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1 Grassmann Manifolds — via Column Reduced Matrices

Let Gr(k,n) = Gr(k,R™) denote the set of all k-dimensional vector subspaces of R™. We wish
to make it a differential manifold of dimension (n — k)k. Note that as sets Gr(1,n) = P"(R),
the n-dimensional projective space over R.

The first goal is for any given V' € Gr(k,R™), we need find a parametrized set containing
V.

Let us find an atlas for Gr(k,R™) using the column-reduced matrices.

Let V € Gr(k,R™). Let {v1,..., v} be a basis of (column) vectors for V. We then form a
n x k matrix, say, Ay where the j-th column is the column vector v;. By its very definition,
the rank of Ay is k. Conversely, if A is an n X k matrix of rank k, then the linear span of the
columns is a k-dimensional vector subspace of R™. Denote it by Vj4.

Let Mﬁ;xk denote the matrices of type n x k of rank k. Given A, B € Mﬁxk, it can
happen V4 = Vp, that is, the column spaces of both the matrices are the same. We let
A ~ B if V4 = Vp. This is an equivalence relation. Let [A] denote the equivalence class of
A. When does V4 = Vp? This happens precisely when there is a (unique) 7' € GL(k) such
that B = AT.

We hope that you have learnt about the Gauss-Jordan elimination and also of the reduced
row echelon forms of a given matrix in your linear algebra course. You might have also seen
how they are useful in finding a basis for the row space etc. You may be aware that such
a reduced row echelon matrix of a given matrix is unique. Of course similar considerations
apply to reduced column echelon matrices. This is what we need below.

Let A € Mffx - Assume for the time being that the first k-rows are linearly independent.
That is, (asj)1<ij<k is invertible. Let us recall the fact that given such an n x k matrix,
é where I = I«j, the identity matrix and Z
is an (n — k) x k matrix, which depends on [A]. If B ~ A, then A and B have the same
column reduced matrix. We refer to the column-reduced matrix as the canonical form of A
(or the equivalence class [A]). The canonical form is got by column reduction or Gauss-Jordan
elimination. It is thus a distinguished representative of the equivalence class [A].

What does this say? If V' is represented by A, or equivalently by [A], the matrix Z in the
canonical from provides as (n — k)k coordinates of V' as V varies (over what?).

Let A denote an ordered k-tuple of integers satisfying 1 < A; < .-+ < Ay < n. Let A be
the set of such \’s. We say that A € MF_, is of type A if the rows Ry, (A),..., Ry (A) are

there exists a unique matrix of the form



linearly independent. (Here R;(A) denotes the j-th row of A.) Again by column reduction,
there is a canonical form in which the above rows form the identity matrix. The rest of the
(n — k)k entries afford us a coordinate system for such matrices. The earlier case is when
A={1,2,... k}.

Let us write this explicitly. Let

Uy :={V € Gr(k,R") : 3A € M¥_, of type A such that V = V4 }.

Given any such V, let P4 be the canonical form in which the rows Ry,,... Ry, form the
identity matrix. Let Z be the (n — k) X k matrix from of the remaining rows. We let
eA(V) = oa(Va) = Z € Mn_pyx-

Note that given any V € Gr(k,R"), there exists A such that V € Uy. Thus we got hold
of a tentative candidate for an atlas on Gr(k,R™), namely, {(Ux, pa) : A € A}. Of course, we
need to check the smoothness of transition maps.

Let us look at an example.

Example 1. Let us consider Gr(2,R3?). Then A = {(12),(13),(23)}. The canonical form of
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any element in Ujs is of the form | 0 1 |. Hence p12(V) = (1, s).
ros

Let W € Uss. The canonical form is a matrix like

O~

v
0 |. Hence po3(W) = (u,v). If
1
o

V' € Uya N Usg, then, the transition map is (r,s) — (u,v). So we need to exhibit u = u(r, s)
and v = v(r, s) as smooth functions of r and s.

If V€ Uja N Uss, then in the canonical form (for Ujz), we deduce that r # 0. (Why?)
How do we get the canonical form valid in Usg from that of U7 Observe
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Hence we see that u = —s/r and v = 1/r. Thus the transition functions are smooth.

Let V € Uy NU,. Let Py be the canonical form of A such that V' = V4. Let Qy, be the
submatrix of Py consisting of only those rows that are indexed by p. Let Zy, the (n — k) x k
matrix consisting of the remaining rows of Pj.

Consider the function fy,: Uy — R defined by fy,(V) := det(Qx,). Then fy, is continu-
ous. Also, Ve UxNU, iff fr,(V) # 0. Hence we conclude that ¢x(UyNU,) is open.

Let V € UxNU,. Recall that px(V) = Z) and ¢,(V) = Z,. So, we need to ask how to
express Z, in terms of Zy. Clearly, Z,, = ZMQ;;. (Note that this is what happened in (1).)
This establishes the smoothness of the transition maps.

We need to establish that Gr(k, R™) is Hausdorff. If V, W € U, then they can be separated
by means of open sets. Let V € Uy and W € Uy, A # p but they are not in Uy N U,. Let
us understand this. When does V' € Uy but V ¢ U,? It means that the submatrix @,



is not invertible, that is f),(V) = 0. Similar remark applies to W and we conclude that
Jux(W) = 0. This suggests that we employ fy, to separate them.

First of all, two observations: (i) Q», = Q;Al on Uy NU, and hence (ii) fi,fur = 1.

Since V' € Uy \ Uy, we see that f,(V) = 0. Similarly, f,x(W) = 0. Let J := (-1,1).
Then f;ﬂl(J) is an open set 0y C Uy containing V. Similarly, f;)\l(J) is an open set Qu C U,
containing W. If Z € Qy Ny, then Z is an element of Uy NU,,. Hence fy,(Z) makes sense.
Since Z € €y, we conclude that |fy,(Z)| < 1. Similarly, |f,A(Z)| < 1. Hence the product
|au(Z) - fux(Z)] < 1. This is a contradiction to the observation (ii) above.



2 Grassmann Manifolds — A Linear Algebraic Approach

We discuss the Grasssmann manifolds from a different point of view. This is more demand-
ing and is good training ground for your understanding of linear algebra as well as your
perseverance.

Let Gr(k,n) = Gr(k,R™) denote the set of all k-dimensional vector subspaces of R"™. We
wish to make it a differential manifold of dimension (n — k)k. Note that as sets Gr(1,n) =
P"(R), the n-dimensional projective space over R.

The first goal is for any given V € Gr(k,R™), we need find a parametrized set containing
V.

Let V be a k-dimensional linear subspace of R". Fix any complementary subspace V' of
V such that R" =V & V'. If we assume that R™ has an inner product structure, a natural
choice of V' is V1, the orthogonal complement of V in R”. We assume that this is the case
in the sequel.

Let Uy be the set of all k-dimensional linear subspaces W such that W NV+ = (0). Note
that V € Uy.

Let my: R® — V be the orthogonal projection corresponding to the orthogonal decompo-
sition R* =V @ V*+.

Claim 2. The restriction of my to W € Uy is a linear isomorphism onto V.

Let w € W. Let w =v+u, v €V and u € V+. Then my(w) = v. If w € kermy, then
v =0 ad hence w = u € WN VL = (0). Hence 7y restricted to W is one-one and the claim
follows. O

Let A € L(V, VL), the set of linear maps from V to V. It is a vector space of dimension
(n — k)k. We set up a bijection of Uy and L(V,V1).

Forany A € L(V, V1), welet I'(A) := {v+Av : v € V} C R™ Theset I'(A) is traditionally
called the graph of A.

Claim 3. T'(A) is a k-dimensional linear subspace of R™ such that T'(A) N V+ = (0).

That it is a linear subspace is easy. Let = + Az € I'(A) N VL. Since z + Ax € V+ and
since Az € V* (since A maps V to V1), we see that © = (z + Az) — Az € V+. Thus
reVnVt=(0). O

Claim 4. Let W € Uy. Then there exists a unique A € L(V, V1) such that W = T'(A).

Let x € W. Using the decomposition R” = V @ V1, we write 2 = y 4+ z with y € V an
z € V. If the claim is true, then y + z = v + Av and hence we are led to define Ay = z.

Is A well-defined? That is, if xt =y + z and 21 = y + 21 for z,z1 € W, we need to ensure
that z = z;. We observe that z — 2y = z — 21 € W. But then the LHS z — z; € V+. Thus
the element z — z; € W N V+ = (0). We therefore conclude that z = 2.

That A is linear is easy.

Is A unique? That is, if B € L(V, V1) is such that W = T'(A) = I'(B), then is B = A?
Let veV. Thenz:=v+Ave W aswell asy :=v+ Bv € W. Then x — y € W. But then
r—y=Av— Bv € V*. Since WNV+ = (0), we conclude that Av = Bv for v € V. That is,
A=B. O

Thus we have established a bijection between Uy and L(V,V4):

Claim 5. The map oy : L(V,V+) — Uy defined by vy (A) :=T'(A) is a bijection. O



Let oy := w‘jlz Uy — L(V, V1) be its inverse.
Thus we arrive at a ‘plausible’ candidate for an atlas on Gr(k,R™). It is the collection
{(Uy,pv): Ve Gr(k,R")}.

Claim 6. p(Uy NUy ) ={A € L(V,V) : T(A) nW+ = (0)}.
This is clear in view of the last two Claims. U
Claim 7. ¢(Uy NUy) is open in L(V,V71).

Note that if A is in ¢(Uy N Uy ), then T'(A) N W+ = (0) and hence the orthogonal
projection 7y restricted to W is an isomorphism of W onto V. This is an “open condition”
and hence the claim. O

We note that the transition map @ o gp‘j.l = oW oYy

Let A € o(Uy NUw). Let Z := ¢y (A) =T(A). Let B := (pw o ¢y )(A).

Then B € L(W, W+) is the (unique) element such that T'(B) = Z.

It therefore follows that we need to show that B “depends smoothly on” A, that is, to
express B in terms of A.

Let z €¢ W =T'(A) =T'(B). Hence there exists v € V and w € W such that z = v+ Av =
w + Bw. We then have v + Av —w = Bw € W+. Let my: R® — W be the orthogonal
projection. Then 7y (v+ Av—w) = Ty (Bw) = 0, since Bw € W+, Let I4 :=I+A: V — R"
be defined by I4(v) = v+ Av. Then we see that

w4+ Av—w) =0 = mw(la(v)) = w.
What do we know of 7y o I47

Claim 8. myyola: V — W is a linear isomorphism,

For, since A € ¢y (Uy NUw ), my: I'(A) — V and my: I'(A) — W are linear isomor-
phisms.) O
Hence we can express v as v = (my o I4) ! (w). Finally,

Bw = I4(v) —w = Iy((mw o I4) ") (w) — w.
Claim 9. B “depends smoothly on” A. U

Let F' C {1,...,n} be a subset of k elements. Let Vi be the linear span of {e; : i € F'}.
Let U := Uy,.. What does ¢F stand for?

Claim 10. Given anyV € Gr(k,n) there exists a k-subset F' C {1,...,n} such that V € Up.
Hence {(Up,pp) : F C {1,...,n},|F| =k} is a finite atlas for Gr(k,n). O

Claim 11. Let V; € Gr(k,R"), j = 1,2. Then there exists V € Gr(k,R") such that V; € Uy,
j=1,2.

What are the ‘extreme’ cases for the pair (V4,V5)? It could be they are orthogonal com-
plements of each other (of course, this can happen only when n = 2k.) Or their intersection
is nontrivial. Experiment. Draw pictures for Gr(2,4). Look at various possibilities such as
Vi = span{ej,ea} and Vo = span{es,eq} or Vi := span{ej,ea} and Vo = span{es, es} and
arrive at a candidate for V.



Let {u1,...,u,} be an orthonormal basis of V1 N V5. If V1 NV, = (0), then the basis is the
empty set!

Let {u1,...,ur,v1,...,0s} be an orthonormal basis for V. Let {u1,...,u, w1,...,ws} be
an orthonormal basis for V5.

What do you know about (v;, w;)? What is r + s?

Claim 12. Let V' be the linear subspace spanned by {uy,...,u,,v1 +wy,...,vs + ws}. It is
k-dimensional.

Let ciuy + -+ + cpuyp + di(vy +wq) + - - - + ds(vs + ws) = 0. That is,
ciur + -+ cpup +divr + -+ dsvs + diwy + - -+ dswg = 0.
It follows that ¢; = 0,1 <i<randd; =0,1<j <s.
Claim 13. V;NV+ = (0), j =1,2. Hence V; € Uy.

Let z € ViNV+. Then (z,u;) =0 for 1 <i<r, since u; € V, 1 <i <r. Hence we can
writ € = cqv1 + -+ + ¢csvs as x € V4. Since x € VL, we have

0= <SU,U1'+U)Z‘> = <x,vi> +ch <vj,vi+w,-> = chéij +ch0 =¢+0
Jj=1 J J

Hence z = 0. O
Claim 14. Gr(k,n) is Hausdorff. O

Let V < R™ be a k-dimensional vector subspace. Let 7w, denote the corresponding orthog-
onal projection. Note that the “operator norm” of Py is 1: || Pyx|| < ||z and for 0 # x € V,
we have || Pyz|| = ||z|| for any x € V.

It is easy to check that Py is symmetric: (Pz,y) = (z, Py) for any x,y € R". We have
P%Z = Py with V = Im(Py). Also, A = 1 is an eigenvalue of multiplicity & and hence
Tr(Py) = k. This gives a heuristic proof of the following claim.

Claim 15. The map V +— Py from Gr(k,n) to {P € L(R"): P> = P, P! = P, Tr(P) = k}
is a bijection. Hence Gr(k,n) is compact. O



3 Milnor’s Proof

In this section we give Milnor’s proof of the following result. The proof uses the change of
variable formula.

Theorem 16. There are no continuously differentiable tangent vector field F with || F(p)| = 1
for p € S?*.

We need some preliminary lemmas. Recall that f: (X,d) — (Y,d) is lipschitz if there
exists a constant L such that d(f(z), f(2')) < Ld(z,2') for all z,2" € X. We say f is locally
lipschitz if for every x € X there exists a neighbourhood U, of x such that the restriction of
f to U, is lipschitz map from U, to Y.

Let us reacall the following lemma

Lemma 17. Let (X,d) be a compact metric space. Let f: X — Y be locally Lipschitz from
X into another metric space Y. Then f is Lipschitz on X.

Proof. By local lipschitz condition, for any z € X there exist r, > 0 and L, > 0 such
that d(f(x1), f(z2)) < Lgd(x1,x2) for all 1,29 € B(x,r;y). By compactness, there exist
finitely many points z; such that X = UB(x;, ;) where r; := r,,. We let L; stand for the
lipschitz constant corresponding to x; and B; for B(z;,r;). Consider the continuous function
h: X x X \ U;(B; x B;) given by h(z,y) := d(z,y). Then h is a continuous function on a
compact set taking values in positive reals. Hence there exists € > 0 such that h(z,y) > ¢ for
all (z,y) in the domain of the function h. If we take M > max{L;,diam f(X)/e}, then M is
a lipschitz constant for f on X. O

Lemma 18. Let f: U — R™ be a C' map from an open set U in R™. Let K be a compact
set in U. Then f: K — R™ s Lipschitz.

Proof. This follows easily from the mean value theorem of differential calculus and the last
lemma. By the mean value theorem, if Bz, r,] C U, we have

[f(21) = ()| < sup | Df(xr +t(z2 —21)) |21 — 22|l 21,22 € Bla,re].
0<t<1

Since Df is continuous on U and hence on the compact set Bz, r.], f is lipschitz with the
lipschitz constant L, = sup{||Df(z)|| : z € Blz,7z]}. Thus f is locally lipschitz on K and
hence lipschitz on K. ]

Lemma 19. Let U be an open connected bounded set in R™ so that A = U is compact and
connected. Let F be a continuously differentiable vector field in an open set V. O A. For
t € R, let Fi(z) := x + tF(x), for x € A. If t is sufficiently small, then the mapping F} is
one-to-one and maps A onto Fy(A) whose volume is a polynomial function of t.

| Explain why Fy(A) is a J-set |

Proof. Since A is compact and F is C', F is lipschitz on A, say with lipschitz constant
L: |F(z)—F(y)|| < L||lz—yl|, for z,y € A. If t is such that F; is not one-to-one, then
Fy(z) = Fi(y) so that © —y = t(F(x) — F(y) and hence ||z —y| < L|t|||z —y]|. So, if we
choose [t| < 1/L, then F} is one-to-one. The Jacobian matrix of F} is of the form I + t(gﬁ; ),
where [ is the identity matrix. Hence the determinant of the Jacobian, DF; is a polynomial




function of ¢ of the form 1+ tay(z)+- - +t"ay(z) where a; are continuous functions of x. By
change of variable formula, we see that the volume of the image of A under F} is a polynomial
function of ¢:

m(Fi(A)) = ap + ait + - - - + a,t”,

where a; is the integral of «; over A. O

Lemma 20. Assume that F: S"1 — R™ be a C' tangent vector field on the sphere with
|E(x)|| =1 for all x. If t is sufficiently small, then Fy; maps the unit sphere in R™ onto the
sphere of radius v/'1 + 2.

Proof 1. Assume that A is defined by the inequalities: 1/2 < ||z| < 3/2. We extend the
vector field F' on A by setting F'(x) := ||z| F(z/ | z]||). We also define F;(z) = x + tF(z) on
this set A. Choose t small enough so that |¢t| < 1/3 and ¢t < L™!. (L is the lipschitz constant
of F.) For each vg € S"~!, the map ¢: z — vy — tF(x) maps the complete metric space A
into itself. ¢ is a contraction. Hence by contraction mapping theorem there exists a unique
fixed point. Consequently, the equation Fi(z) = vy has a unique solution. Thus for a given
vp € 8", Fy(x) = vg has a unique solution in A. Multiplying both 2 and vg by V1 + t2, the
lemma follows. (Note that F;(rz) = rFi(x).) O
Proof 2. We assume that n > 2. If ¢ is sufficiently small, then DF;(z) is nonsingular on all
of the compact set A. (This follows from the expression for the determinant of the Jacobian
matrix DF;(z). See the proof of Lemma 19. Or, observe that the set of invertible matrices
is an open set, I lies in the open set and for ¢ near to 0, the Jacobian matrices DF;(z) all lie
in a neighbourhood of I for all x € A.) By inverse mapping theorem, F} is an open map and
hence maps the interior of A into an open subset and F;(S"7!) is a relatively open subset
of the sphere of radius v/1 + 2. But F;(S"!) is a compact and hence closed subset of the
sphere of radius /1 + 2. Since n > 2, the spheres in R" are connected. Hence F;(S"7!) is
the sphere of radius /1 + t2. O

Proof of Thm. 16. Given a C! field F of unit tangent vectors on S”~!, we consider any annular
region a < ||z| < b and extend F' to this region as in the last lemma. Then F; maps the
sphere of radius r onto the sphere of radius rv/1 + ¢2, for ¢ near 0. Hence F; maps the region
A onto the annular region between the spheres of radii av/1 + t2 and byv/1 + t2. Obviously,
the volume of the latter region is given by

Volume of F;(A) = (/1 + t2)"Volume of A.

If n is odd the volume of F;(A) is not a polynomial function of ¢. This contradicts Lemma 19.
O

Theorem 21. An even dimensional sphere does not admit a continuous nowhere vanishing
tangent vector field.

Proof. Suppose F' is such vector field. We produce an infinitely differentiable unit tangent
vector field. This will contradict Theorem 16.

Let m := inf{|| F(x)| : € S"~'}. By (Stone-)Weierstrass theorem there exists a poly-
nomial map P: S"~! — R" such that || P(z) — F(x)| < m/2 for all z € S""1. We define
a differentiable vector field G by setting G(x) := P(x) — (P(z),z)x for x € S. Then G is
tangent to S. Also, G is nowhere zero. Let, if possible, G(xg) = 0. Then

P(x0) = (P(%0), w0) To- (2)



Since || P(xz) — F(x)| < m/2, by Cauchy-Schwarz inequality
[(P(z) = F(x),z)[ <m/2. 3)
But (P(x) — F(z),z) = (P(z), z), since (F(z),z) = 0. It the follows from Eq. 3 that
[(P(x), z)| <m/2. (4)
Using this inequality in (2) we get
1P(zo) || = [(P(x0), zo)| [|zo | < m/2. ()

Since || F(x)|| > m and || F(z) — P(x)| < m/2, by triangle inequality we see that || P(z)|| >
m/2 for all z. This contradicts Eq. 5. Hence there is no zp with G(x¢) = 0. The vector field
G(z)/ ||G(x)] is then a smooth unit tangent field on S. O

Reference Milnor, J., Analytic Proofs of the “Hairy Ball Theorem” and the Brouwer Fixed
Point Theorem, Amer. Math. Monthly, vol.85, 1978.



