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Abstract

There are results which are existential and theoretical in nature in a preliminary
course on linear algebra. (We have in mind the results such as the existence of a basis,
the extension of a linearly independent set in a vector space V to a basis of V , the proof
of rank-nullity theorem etc.) While it trains the young minds to think in abstract, it is
equally important to show them how to turn those abstract arguments into something
concrete in practical situations. Also, often beginners think of linear maps between Rn

and Rm only as functions defined by “formulas” in terms of the coordinates. This is in
spite of the fact that they have already seen a result which emphasizes that a linear
map T : V → W is determined once we know the images of vectors (under T ) in a basis
of V .

The purpose of this article is to work out an example explicitly to show how the
theory can be implemented in concrete cases. It is also hoped that this example will
show how to create linear maps with prescribed kernel and image rather than checking
a given map is linear and finding its kernel and image!

Can we find a linear map T : R6 → R4 such that

kerT = U := {(x1, . . . , x6) ∈ R6 : x1 = x2 = x3 and x4 + x5 + x6} = 0,

ImT = V := {(y1, . . . , y4) ∈ R4 : y1 + y2 + y3 + y4 = 0}?

The first thing we need to check is whether the Rank-Nullity theorem vetoes against
the existence of such a map. As we have learnt earlier, dimkerT = 3 while dim ImT = 3.
Hence dimR6 = 6 = dimkerT + dim ImT . So, the rank-nullity theorem does not rule out
the existence of such a linear map. Note that if we required kerT = {x ∈ R6 : x1 = x2 = x3
or if we demanded that ImT = {y ∈ R4 : y1 = y2, y3 = y4}, then no such maps can exist.
(Justify this claim.)

Let us denote the standard basis of R6 by e1, . . . , e6 and that of R4 by f1, . . . , f4. We
fix a basis of U : u1 := e1 + e2 + e3, u2 = e4 − e6 and u3 := e5 − e6. We fix vj := fj − f4,
j = 1, 2, 3 as a basis of V . The proof of Rank-Nullity theorem shows us how to construct a
linear map as required. We need to (i) extend the basis of U (by adding three vectors, say,
u4, u5, u6 ) to a basis of R4, (ii) map {u1, u2, u3} to 0 and (iii) map {u4, u5, u6} bijectively
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onto {v1, v2, v3}. Finally write down the map explicitly using the standard coordinates and
verify it is as required.

Note that e1 + e2 + e3 lies in the span of {e1, e2, e3}. So to find a basis that includes
e1 + e2 + e3, we can take any two out of e1, e2, e3. For definiteness sake, let us take the
basis {e1, e2, e1 + e2 + e3}. Similar reasoning applied to the span of {e4, e5, e6} allows to
take {e4 − e6, e5 − e6, e6}. Note that we could have taken {e4 − e6, e5 − e6, ej}, j = 4, 5 also
as a basis for the span of e4, e5, e6.

We thus end up with a basis {e1 + e2 + e3, e1, e2, e4 − e6, e5 − e6, e6}. The new elements,
e1, e2, e6 that augment the basis of kerT are to be mapped bijectively to the chosen basis of
ImT . We shall define the linear map T by specifying its action on the above basis of R6:

Te1 = v1, T e2 = v2, T e6 = v3, T (u1) = T (e1 + e2 + e3) = 0, T (e4 − e6) = 0, T (e5 − e6) = 0.

To write the linear map in terms of the standard basis, we need to see what T does to
the elements of the standard basis. Already, we know the images of e1, e2, e6. Hence we
need only find out T (e3), T (e4), T (e5). Since T (e1 + e2 + e3) = 0,

Te3 = −Te1 − Te2 = −v1 − v2 = −(f1 − f4)− (f2 − f4) = −f1 − f2 + 2f4.

Since T (e4 − e6) = 0 = T (e5 − e6), we conclude that

Te4 = Te5 = Te6 = v3 = f3 − f4.

Thus

T (x1, . . . , x6) = x1Te1 + · · ·+ x6Te6

= x1(f1 − f4) + x2(f2 − f4) + x3(−f1 − f2 − 2f4) + x4(f3 − f4)

+ x5(f3 − f4) + x6(f3 − f4)

= (x1 − x3) + (x2 − x3)f2 + (x4 + x5 + x6)f3

+ (−x1 − x2 + 2x3 − x4 − x5 − x6)f4

= (x1 − x3, x2 − x3, x4 + x5 + x6,−x1 − x2 + 2x3 − x4 − x5 − x6).

It is trivial to see that kerT = U and ImT = V .

It is to be noted that such maps are far from being unique. Can you think of another
linear map different from the one given above?

Ex. 1. Let U := {x ∈ R2k : x1 + 3x3 + (2k − 1)x2k−1 = 0, x2 = x4 = · · · = x2k}. Construct a
linear map from R2k onto some Rl (l to be specified by you!) with U as its kernel.

Remark 2. This remark is due to Bhaba Kumar Sarma, IITG. In the above discussion, we
extended a linearly independent set to a basis of V using an already known basis of V . This
is very practical and useful.

Let us explain the strategy. Let {ui : 1 ≤ i ≤ k} be a linearly independent set in
V . Let {v1, . . . , vn} be a basis of V . Note that {u1, . . . , uk, v1, . . . , vn} is a spanning set.
The idea is to keep adding vj to the set {ui : 1 ≤ i ≤ k} provided the resulting set is
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linearly independent. Let us show this in action. If v1 is not in the linear span of ui’s,
then we have a linearly independent set B1 := {u1, . . . , uk, v1}. If not, we discard v1 and
let B1 := {u1, . . . , uk}. So at the end of the first step, either have B1 := {ui : 1 ≤ i ≤
k} or B1 := {u1, . . . , uk, v1} as a linearly independent set in such a way that spanB1 =
span{u1, . . . , uk, v1}. Now we add v2 to B1 and proceed as earlier. If v2 ∈ span{u1, . . . , uk, v1}
then B2 := {u1, . . . , uk, v1}, otherwise B2 := {u1, . . . , uk, v1, v2}. Observe that spanB2 =
span{u1, . . . , uk, v1, v2}. After a finite number of steps, we arrive at a basis of V which
extends ui’s. Do you see why?
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