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L’Hospital’s rules deal with limits of the form limx→a
f(x)
g(x) when we know (i) limx→a f(x) =

l = limx→a g(x) where ` = 0 or ` = ∞ and (ii) limx→a
f ′(x)
g′(x) = L. Here limx→a means any

of the following limits: limx→a+ , limx→a− , limx→∞, limx→−∞ and of course limx→a. Also, L
may be a real number or L = ±∞.

We shall prove three major versions of L’Hospital’s rules. The other cases are treated in
a similar fashion.

Theorem 1 (L’Hospital - 1). Let J be an open bounded interval. Let a ∈ J . Assume the
following:

(i) f and g are continuous on J \ {a}.
(ii) limx→a f(x) = 0 = limx→a g(x).
(iii) f and g are differentiable on J \ {a}.
(iv)The function x 7→ g(x)g′(x) 6= 0 for x ∈ J , x 6= a.

(v) limx→a
f ′(x)
g′(x) = L ∈ R.

Then limx→a
f(x)
g(x) = L.

Proof. If we set f(a) = 0 and g(a) = 0, then f and g are continuous at a. We now use the
Cauchy mean value theorem below.

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)

=
f ′(t)

g′(t)
, for some t between x and a. (1)

(Note that t = tx depends on x.) To prove the result, let ε > 0 be given. Since limx→a
f ′(x)
g′(x) =

L, there exists δ > 0 such that

0 < |x− a| < δ =⇒
∣∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣ < ε.

Hence if 0 < |x− a| < δ, then for any t between x and a, we have |t− a| < δ. Thus (1) shows
that for 0 < |x− a| < δ, we have∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ =

∣∣∣∣f ′(t)g′(t)
− L

∣∣∣∣ < ε.

The result follows.
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Exercise 2. Can the proof of Theorem 1 be adapted to deal with the case L =∞?

Exercise 3. Adapt the proof of Theorem 1 to deal with one sided limits.

Theorem 4 (L’Hospital - 2). Let J be an interval of the form (R,∞). Assume the following:
(i) f and g are continuous on J .
(ii) limx→∞ f(x) = 0 = limx→∞ g(x).
(iii) f and g are differentiable on J .
(iv)The function x 7→ g(x)g′(x) 6= 0 for x ∈ J .

(v) limx→∞
f ′(x)
g′(x) = L ∈ R.

Then limx→∞
f(x)
g(x) = L.

Proof. We do the obvious trick. Observe that t→ 0+ iff 1/t→∞. So, we define

F (t) := f(1/t) and G(t) := g(1/t).

Observe that limt→0+ F (t) = limx→∞ f(x) and that limt→0+ G(t) = limx→∞ g(x). (Why? Do
you see we use a result on the theory of limits here? Can you say what it is and how it is
used?)

We now wish to use the one-sided limits version of the last theorem. We have F ′(t) =
− 1
t2
f ′(t) and G′(t) = − 1

t2
g′(t). Hence by the last theorem we have

lim
x→∞

f(x)

g(x)
= lim

t→0+

F (t)

G(t)
= lim

t→0+

F ′(t)

G′(t)
= lim

t→0+

−t−2f ′(1/t)
−t−2g′(1/t)

= lim
x→∞

f ′(x)

g′(x)
= L.

(Did we use any result from the theory of limits in the last equality above?) This completes
the proof.

Exercise 5. Adapt the last proof for the case limx→−∞
f(x)
g(x) .

Theorem 6 (L’Hospital-3). Let f, g : (R,∞)→ R be differentiable. Assume the following:
(i) limx→∞ f(x) =∞ = limx→∞ g(x).
(ii) g′(x) 6= 0 for x > R.

(iii) limx→∞
f ′(x)
g′(x) = L.

Then limx→∞
f(x)
g(x) = L.

Proof. This is perhaps the most demanding of all! Let ε > 0 be given. We may assume

0 < ε < 2. Let R1 > R be such that for x > R1, we have
∣∣∣f ′(x)g′(x) − L

∣∣∣ < ε/2.

Let R2 > R1 be such that for x > R2, f(x) > 0 and g(x) > 0. Let R3 > R2 be such that
for x > R2, we have f(x) > f(R2) and g(x) > g(R2). By Cauchy’s mean value theorem, we
have, for R3 < c < x,

f ′(c)

g′(c)
=
f(x)− f(R2)

g(x)− g(R2)

=
f(x)

(
1− f(R2)

f(x)

)
g(x)

(
1− g(R2)

g(x)

)
=
f(x)

g(x)
ψ(x), say. (2)

2



(Note that thanks to our assumption x > R3, 0 <
(

1− f(R2)
f(x)

)
< 1. Similar estimate holds

for f replaced by g.) The equality (2) says that f(x)
g(x) = f ′(c)

g′(c)ϕ(x), where ϕ(x) = 1
ψ(x) . Since

limx→∞ f(x) =∞ = limx→∞ g(x) we see that limx→∞ ϕ(x) = 1. Now it should be fairly clear
how to proceed.

We need to estimate
∣∣∣f(x)g(x) − L

∣∣∣. We do the obvious thing now. For x > R3, we have∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ =

∣∣∣∣f ′(c)g′(c)
ϕ(x)− L

∣∣∣∣
=

∣∣∣∣f ′(c)g′(c)
(ϕ(x)− 1) +

f ′(c)

g′(c)
− L

∣∣∣∣
≤

∣∣∣∣f ′(c)g′(c)

∣∣∣∣ |ϕ(x)− 1|+
∣∣∣∣f ′(c)g′(c)

− L
∣∣∣∣ . (3)

Note that
∣∣∣f ′(c)g′(c) − L

∣∣∣ < ε/2 and hence
∣∣∣f ′(c)g′(c)

∣∣∣ < L+ ε/2 < L+ 1, since 0 < ε < 2. We choose

R4 > R3 so that for x > R4, we have |ϕ(x)− 1| < ε
2(L+1) . Thus for x > R4, the first term on

the right side of (3) is less than ε/2. Since R4 > R2, the second terms of (3) is also less than
ε/2. The result is proved.

Exercise 7. This is a meta exercise.
(i) How do you formulate the last result if you wish to deal with (a) limx→−∞, (b) limx→a+
and (c) limx→a−? (It will be helpful if you draw pictures.)
(ii) What will be the analogues of Rj , 1 ≤ j ≤ 4 in each of the above cases (a)–(c)?
(iii) Take up one case at a time and walk through the proof of L-Hospital-3 with your choices
of Rj and check whether they work.

(iv) How do you deal with the case when limx→a
f ′(x)
g′(x) = −∞? Here limx→a means any of the

following limits limx→a+ , limx→a− , limx→∞, limx→−∞ and of course limx→a.
This will help you understand the proof of L’Hospital-3 above. This also tells you how to

deal with when a book or your teacher says, “The other case is similar”.

Exercise 8. Now take any book on Calculus and solve about a dozen problems on indeter-
minate forms. There is an additional burden on you now: You need to check whether the
hypotheses are satisfied when you apply any of these rules!
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