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Abstract

We give three proofs of the fact that any two bases of a finite dimensional vector space
have the same number of elements. The first proof is the standard one which you will find
in many textbooks. The second proof is the simplest one which you will find in our book.
The third is a self-contained version of the second proof and is due to Jayanthan@Goa
University.

Let V be a vector space over R (or over a field F). Let S ⊂ V be any nonempty subset.
Recall that LS(S) stands for the set of finite linear combinations of elements from S. Any
typical element in LS(S) is of the form c1v1 + · · ·+ ckvk where k ∈ N and cj ∈ F and vj ∈ S
for 1 ≤ j ≤ k. We also know that LS(S) is the smallest vector subspace of V which contains
S. We read LS(S) as the linear span of S.

Ex. 1. If S = ∅ ⊂ V , how would you like to define LS(∅)?

Ex. 2. If S ⊂ T ⊂ V , what is the relation between LS(S) and LS(T )?

Definition 3. A vector space V is finite dimensional if there exists a finite set S ⊂ V such
that V = LS(S). If V is not finite dimensional, we say that it is infinite dimensional.

Ex. 4. (i) Prove that Rn is finite dimensional. (ii) Prove that the vector space Pn of
polynomials of degree less than or equal to n ∈ N is finite dimensional.

Ex. 5. Prove that the vector space of polynomials of all degrees is infinite dimensional.

Remark 6. If V = (0) is the zero vector space, it is finite dimensional. Ex. 1 may be of use.
See Remark 21.

We make a couple of observations which will make us confident of the entity LS(S) and
these will also be useful later.

Observation 7. Let S := {v1, . . . , vk}. Assume that S is linearly independent. If v /∈ LS(S),
what can you say about the set A := {v, v1, . . . , vk}?

The obvious answer is: A is is linearly independent. This is obvious if you have understood
the way we have approached the notion of linear dependence and independence. if you are
new to our approach, let us do it your way.
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Let av + a1v1 + · · · + akvk = 0. We claim that a = a1 = · · · = ak = 0. If a 6= 0, then
v = 1

a(
∑k

j=1 ajvj) ∈ LS(S), a contradiction to our hypothesis that v /∈ LS(S). Hence we
conclude that a = 0. The above expression then yields a1v1 + · · · + akvk = 0. Since S is
linearly independent, we obtain ai = 0 for each i. Hence the claim.

Observation 8. Let the notation be as in the last observation. Let v ∈ LS(S). We can
write v =

∑k
i=1 civi. We claim that the coefficients are unique. For, if v =

∑k
i=1 divi, then

0 = v − v =
∑k

i=1(ci − di)vi = 0. Since S is linearly independent, we deduce that for each i,
we have ci − di = 0 or ci = di.

Observation 9. Keep the hypothesis of Observation 7. Let w ∈ LS(S). Assume that w 6= 0.
Then we claim that we can replace one vj ∈ S by w and the set Sj := {w} ∪ {vi : 1 ≤ i ≤
k, i 6= j} is linearly independent. This is again easy if you have a good understanding of linear
dependence/independence. In any case, we shall go through the standard arguments.

Before we do it, let us look at a simple example. Let V = Rn, n ≥ 3 and let vi = ei be
the standard basic vectors. Let S := {e1, e2, e3}. Let w = e1 + e2. Do you see that we can
replace e1 (respectively, e2) to get S1 = {e1 + e2, e2, e3} (respectively, S2 = {e1, e1 + e2, e3}?
Can we replace e3 by e1 + e2? What goes wrong?

Since w ∈ LS(S), we can write w =
∑n

i=1 civi. Since w 6= 0, there exists at least one j
such that cj 6= 0. (In the above example c1 = 1 = c2.) We claim that we can exchange vj for
w. That is, we work with Sj as described above.

Assume that there exist scalars a, ai, i 6= j such that

aw + a1v1 + · · ·+ aj−1vj−1 + aj+1vj+1 + · · ·+ akvk = 0 = aw +
∑
i 6=j

aivi = 0.

We shall prove that a = 0 and that ai = 0 for i 6= j.

Can a 6= 0? If a 6= 0, then

w = −1

a

∑
i 6=j

aivi

 = −1

a

∑
i 6=j

aivi

 + 0 · vj .

But we know that w =
∑k

i=1 civi. Since S is linearly independent, the linear expression for
w in terms of vi’s is unique by Observation 8. That is, the coefficients of each vi, for all
1 ≤ i ≤ k, must be equal. So, in particular, the coefficients of vj in these expressions must
be the same. But then we arrive at cj = 0, a contradiction.

So we conclude that a = 0. Since a = 0, we end up with
∑

i 6=j aivi = 0. Since S is linearly
independent, we conclude that ai = 0 for i 6= j. That is we have shown that Sj is linearly
independent.

Observation 10. Keep the notation of the last observation 9. We claim that LS(Sj) = LS(S).

We need to show that LS(Sj) ⊂ LS(S) and the reverse inclusion.

Let v ∈ LS(Sj). Then v is a linear combination of w and vi’s (where i 6= j). But w itself
is a linear combination of all vi’s. Hence v s a linear combination of vi’s and hence lies in
LS(S). Can you write down a proof with all the symbols?
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Let v = bw +
∑

i 6=j bivi ∈ LS(Sj). Then

v = b(
k∑

i=1

civi) +
∑
i 6=j

bivi

= (bc1 + b1)v1 + · · ·+ (bcj−1 + bj−1)vj−1 + bcjvj

+ (bcj+1 + bj+1)vj−1 + · · ·+ (bck + bk)vk.

Hence it follows that v ∈ LS(S).

To prove the reverse inclusion, let us note that vj can be written in terms of w and vi,
i 6= j. For, from w =

∑
i 6=j civi + cjvj , we obtain vj = w − 1

cj

∑
i 6=j civi. Hence any linear

combination of vi’s can be expressed in terms of w and vi (i 6= j).

Can you write down a proof with symbols as above? If v =
∑

i divi ∈ LS(S), then

v = djvj +
∑
i 6=j

divi

= dj(w −
1

cj

∑
i 6=j

civi) +
∑
i 6=j

divi.

Remark 11. Learn the arguments in Observations 9–10 well. In literature, they are collec-
tively known as Exchange lemma or Replacement lemma. You will come across such analogous
arguments in the study of finitely generated abelian groups, finite generated modules over a
PID, cyclic vectors towards Jordan canonical forms etc where you exchange one of the el-
ements in the generating set by another suitable element. (B.Sc. students may ignore this
remark. It is meant for students who wish to pursue Algebra at a higher level.)

We now move onto the main result of this article.

Let B := {v1, . . . , vm} and B′ := {w1, . . . , wn} be two bases of a nonzero finite dimensional
vector space V . Note that LS(B1) = V = LS(B2).

Our aim is to show that m = n. Note that m ≥ 1 and n ≥ 1, since V is nonzero.

First observe that none of the wi’s can be zero. For, if 0 ∈ B′, then B′ must have
one more element. For other wise, LS(B′) = (0) = V , a contradiction. Let w1 = 0, then
0 = 1 · 0 + 0 · w2 + · · · + 0 · wn =

∑
j 0 · wj . Thus the way of expressing 0 is not unique and

hence B′ cannot be a basis.

Since w1 ∈ V = LS(B1), by Observations 8–9, there exists an i1 such that vi1 can be
replaced by w1. The resulting set B1 = {w1}∪{vi : i 6= i1} is such that LS(B1) = LS(B) = V ,
that is, B1 is a spanning set for V . Also, B1 is a linearly independent set. Hence B1 is a basis
of V .

Now repeat the argument above with the pair (B,w1) replaced by (B1, w2) to conclude
that there exists i2 such that B2 := {w1, w2} ∪ {vi : i 6= i1, i2} is a basis of V .

There is a subtlety here. Since B1 is a basis of V , we can write w2 = aw1 +
∑

i6=i1
aivi.

To mimic the argument above, we look for a term with nonzero coefficient and we want
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the term to be some vi. We claim that there exists i such that ai 6= 0. If all ai = 0, then
we find that w2 = aw1 and hence the set {w1, w2} is a linearly dependent subset of the
basis B′. This contradiction shows that there exists i such that ai 6= 0. We call this i as
i2. Understand this well and you need to mimic this argument in the next step too.

Ex. 12. Can you write down the argument for arrive at B3?

We continue this process.

If m > n, then after n steps, we would arrive at a basis

Bn = {w1, . . . , wn} ∪ {vi : i 6= i1, . . . in} = B′ ∪ {vi : i 6= i1, . . . in} = B′ ∪ C, say.

Since C 6= ∅, if vr ∈ C, then vr ∈ V = LS(B′). Hence the set B′ ∪ {vr} is linearly dependent.
Hence its super set Bn is linearly dependent. This contradicts the fact that Bn is a basis.
Hence we conclude that m ≤ n.

Interchanging B and B′ in the argument above, we can show that n ≤ m and hence
m = n.

Thus we have arrived at the following theorem.

Theorem 13. Let V be a finite dimensional vector space. Then any two bases of V have the
same number of elements.

Note that we still do not know whether any finite dimensional vector space has a basis!

Definition 14. Let V be a finite dimensional vector space. The dimension of V is the number
of elements in any basis. Note that this is well-defined in view of the last theorem. We denote
the dimension of a vector space by dimV .

Our second and favourite proof needs the following result. For a simple proof using
Gaussian elimination and induction, see [1]. (Most often this is proved using echelon forms.)

Theorem 15. Let m,n ∈ N with m < n. Let
∑n

j=1 aijxj = 0, 1 ≤ i ≤ m be a linear
homogeneous system. Then there exists c := (c1, . . . , cn) ∈ Fn \{0} such that c is a (non-zero)
solution of the homogeneous system:

∑n
j=1 aijcj = 0 for 1 ≤ i ≤ m.

Proposition 16. Let B := {vi : 1 ≤ i ≤ n} be a set in a vector space V . Let S := {wj : 1 ≤
j ≤ n + 1} be a subset of LS(B). Then S is linearly dependent.

Proof. To prove the result, we need to find c := (c1, . . . , cn+1) ∈ Fn+1 \ {0} such that∑n+1
j=1 cjwj = 0.

Since wj ∈ LS(B) there exist a set of scalars aij , 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n such that

wi = ai1v1 + · · ·+ ainvn, (1 ≤ i ≤ n + 1).

Insert the expressions for wj in the equation
∑n+1

j=1 cjwj = 0. We obtain

0 =

n+1∑
j=1

cj

n∑
i=1

aijvi =

n∑
i=1

n+1∑
j=1

aijcj

 vi. (1)
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Can we choose cj so that for each i, the sum in the bracket on the right side of (1) is zero?
That is, can we choose cj such that

ai1c1 + · · ·+ ai,n+1cn+1 = 0, (1 ≤ i ≤ n)? (2)

We note that this is a homogeneous system of n linear equations in (n+1)-unknowns, namely,
c1, . . . , cn+1. By Theorem 15, there exists a nonzero solution (c1, . . . , cn+1) of (2). Thus we
have found scalars cj (not all zero!) such that (1) is true. That is,

∑
j cjwj = 0.

Thus we find that the set A is linearly dependent.

Remark 17. Let V be a finite dimensional vector space. Let S ⊂ V be a finite set with
|S| = N . Let B be a basis of V . We claim that B is finite, in fact, |B| ≤ N .

If |B| > N , then choose a subset A := {v1, . . . , VN+1} ⊂ B. Since B is linearly indepen-
dent, so is A. Since vj ∈ LS(S) = V , by the last proposition A is linearly dependent. This is
a contradiction. So we infer that |B| ≤ N .

Remark 18. As an immediate corollary, we obtain another proof of Theorem 13. Let B1 :=
{vi : 1 ≤ i ≤ m} and B2 := {wj : 1 ≤ j ≤ n} be bases of a vector space V . Since B1

is a basis, it is a spanning set and B2 ⊂ LS(B1) = V . We claim n ≤ m. If n > m, then
n ≥ m + 1 and the set {wj : 1 ≤ j ≤ m + 1} is linearly dependent by the last proposition.
Since {wj : 1 ≤ j ≤ m + 1} ⊂ B2, we see that B2 is linearly dependent. This contradicts the
fact that B2, being a basis of V , is linearly independent. We therefore conclude that n ≤ m.
Interchanging roles of B1 and B2 in the argument above leads us to conclude that m ≤ n.
Hence m = n.

We now give a direct proof proof of Proposition 16. It is due to Jayanthan A.J. of Goa
University. The main strategy is to adapt the proof of Theorem 15 which uses Gaussian
elimination and induction. See my book [1].

Proof. (of Proposition 16. We shall prove it by induction on n.

When n = 1, let B = {v} and S := {w1, w2}. Then wj = tjv and hence t2w1 − t1w2 =
t2t1v − t1t2v = 0. Either t1t2 = 0 in which case either w1 = 0 or w2 = 0 and hence S is
linearly dependent. Otherwise, t1t2 6= 0 and hence w1, w2 are linearly dependent.

Assume the result for n− 1. What does this mean? If S is a set of n-vectors lying in the
linear span of any set if n− 1 vectors then S is linearly dependent.

Let us deal with the case n. Keep the notation of the statement. If one of wj ’s is 0, the
set S is linearly dependent. So we assume wj 6= 0 for any 1 ≤ j ≤ n + 1.

We write wi = ai1v1 + . . . + ainvn. (Why is it possible?) Since w1 6= 0, one of a1j 6= 0.
Without loss of generality, let us assume that a11 6= 0. We use this assumption to “eliminate”
v1. Let Ei stand for the i-th ‘equation’: wi = ai1v1 + . . . + ainvn. For i ≥ 2, we consider
ai1E1 − a11Ei. In concrete terms, look at

a11wi − ai1w1 =

n∑
r=1

a11airvr −
n∑

r=1

ai1a1rvr.
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Can you expand this avoiding the summation notation? What do you get? We get

ui := a11wi − ai1w1 =

n∑
r=2

a11airvr −
n∑

r=2

ai1a1rvr =

n∑
r=2

birvr, (2 ≤ i ≤ n + 1),

where bir := a11air − ai1a1r.

What have we achieved? We have shown that a set {ui : 2 ≤ i ≤ n + 1} lies in the linear
span of the set {vr : 2 ≤ r ≤ n} of n − 1 vectors. Hence by induction hypothesis, the set
{ui : 2 ≤ i ≤ n + 1} is linearly dependent.

Therefore, there exists (c2, . . . , cn+1) ∈ Fn \ {0} such that
∑n+1

i=2 ciui = 0.

What are ui’s? We use the fact that ui := a11wi − ai1w1 in the equation above to arrive
at

n+1∑
i=2

ciui =
n+1∑
i=2

ci(a11wi − ai1w1)

= (c2a21 + · · ·+ cn+1an+1,1)w1 − a11(c2w2 + · · ·+ cn+1wn+1)

= 0.

Since by assumption (c2, . . . , cn+1) 6= (0, . . . , 0), let us assume that cj 6= 0. Since a11 6= 0, in
the above linear combination we see that the coefficient −a11cj 6= 0 of wj for some j ≥ 2.
Thus we have proved that set S is linearly dependent.

Remark 19. Theorem 13 is again an immediate corollary of the last proposition. The
argument of Remark 18 goes through verbatim.

Ex. 20. Go through the second proof of Proposition 16. Adapt it to give a proof of Theo-
rem 15.

Remark 21. Let V = (0) be the zero vector space. Can we assign the notion of dimension
to it? Either we can decree that dim((0)) = 0 or we can ‘prove’ it. The proof depends on a
proper interpretation of LS(S). We already know that LS(S) is the smallest vector subspace
containing S. So, what is LS(∅)? It is clearly (0). Next, if B is a basis of a nonzero vector
space, then B is a minimal spanning set and dimV = |B|, the number of elements in B. Now
revisit the equality LS(∅) = (0). Is it clear that ∅ is the minimal spanning set for the zero
vector space (0)? If you say ’yes’, that is it. We rest the case.

Ex. 22. Let V be a vector space of dimension dimV = n. Prove that any set S ⊂ V which
contains any n + 1 elements is linearly dependent. (This is a most often used fact.)
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