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Abstract

In this article, we start with setting up a system of coordinates associated with an
ordered basis and then talk about matrix representation of linear maps. We shall give
some typical examples as well as some unusual examples. We prove all the standard
results of this theme.

1 Ordered Basis and Coordinate Systems

Let V be a finite dimensional (non-zero) vector space over a field F (which, for concreteness,
we may take it to be R). Let dim V = n. Let B be a basis of V. Let σ : {1, 2, . . . , n} → B a
bijection. Then for any v ∈ B, there exists j ∈ {1, . . . , n} such that v = σ(k). We then denote
v by vk so that B = {v1, . . . , vn}. We then say B is an ordered basis of V.

Let us explain this with a concrete example. Let V = R2 and consider B1 = {e1, e2} and
B2 = {e2, e1}. Then, both B1 and B2 are bases of V. As sets, there are the same! But the order
in which e1 and e2 are listed matters now. e2 is the “first” basic vector in the ordered basis
B2. You may think we are unnecessarily making a fuss. Let us look at another example. Let
us consider the vectors (3, 2) and (2, 3). Then these two vectors form a basis of R2. Is there
any natural order so we may call one of them the first and the other the second? We need to
make a choice. One may consider B1 = {(2, 3), (3, 2)} and another B2 = {(3, 2), (2, 3)}. As
ordered bases they are different.

If you still wonder why it is necessary, assume that you are given instruction as (3,2)
and it means you take 3 steps in one direction and 2 steps in the opposite direction, then
you will find what you want. Will this make sense? You need to be told whether the first
direction is towards right or left. Think along these lines and you will appreciate the reason
for precision.

Come back to linear algebra. Let B = {v1, . . . , vn} be an ordered basis of V. We then
associate to each v ∈ V, a system of n-coordinates as follows: If v = x1v1 + . . . ,+xnvn,
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where xi ∈ R
ϕB : v 7→ [v]B := (x1, . . . , xn)

T ∈ Rn
c . (1)

(Rn
c stands for the n-dimensional vector space of column vectors over R.) The mapϕB : V →

Rn
c is called the coordinate map associated with the ordered basis B. The x j is called the j-th

coordinate of v (relative to the ordered basis B). Of course, (x1, . . . , xn)T is called the system
of coordinates for the vector v relative to the ordered basis B.

Consider B′ := {w1, w2, . . . , wn} where w1 = v2, w2 = v1 and w j = v j for 3 ≤ j ≤ n.
Then B′ is an ordered basis of V. LetϕB′ be the associated coordinate map and let us write
v = ∑i yiwi so that ϕB′(v) = (y1, . . . , yn). Then note that y1 = x2, y2 = x1 and y j = x j for
j > 2. Thus the set of coordinates of v depend on the ordered basis.

The most important fact about the map ϕB : V → Rn
c is that it is a linear isomorphism.

One should try to prove this on one’s own.

If v = ∑i xivi and w = ∑i yivi, then x + y = ∑i(xi + yi)vi and hence ϕB(x + y) =

(x1 + y1, . . . , xn + yn)T = (x1, . . . , xn)T + (y1, . . . , yn)T =ϕB(v) +ϕB(w). Similarly, one

can show thatϕB(tv) = t(ϕB(v)) for t ∈ R and v ∈ V. Hence,ϕB is linear.

It is one-one. (Why?) It is onto since if (a1, . . . , an)T ∈ Rn
c , then v := a1v1 + . . . + anvn ∈ V is

such thatϕB(v) = (a1, . . . , an)T. Hence we conclude that the coordinate mapϕB is a linear
isomorphism of V onto Rn

c .
Let B′ := {w1, . . . , wn} be another ordered basis of V. Let (y1, . . . , yn) be the system of

coordinates associated with B′. That is, if ϕB′(v) = (y1, . . . , yn)T, then v = ∑i yiwi. The
question is: Is there a way of finding the y coordinates of v if we know the x-coordinates of
v?

Let w j := ∑i ai jvi. Thus, [w j]B = (a1 j, a2 j, . . . , an j)
T. Let v ∈ V be such that v = ∑

n
j=1 y jw j.

Then

v = ∑
j

y jw j = ∑
j

y j

(
∑

i
ai jvi

)
= ∑

i

(
∑

j
ai j y j

)
vi = ∑

i
xivi. (2)

I find that the beginners often accept the interchange of the sums in (2) without proper
verification. Let us verify it.

y1w1 = y1a11v1 + y1a21v2 + · · ·+ y1an1vn

y2w2 = y2a12v1 + y2a22v2 + · · ·+ y2an2vn

...
...

ynwn = yna1nv1 + yna2nv2 + · · ·+ ynannvn.

What is the coefficients of v1 on the right side if we add the terms “vertically column-
wise”? We find that the coefficient of v1 in y1w1 + y2w2 + · · ·+ ynwn is a11 y1 + a12 y2 +

· · · + a1n yn = ∑ j a1 j y j. Similarly, the coefficient of vi is ∑ j ai j y j. Hence y1w1 + · · · +
ynwn = (∑ j a1 j y j)v1 + (∑ j a2 j y j)v2 + · · ·+ (∑ j an j y j)vn = ∑i

(
∑ j ai j y j

)
vi.
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Needless to say the various properties of the vector space such as the associativity, com-

mutativity of the addition and others are used in grouping terms.

Hence from the last equality in (2) we find that xi = ∑ j ai j y j. (Why?) Let us understand this
better. Let A be the matrix whose j-th column is (a1 j, . . . , an j)

T. Then we find that we have
arrived at the following. 

x1

x2
...

xn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an1 . . . ann




y1

y2
...

yn

 . (3)

The matrix A is known as the transition matrix of going from the basis B′ to B. Perhaps, if
the context demands, we may denote it by A(B′B).

Note that the entries of the j-th column of A(B′B) are the coordinates of j-th basic
vector w j relative to the basis B, that is, the j-the column is the column vector
ϕB(w j).

Why from B′ to B? That is because given the y-coordinates associated with B′, we obtain
the x-coordinates associated with B.

Of course, we can reverse the process. Starting with v j := ∑i bi jwi we arrive at the tran-
sition matrix A(B,B′).

Note that we can write (3) as [v]B = A[v]B′ and its counterpart [v]B′ = A(B,B′)[v]B. In less
intimidating notation, we observe that

x = A(B′ ,B)y and y = A(B,B′)x. (4)

Make sure you understand this, as we shall have occasions to employ this notation.
Let us verify (4) in some easy examples.

Example 1. Let V = R2
c . Let B := {v1 = e1, v2 := e2} and B′ := {w1 := e1 + e2, w2 := e1 − e2}

be two ordered bases of V. We then have

A(B′ ,B) =

(
1 1
1 −1

)
and A(B,B′) =

 1
2

1
2

1
2 − 1

2

 .

Then a vector v = (x, y)T ∈ R2
c can be expressed as

v = xv1 + yv2 =
x + y

2
w1 +

x − y
2

w2.
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That is,

[v]B = (x, y)T and [v]B′ =

(
x + y

2
,

x − y
2

)
.

One can easily verify (4) now.

Example 2. Let V = Pn be the vector space of (real) polynomials of degree at most n., n ∈ N.
Let B := {1, x, x2, · · · , xn} be the standard ordered basis of V. Let a ∈ R be nonzero. Then
B′ := {1, (x − a), (x − a)2, . . . , (x − a)n} is also an ordered basis of V. (This will follow from
the binomial expansion below.) Using the binomial theorem we have

xk = ((x − a) + a)k =
k

∑
r=0

(
k
r

)
(x − a)rak−r. (5)

Thus the vectors in B are written in terms of B′. One can do it the other way around also.
For simplicity, let us look at n = 2. We then have

[1]B′ = (1, 0, 0)T , [x]B′ = (a, 1, 0)T and [x2]B′ = (a2, 2a, 1)T .

Similarly, we find that

[1]B = (1, 0, 0)T , , [x − a]B = (−a, 1, 0)T and [(x − a)2]B = (a2,−2a, 1)T .

We obtain

A(B′ ,B′) =

1 a a2

0 1 2a
0 0 1

 and A(B′ ,B′) =

1 −a −a2

0 1 −2a
0 0 1

 .

We invite the reader to verify (4).

Now comes the interesting observation. Let v ∈ V be arbitrary.

[v]B = A(B′ ,B)[v]B′ = A(B′ ,B)

(
A(B,B′)[v]B

)
=
(

A(B′ ,B)A(B,B′)

)
[v]B.

(We are dealing with the product of matrices.) In other words for any (x1, . . . , xn)T ∈ Rn
c we

obtain
x = A(B′ ,B)A(B,B′)x.

It follows that A(B′ ,B)A(B,B′) = I, the identity n × n-matrix.

How does it follow? Hint: Take x = ei, the i-th standard basic vector in the above
equation.

So, we have found that the transition matrices are invertible!

Example 3. One easily verifies that the product of transition matrices in Examples 1–2 are
inverses of each other.
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2 Matrix Representation of a Linear Map

Let V and W be finite dimensional vector spaces. In this section, our goal is to associate
a matrix to any linear map f : V → W. Let B := {v1, . . . , vm} and B := {w1, . . . , wn} be
ordered bases of V and W respectively. We then write

f (v j) = a1 jw1 + a2 jw2 + · · ·+ an jwn, 1 ≤ j ≤ m.

We now construct a matrix whose j-th column is (a1 j, a2 j, . . . , an j)
T. Note that we have

(a1 j, a2 j, . . . , an j)
T = [ f (v j)]B′ .

The matrix is

([ f (v1)]B′ , [ f (v2)]B′ , . . . , [ f (vn)]B′) =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an1 . . . anm

 .

This matrix is called the matrix associated with the linear map f relative to the ordered bases
B and B′. It is denoted by [ f ](B,B′). Note that the matrix lies in Mn×m(R).

For emphasis sake, let us observe the following fact. If f : V → W is linear then the matrix
of f relative to any choice of ordered bases will have dim W-rows and dim V columns. (Can
you see why? Do you visualize it?)

Let us look at some simple examples.

Example 4. Let V = R2 and W = R3 Let f : V → W be defined by f ((x, y)T) = (x + y, x −
y, 2x + 3y)T. (Why is it linear?) Let B := {e1, e2} be th the standard ordered basis of V and
let B′ = {w1, w2, w3} be the standard ordered basis of R3. (Note that w1 = (1, 0, 0)T etc.)
What is the matrix [ f ](B,B′)? We need to find f (e1) and f (e2). We have f (e1) = (1, 1, 2)T and

f (e2) = (1,−1, 3)T. Hence the matrix is [ f ](B,B′)=

1 1
1 −1
2 3

.

In place of B, if we take B1 := {e2, e1}, the matrix [ f ](B1 ,B′) =

 1 1
−1 1

3 2

. That is, the

columns of [ f ](B,B′) are interchanged.
In place of B′, let us consider B2 = {u1 = w2, u2 = w1, u3 = w3}. Then f (e1) = (1, 1, 2) =

1 · w1 + 1 · w2 + 2w3 = 1 · u1 + 1 · u2 + 2 · u3. And, f (e2) = (1,−1, 3) = 1 · w1 − 1 · w2 + 3 ·
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w3 = −1 · u1 + 1 · u2 + 3 · u3. Hence the matrix [ f ](B,B2) =

1 −1
1 1
2 3

. That is, the first and

the second rows of [ f ](B,B′) are interchanged.
These show the importance of the order in the basis.

Example 5. Let f : Rn → R be linear. Such maps are called linear functionals. Let B be the
standard ordered basis of Rn

c and B′ := {1} the basis for R. Then the matrix of f relative
to these bases is ( f (e1), . . . , f (en)). Note that it is a matrix of type 1 × n and hence may be
considered as an element of Rn

r .

Example 6. Let V = C considered as a real vector space. Let B := {1, i} be the standard
ordered basis of V. Let α := a + ib ∈ C. Consider the linear map f : C → C defined by
f (z) := αz. We consider the same ordered basis for both the domain and the co-domain.
Then f (1) = a · 1 + b · i and f (i) = (a + ib)i = −b · 1 + a · i. Hence the matrix of f is(

a −b
b a

)
.

Ex. 7. What is the matrix of the conjugation z 7→ z from C to itself with respect to the above
ordered basis both in the domain and in the co-domain?

Example 8. Let V = Pn be the vector space of (real) polynomials of degree at most n ≥ 2.
Let W := Pn−1. Consider the derivative map D : V → W defined by Dp(x) = p′(X). That is,
if p(X) = c1 + c1X + · · ·+ cnXn, then Dp(X) = p′(X) = c1 + 2c2X + 3c3X2 + · · ·+ ncnXn−1.
We take the standard ordered bases B := {1, X, . . . , Xn} and B′ := {1, X, . . . , Xn−1}. Then

the matrix [D](B,B′) =



0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 0 0 3 . . . 0
...

...
...

. . . . . .
...

0 0 0 0 0 n


n×(n+1)

.

Ex. 9. This is almost the same example as the last but with a twist. Let W = V = Pn and
B′ = B. Then the matrix of D is the (n + 1)× (n + 1) -matrix

0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 0 0 3 . . . 0
...

...
...

. . . . . .
...

0 0 0 0 0 n
0 0 0 0 0 0


Ex. 10. Let V = Rm and W = Rn. Let B := {vi : 1 ≤ i ≤ m} and B′ = {w j : 1 ≤ j ≤ n}
be the standard ordered bases of V and W respectively. (Do you understand what v1 and wn
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are?) Let TA : Rm
c → Rn

c be defined as usual: TAx := Ax. Can you guess the matrix [TA](B,B′)?
It is A. We invite you to convince yourself.

Example 11. Let us look at an interesting example. Let V = W be a finite dimensional vector
space. Let B := {v1, . . . , vn} = B′ be an ordered basis of V and W. Let f : V → V be the
identity map. Then what is the matrix [ f ](B,B)? It is the identity matrix In×n. Adapt the
argument of a general case in the next paragraph to prove this.

Suppose now, we decide to use B′ := {w1, . . . , wn} as the ordered basis of W = V, the co-
domain while keeping B for the domain V. Then what is [I](B,B′)? It is the transition matrix
A(B′B). For, I(vi) = ∑ j a jiw j and hence the i-th column in [I](B,B′) is (a1i, a2i, . . . , ani)

T, which
is also the i-th column of the transition matrix A(B′ ,B). To put in other words, we simply
observe that [vi]B′ = (a1i, a2i, . . . , ani)

T.
Let us record this for future reference:

[I](B,B′) = A(B′ ,B). (6)

Example 12. Let f : V → W be a linear isomorphism. Then dim V = dim W. Let B := {vi :
1 ≤ i ≤ n} be an ordered basis of V. Let wi := f (vi), 1 ≤ i ≤ n. Since f is one-one, we know
that B′ := {wi : 1 ≤ i ≤ n} is a linearly independent set in W. (Can you quickly go through
a proof?) Since it has the same number of elements as the dimension of W, B′ is a basis. (Can
you give a direct proof of the fact that B′ is a spanning set?) What is the matrix [ f ](B,B′)?

It is the identity matrix In×n. For, f (vi) = ∑ j c jw j where c j = 1 if j = i and c j = 0 if j ̸= i.
Hence the i-th column o the matrix is the standard basic vector ei ∈ Rn

c .

Ex. 13. Let f : V → W be 1-1 linear map. Then we know that m := dim V ≤ dim W =: n.
(Why?) Let B := {vi : 1 ≤ i ≤ m} be an ordered basis of V. Extend the linearly independent
set { f (vi) : 1 ≤ i ≤ m} to an ordered basis B′ of W. (We assume that f (vi)’s retain their

order.) Show that the matrix [ f ](B,B′) is

 Im×m

−−−
0n−m×n

.

Ex. 14. Let f : V → W be linear and onto. It follows from the rank-nullity theorem that
dim W ≤ dim V Let B′ := {w j : 1 ≤ j ≤ n} be given. Let v j ∈ V be any vector such
that f (v j) = w j, 1 ≤ j ≤ n. Let {u1, . . . , uk} be a basis of ker f where m = n + k. From the
proof of the rank-nullity theorem (or by a direct verification), we see that {v1, . . . , vn, vn+1 :=
u1, . . . , vn+k := uk} is a basis of V. We consider the order in which vi 1 ≤ i ≤ m appears in
B. Then f (vi) = wi for 1 ≤ i ≤ n and f (vi) = 0 for i > n. Then show that the matrix [ f ] is of
the form (In×n|0k×n).

Example 12, Ex. 13 and Ex. 14 teach us an important trick. If we want to have a nice-
looking or a simpler matrix to represent the linear map, we need to choose the ordered bases
in a smart way.
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3 Theoretical Results on Matrix Representations

We now return to some theoretical aspect of the matrix representation of a linear map.
If the context is clear, it would be easier for the eye and simpler for me to type to let [v]

stand for [v]B, [w] for [w]B′ and [ f ] for [ f ](B,B′).
One more fact to keep in mind is the following.

Observation 15. Keep the notation above. Let A := [ f ](B,B′) = (ai j) be the matrix. Then we
have

[ f (v)] = A[v], for any v ∈ C. (7)

It is the unique matrix in Mn×m(R) with this property.

Proof. Let v := x1v1 + · · ·+ xmvm. Let f (v) = y1w1 + · · ·+ ynwn. What we are required to
show is that (y1, . . . , yn)T = A(x1, . . . , xm)T.

We have f (v) := x1 f (v1) + · · ·+ xm f (vm). Hence [ f (v)] = x1[ f (v1)] + · · ·+ xm[ f (vm)].
Let f (v) = y1w1 + · · · + ynwn. Let f (vi) = a1iw1 + · · · + aniwn, 1 ≤ i ≤ m. Then

f (v) = ∑i xi f (vi) can be expanded as follows:

f (v) = x1 f (v1) + x2 f (v2) + · · ·+ xm f (vm)

= x1(a11w1 + a21w2 + · · ·+ an1wn)

+ x2(a12w1 + a22w2 + · · ·+ an2wn)

...

+ xm(a1mw1 + a2mw2 + · · ·+ anmwn)

= (a11x1 + a12x2 + · · ·+ a1mxm)w1

+ (a21x1 + a22x2 + · · ·+ a2mxm)w2

...

+ (an1x1 + an2x2 + · · ·+ anmxm)wn.

Due to the uniqueness of expression in terms of basis, we see that yi = ai1x1 + ai1x2 + · · ·+
aimxm, 1 ≤ i ≤ n. Thus, (y1, . . . , yn)T = A(x1, . . . , xm)T.

The uniqueness is easy. If B ∈ Mn×m(R) is another such matrix, then the i-th columns of
A and B are same, since [ f (vi)] = A[vi] and [ f (vi)] = B[vi], 1 ≤ i ≤ m.

We have a mapϕ : L(V, W) → Mn×m(R) defined asϕ( f ) := [ f ](B,B′). What kind of map is
this? Why do we ask this question? Since both the domain and co-domain are vector spaces,
we would like to know whether it is a linear map. Since they have the same dimension, we
are curious to know whether the map is a linear isomorphism.

Theorem 16. The map ϕ : L(V, W) → Mn×m(R) defined as ϕ( f ) := [ f ](B,B′) is a linear isomor-
phism.
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Proof. Observation 15 will make work easy.
Let f , g ∈ L(V, W). We show that ϕ( f + g) = ϕ( f ) +ϕ(g), that is, the matrix of f + g

namely [ f + g] is the sum of the matrices [ f ] and [g]. The j-th column of [ f + g] is [( f +
g)(v j)]. Thanks to the way f + g is defined, ( f + g)(v j) = f (v j) + g(v j). Hence we see that
[( f + g)(v j)] = [ f (v j) + g(v j)] = [ f (v j)] + [g(v j)] (Why? Recall that the coordinate map is
a linear map!). Therefore, we conclude that the j-th columns of [ f + g] and [ f ] + [g] are the
same, that is, [ f + g] = [ f ] + [g].

In a similar way we can show that [t f ] = t[ f ]. The reader is asked to prove this.
The map is one-one. Let f , g ∈ L(V, W) be distinct. Then there exists v j ∈ B such that

f (v j) ̸= g(v j). (Why? Recall that linear maps are completely determined by their action
on a basis.) Since the coordinate map is a linear isomorphism, in particular, it is one-one,
[ f (v j)] ̸= [g(v j)]. But these are the j-th columns of f ] and [g] respectively. Hence [ f ] ̸= [g].

The map is onto. Let A ∈ Mn×m(R). Define f : V → W by setting f (vi) := ∑
n
j=1 a jiw j.

We extend this linearly to an f ∈ L(V, W). We see that [ f ] = A by the very construction.

Remark 17. There is a better way of looking at what went behind the scene in the last result.
A beginner may skip this remark and return to it later when he is confident of the coordinate
maps etc.

Recall that if V is a vector space, W is any set and f : V → W is a bijection, we have made
W into a vector space using f and we also have seen that f : V → W is a linear isomorphism.
We wish to push this kind of construction a bit further.

Let V, W, V′, W ′ be vector spaces. Let f : V → W be a linear map. Let ϕ : V → V′ be
a linear isomorphism and ψ : W → W ′ be a linear isomorphism. Is there a natural way to
define a linear map g : V′ → W ′?

Inspired by the construction of the first paragraph, we look at the following map:

g : V′ ∋ v′ 7→ϕ−1(v′) 7→ f (ϕ−1v′) 7→ ψ( f (ϕ−1v′)) ∈ W ′.

(Draw a picture to keep track of the movements.) The map g : V′ → W ′ is linear, being the
composition of linear maps. We can easily see that the map f 7→ g is also a bijection. (Do
you see why?)

Let V′ = Rm
c and theϕ : V → V′ be the coordinate map v 7→ [v]. Similarly, let ψ : W →

W ′ := Rn
c be the coordinate map. Note that ϕ and ψ are linear isomorphisms. Hence we

obtain a mapψ ◦ f ◦ϕ−1 : Rm
c → Rn

c . The matrix of this map with standard ordered bases of
Rm

c and Rn
c is the matrix [ f ].

Remark 18. Since we know dim Mn×m(R) = mn, the last theorem gives another proof of the
fact that dim L(V, W) = dim V × dim W.

Example 19. Let Ei j ∈ Mn×m(R) stand for the matrix whose (i j)-th entry is 1 and others are
zero. Then {Ei j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for Mn×m(R). What are the corresponding
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linear maps in L(V, W)?
If you guessed it to be fi j, you are partially correct. Note that fi j ∈ L(V, W) is defined by

fi j(vr) = 0 if r ̸= i and fi j(vi) = w j. Hence the i-th column of [ fi j] the standard j-th basic
vector of Rn

c and all other columns are zero. Thus the ( j, i)-th entry of [ fi j] is 1 and all other
entries are zero. Hence [ fi j] = E ji.

Let U, V and W be finite dimensional vector spaces. Let f : U → V and g : V → W
be linear maps. Let B1 := {ui : 1 ≤ i ≤ m} (respectively, B2 := {v j : 1 ≤ j ≤ n},
B3 := {wk : 1 ≤ k ≤ p}) be an ordered basis of U (ordered basis of V, W respectively). Let
A = [ f ](B1 ,B2) and B := [g](B2 ,B3). We would like to find the matrix of g ◦ f relative to the
ordered bases (B1, B3).

The answer follows from an easy computation.

(g ◦ f )(ui) = g( f (ui)) = g(
n

∑
j=1

a jiv j)

=
n

∑
j=1

a jig(v j)

=
n

∑
j=1

a ji

(
p

∑
k=1

bk jwk

)

=
p

∑
k=1

(
n

∑
j=1

bk ja ji

)
wk.

Hence the (k, i)-th entry of [g ◦ f ](B1 ,B3) is ∑
n
j=1 bk ja ji, which is nothing other than the (k, i)-th

entry of the product BA. Hence we conclude that [g ◦ f ](B1 ,B3) = [g](B2 ,B3) × [ f ](B1 .B2).
Thus we have proved the following theorem.

Theorem 20. Let U, V and W be finite dimensional vector spaces. Let f : U → V and g : V → W
be linear maps. Let B1 := {ui : 1 ≤ i ≤ m} (respectively, B2 := {v j : 1 ≤ j ≤ n}, B3 := {wk :
1 ≤ k ≤ p}) be an ordered basis of U (ordered basis of V, W respectively). Let A = [ f ](B1 ,B2) and
B := [g](B2 ,B3). Then we have the matrix of g ◦ f relative to the bases B1 on the domain and B3 on
the co-domain is BA.

Example 21. Let us verify the result in a simple case. Let U = R2, V = R4 and W = R3,
all with the standard ordered bases. Let f : U → V be defined by f (x1, x2) := (x1, x2, x1 +

x2, x1 − x2). Let g : V → W be defined by g(y1, y2, y3, y4) := (y1 + y2, , y2 + y3, y3 + y4).
Then (g ◦ f )(x1, x2) = (x1 + x2, x1 + 2x2, 2x1). The matrices of these maps relative to the
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standard ordered bases are

[ f ] =


1 0
0 1
1 1
1 −1

 , [g] =

1 1 0 0
0 1 1 0
0 0 1 1

 and [g ◦ f ] =

1 1
1 2
2 0

 .

The reader may carry out the matrix multiplication and verify the result.

Ex. 22. A special case of the last theorem. Let U = V and W = V. Let B and B′ be ordered
bases of V. Consider the identity map I : V → V. Then [I](B,B′) = AB′ ,B and [I](B′ ,B) = AB,B′ .
Now the product [I](B′ ,B)[I](B,B′) = [I](B,B) is the identity matrix. Hence conclude that the
product AB,B′ AB′ ,B is the identity matrix and hence the transition matrices are invertible.

We now come to the last result of this article. We keep the notation above. Let B1 and
B′

1 be ordered bases of V and B2 and B′
2 be two ordered bases of W. Let M := [ f ](B1 ,B2) and

N := [ f ](B′
1 ,B′

2)
be the matrix representations of f relative to the pairs (B1, B2) and (B′

1, B′
2).

Is there a way to recover one, say, N if we know M? Is there any relation between them in
terms of the bases involved?

The answer is surprisingly simple, provided that you have understood what was seen
above. Let R := A(B′

1 ,B1) and S := A(B′
2 ,B2) denote the corresponding transition matrices. By

definition, N = [ f ](B′
1 ,B′

2)
. Note that for w ∈ W, we have

[w]B2 = S[w]B′
2
=⇒ [w]B′

2
= S−1[w]B2 .

To find the relation between M and N, the strategy is to start with [ f (v)]B′
2
, express it in terms

of [ f (v)]B2 and use (7). Let us put this to work. Let v ∈ V. Then we have

[v]B1 = R[v]B′
1

(8)

[w]B′
2
= S−1[w]B2 (9)

[ f (v)]B2 = M[v]B1 . (10)

We substitute w = f (v) in (9). We then get [ f (v)]B′
2
= S−1[ f (v)]B2 . We therefore obtain

[ f (v)]B′
2
= S−1[ f (v)]B2

= S−1 M[v]B1

= S−1 MR[v]B′
1
.

Hence, by the uniqueness part of Observation 15, we conclude that

N = S−1 MR,
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where S (respectively, R) is the transition matrix from the basis B′
2 to B2 (respectively, B′

1 to
B1).

Most important special case is when V = W and M is the matrix of f relative to the
ordered basis B := B1 = B2 on both the domain and the co-domain and N is the matrix of
f relative to the ordered basis B′ := B′

1 = B′
2 on both the domain and the co-domain. Using

(6), we then get N = [I]−1
(B,B′)M[I](B,B′) = A−1

(B′ ,B)MA(B′ ,B). (Verify this.)
What is the significance of this observation? We have seen above that once we fix ordered

bases of V and W, we have a linear isomorphism of L(V, W) and Mn×m(R) (with the notation
above.) In particular, if V = W, then L(V) ≃ M(n,R). Let f ∈ L(V). Let B and B′ be ordered
bases of V. Then A := [ f ]B and A′ := [ f ]B′ are ‘similar’ in M(n,R), that is, there exists an
invertible T ∈ M(n,R) such that A′ = T−1 AT.

Let us look at this in a different perspective. Given A ∈ M(n,R), we know that it gives
rise to a linear map f ∈ L(V) in such way that the matrix representations of f relative to the
standard basis of Rn is A. Let A′ ∈ M(n,R) be such that A′ = T−1 AT fo some invertible
T ∈ M(n,R). Can we think of a basis B′ of Rn such that [ f ]B′ = A′?

What the last two paragraphs say is that A and A′ may actually be representing the same
linear map in different ordered bases. Think over this.

From a physicist’s point of view, choosing a basis gives us a frame of reference, coor-
dinates of the vector, a matrix for a linear map. But vectors and linear maps exist without
any reference to basis. Linear maps express the ‘phenomenon’ or the ‘transformation’ free of
frames of reference! If you think Mathematics is abstract, search for what Einstein wanted
when he was ready with his theories of relativity! He was asking for a mathematical theory
which can express physical phenomenon independent of the frame of reference.

Revisit the concluding paragraph of Section 2. Look at the equation above A′ = T−1 AT.
If you ponder over the connection, you have started your journey to the canonical forms of
matrices. All the best.
Acknowledgment: I thank Professor Bhaba Kumar Sarma (IITG) for sending me a list of
typos, corrections and suggestions for improvement.
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