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Abstract
In this article, we offer a proof of the main theorem (Theorem ??). The proof here is

different from the one given in my book “Topology of Metric Spaces” [1] and the one in
another article of mine with the same title [2] as this one. I believe that this proof is
somewhat easier for students to understand and retain than the one in the book, which
is perhaps a little more demanding.

We assume that the reader is acquainted with the concepts such as compact spaces
in terms of open covers, completeness of a metric space, total boundedness of a metric
space and cluster points of a set in a metric space.

Theorem 1. Let (X, d) be a metric space. The following are equivalent.
(i) If E ⊂ X is an infinite subset of X , then there exists x ∈ X such that x is a cluster

point of E.
(ii) Any sequence in X has a convergent subsequence.

Proof. (i) =⇒ (ii). Let (xn) be a sequence in X . If the set {xn : n ∈ N} is finite, there exists
x ∈ X such that S := {n ∈ N : xn = x} is infinite. (Why?) Since S ⊂ N is an infinite set,
by the well-ordering principle, we can write S := {n1 < n2 < · · · }. Hence the subsequence
(xnk

) is a constant sequence and hence is convergent.
If E := {xn : n ∈ N} is infinite, then there exists x ∈ X such that x is a cluster point of

E. The set B(x, 1) ∩ E is infinite. (Why?) Let n1 be such that xn1 ∈ B(x, 1) ∩ E. Now look
at B(x, 1/2) ∩E. It is an infinite set. Hence there exists n2 > n1 such that xn2 ∈ B(x, 1/2).
By induction, we choose nk+1 > nk such that xnk+1

∈ B(x, 1
k+1) ∩ E. Then (xnk

) is a
subsequence which converges to x.

(ii) =⇒ (i). We need to prove that a cluster point exists for any infinite subset E ⊂ X .
Let E ⊂ X be infinite. We then choose a sequence (xn) (of distinct elements) in E. (That is,
xn = xm iff n = m). By hypothesis, (xn) has a convergent subsequence, say, xnk

→ x. Then
x is a cluster point of E. (Why?)

Theorem 2. Let (X, d) be a metric space. The following are equivalent.
(i) X is compact.
(ii) If E ⊂ X is an infinite subset of X , then there exists x ∈ X such that x is a cluster

point of E.
(iii) (X, d) is complete and totally bounded.

Proof. (i) =⇒ (ii): Let E be an infinite subset of X . Assume that there is no cluster point
of E in X . What does this mean? Given x ∈ X , x is not a cluster point of E. Hence there
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exists rx > 0 such that B′(x, rx) ∩ E = ∅. (As is customary, B′(x, r) = B(x, r) \ {x}.) What
can we say of the collection {B(x, rx) : x ∈ X}? It is an open cover of X . What do we know
of B(x, rx) ∩ E? We see that B(x, rx) ⊂ {x}. Since X is compact, there exists a finite set
F ⊂ X such that {B(x, rx) : x ∈ F} is a finite subcover. But then we observe

E = E ∩X = ∪x∈F (B(x, rx) ∩ E) ⊆ F.

That is, E is finite, a contradiction. Hence we conclude that there is x ∈ X such that x is a
cluster point of E.

(ii) =⇒ (iii): Assume that E is not totally bounded. Then there exists ε > 0 such that
there is no ε-net, that is, for no finite subset F ⊂ X , we can have X = ∪x∈FB(x, ε). Let
x1 ∈ X be arbitrary. Then B(x1, ε) 6= X (Why?) and hence there exists x2 ∈ X such that
d(x2, x1) ≥ ε. Assume that we have chosen x1, . . . , xn such that xk /∈ B(x1, ε)∪· · ·∪B(xk−1, ε)
for 2 ≤ k ≤ n. Since there exists no ε-net, we know that X 6= ∪nk=1B(xk, ε). Hence there
exists xn+1 ∈ X \ (∪nk=1B(xk, ε)). Note that d(xn+1, xk) ≥ ε for 1 ≤ k ≤ n. By construction
E := {xn : n ∈ N} is an infinite set. (Why? If m < n), note that xn /∈ ∪nk=1B(xk, ε) implies
d(xn, xm) ≥ ε.) We claim that there is no cluster point for E. If not, let x ∈ X be a cluster
point of E. Look at B(x, ε/3) ∩ E. How many points could be there? At most one. Why?
If xn, xm ∈ B(x, ε/3) ∩ E with n 6= m, then d(xn, xm) ≤ d(xn, x) + d(x, xm) ≤ (2/3)ε, a
contradiction. (Why is this a contradiction?) Hence we conclude that X is totally bounded.

We now show that X is complete. If (xn) is a Cauchy sequence, then by Theorem 1, it
has a convergent subsequence, say, xnk

→ x. But it is well-known that xn → x. So, we
have shown that (X, d) is totally bounded and complete.

(iii) =⇒ (i): The proof is analogous to that of the Heine-Borel theorem which uses the
bisection-method and the nested interval theorem. (See [3].) (It is also analogous to the
proofs of Cantor’s intersection theorem and Baire’s theorem, as explained in my book. Do
not worry if you have not seen them or do not remember.)

Assume that X is not compact. Let {Ui : i ∈ I} be an open cover from which we cannot
extract a finite subcover.

Let n ∈ N. Since X is totally bounded, there exists a finite set Fn ⊂ X such that
X = ∪x∈FnB(x, 1/n).

Note that {Ui : i ∈ I} is an open cover of B[x, 1] for any x ∈ F1. Hence there exists at
least one x1 ∈ F1 such that we cannot find a finite subcover for B[x1, 1].

Why? If no such x ∈ F1 exists, then each B[x, 1] admits a finite subcover and hence
X = ∪x∈F1

B[x, 1], a finite union, will also admit a finite subcover.

We now repeat the argument of the last paragraph replacing X by K1 := B[x1, 1] and
F1 by F2. We have K1 = ∪x∈F2(K1 ∩ B[x, 1/2]). Hence there exists x2 ∈ F2 such that
K2 := K1∩B[x2, 1/2] does not admit a finite subcover. We proceed by induction to arrive at
a sequence (xn), where xn ∈ Fn, such that Kn := Kn−1 ∩B[xn, 1/n] does not admit a finite
subcover. Note that (Kn) is a nested sequence of non-empty sets. The diameter of Kn is at
most 2/n.

Let us choose yn ∈ Kn, n ∈ N. Then we claim (yn) is Cauchy. For, note that if N ∈ N
is fixed, then for n ≥ N , we have yn ∈ KN . Since diam (KN ) ≤ 2/N , it follows that
d(yn, ym) ≤ 2/N for n,m ≥ N . Let ε > 0 be given. Then by the Archimedean property, there
exists N ∈ N such that 2/N < ε. Thus for m,n ≥ N , we have d(yn, ym) < ε. Since X is
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complete, there exists y ∈ X such that yn → y. Fix j ∈ I such that y ∈ Uj . Since Uj is open,
there exists r > 0 such that B(y, r) ⊂ Uj . Since yn → y, there exists N ∈ N such that for
n ≥ N , we have yn ∈ B(y, r) ⊂ Uj . Let n ≥ N and z ∈ Kn. Then

d(z, y) ≤ d(z, yn) + f(yn, y) < 2/n+ r/2.

If we choose n ≥ N such that 2/N < r/2, we see that Kn ⊂ B(y, r) ⊂ Uj . That is, we have
found a finite subcover for Kn. This contradicts the way Kn’s are constructed. Hence we
conclude that we can extract a finite subcover of X from the open cover {Ui : i ∈ I}.

Theorem 3. Let (X, d) be a metric space.Then the following are equivalent.
(i) X is compact.
(ii) If E is an infinite subset of X , then there exists x ∈ X such that x is a cluster point of
E.
(iii) (X, d) is complete and totally bounded.
(iv) Every sequence in X has a convergent subsequence.

Proof. The part (i) =⇒ (ii) =⇒ (iii) =⇒ (i)is proved in Theorem 2. The equivalence (ii)
⇐⇒ (iv) is proved in Theorem 1.

Remark 4. One may also prove the last theorem via the implications (i) =⇒ (ii) =⇒ (iv)
=⇒ (iii) =⇒ (i).

The proof of (iv) =⇒ (iii) is ’almost the same’ as the proof of (ii) =⇒ (iii) which is in
Theorem 2. The set E in that proof is a sequence which has no convergent subsequence.

This remark is due to Shameek Paul.

Acknowledgement: I thank Jayanthan A.J., Ajit Kumar and Shameek Paul for their comments
and corrections.
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As a ready and quick reference for teachers, we give an outline as a series of graded
exercises. In fact, most of the hints are unnecessary for many experienced teachers.

Ex. 5. Let (X, d) be a compact metric space.

1. If every infinite subset of X has a cluster point, then every sequence in X has a
convergent subsequence.
Hint: If (xn) is a sequence in X , consider two cases: E := {xn : n ∈ N} is finite or
infinite.

2. If every sequence in X has a convergent subsequence, then any infinite subset of X
has a cluster point.
Hint: If E is an infinite set, consider a sequence (xn) (in E) of distinct points.

3. Let X be compact. Then any infinite set E has a cluster point.
Hint: If false, for each x ∈ X , choose rx > 0 such that B′(x, rx) ∩ E = ∅. Then
{B(x, rx) : x ∈ X} is an open cover which admits no finite subcover. If it does, then
conclude E is a finite set.

4. If every infinite subset of X has a cluster point, then X is complete and totally bounded.
Hint: Completeness follows from Item 1. If X is not totally bounded, then for some
ε > 0, there is no ε-net. Use this fact to construct an infinite set E := {xn : n ∈ N}
such that d(xn, xm) ≥ ε for m 6= n.

5. If X is totally bounded and complete, then X is compact.
Hint: The proof is analogous to that of the Heine-Borel theorem which uses the
bisection-method and the nested interval theorem. If false, let {Ui : i ∈ I} be an
open cover with no finite subcover. Use total boundedness to find x1 ∈ X such
that B(x1, 1) has no finite subcover. Let K1 := B[x1, 1]. By induction, construct
Kn := Kn−1 ∩ B[xn, 1/n] has no finite subcover. Note that (Kn) is nested and the
diameters go to 0. Choose yn ∈ Kn. Then yn → y. Let y ∈ Uj . For n � 0,
Kn ⊂ B(y, r) ⊂ Uj .

6. Conclude that the following are equivalent for a metric space X :
(i) X is compact.
(ii) If E ⊂ X is an infinite subset of X , then there exists x ∈ X such that x is a

cluster point of E.
(iii) (X, d) is complete and totally bounded.
(iv) Every sequence in X has a convergent subsequence.

Hint: Note that Items 3–5 show that (i) =⇒ (ii) =⇒ (iii) =⇒ (i). Items 1 & 2
establish the equivalence of (ii) and (iv).
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