , a contradiction.
- $G/H = \pi(U) \cup \pi(V)$  and G/H is connected. Hence one of them is empty.

### Homogeneous Spaces

#### Topological Groups — An Introduction

S Kumaresan Visiting Professor IIT-Kanpur Note that G has a natural action on X := G/H. In fact, the map α: G × G/H → G/H: (a, xH) → axH is continuous. (Verify.) Note that this action is transitive.

- Let X be a locally compact 2nd countable Hausdorff space. Let α: G × X → X be a continuous group action, which is transitive. Then we say that X is a *homogeneous space* or G-space.
- Given two *G*-spaces *X* and *Y*, how do you define a *G* map  $\varphi: X \to Y$ ?
- When are two *G*-spaces isomorphic?

### Classification of Homogeneous Spaces

- S Kumaresan Visiting Professor IIT-Kanpur
- Theorem. Let X be a G-space. Then G is isomorphic to G/H for some closed subgroup  $H \leq G$ .
- Fix p ∈ X. Let H := G<sub>p</sub> be the stabilizer/isotropy subgroup at p. What is the natural map from G/H to X?
- The above natural maps turns out to be an isomorphism. It requires a non-trivial proof and needs a version of Baire category theorem. See my notes on Baire Category available from MTTS site.