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1 Grassmann Manifolds – via Column Reduced Matrices

Let Gr(k, n) ≡ Gr(k,Rn) denote the set of all k-dimensional vector subspaces of Rn. We wish
to make it a differential manifold of dimension (n− k)k. Note that as sets Gr(1, n) = Pn(R),
the n-dimensional projective space over R.

The first goal is for any given V ∈ Gr(k,Rn), we need find a parametrized set containing
V .

Let us find an atlas for Gr(k,Rn) using the column-reduced matrices.
Let V ∈ Gr(k,Rn). Let {v1, . . . , vk} be a basis of (column) vectors for V . We then form a

n× k matrix, say, AV where the j-th column is the column vector vj . By its very definition,
the rank of AV is k. Conversely, if A is an n× k matrix of rank k, then the linear span of the
columns is a k-dimensional vector subspace of Rn. Denote it by VA.

Let Mk
n×k denote the matrices of type n × k of rank k. Given A,B ∈ Mk

n×k, it can
happen VA = VB, that is, the column spaces of both the matrices are the same. We let
A ∼ B if VA = VB. This is an equivalence relation. Let [A] denote the equivalence class of
A. When does VA = VB? This happens precisely when there is a (unique) T ∈ GL(k) such
that B = AT .

We hope that you have learnt about the Gauss-Jordan elimination and also of the reduced
row echelon forms of a given matrix in your linear algebra course. You might have also seen
how they are useful in finding a basis for the row space etc. You may be aware that such
a reduced row echelon matrix of a given matrix is unique. Of course similar considerations
apply to reduced column echelon matrices. This is what we need below.

Let A ∈Mk
n×k. Assume for the time being that the first k-rows are linearly independent.

That is, (aij)1≤i,j≤k is invertible. Let us recall the fact that given such an n × k matrix,

there exists a unique matrix of the form

(
I
Z

)
where I = Ik×k, the identity matrix and Z

is an (n − k) × k matrix, which depends on [A]. If B ∼ A, then A and B have the same
column reduced matrix. We refer to the column-reduced matrix as the canonical form of A
(or the equivalence class [A]). The canonical form is got by column reduction or Gauss-Jordan
elimination. It is thus a distinguished representative of the equivalence class [A].

What does this say? If V is represented by A, or equivalently by [A], the matrix Z in the
canonical from provides as (n− k)k coordinates of V as V varies (over what?).

Let λ denote an ordered k-tuple of integers satisfying 1 ≤ λ1 < · · · < λk ≤ n. Let Λ be
the set of such λ’s. We say that A ∈ Mk

n×k is of type λ if the rows Rλ1(A), . . . , Rλk(A) are

1



linearly independent. (Here Rj(A) denotes the j-th row of A.) Again by column reduction,
there is a canonical form in which the above rows form the identity matrix. The rest of the
(n − k)k entries afford us a coordinate system for such matrices. The earlier case is when
λ = {1, 2, . . . , k}.

Let us write this explicitly. Let

Uλ := {V ∈ Gr(k,Rn) : ∃A ∈Mk
n×k of type λ such that V = VA}.

Given any such V , let PA be the canonical form in which the rows Rλ1 , . . . Rλk form the
identity matrix. Let Z be the (n − k) × k matrix from of the remaining rows. We let
ϕλ(V ) ≡ ϕλ(VA) = Z ∈M(n−k)×k.

Note that given any V ∈ Gr(k,Rn), there exists λ such that V ∈ Uλ. Thus we got hold
of a tentative candidate for an atlas on Gr(k,Rn), namely, {(Uλ, ϕλ) : λ ∈ Λ}. Of course, we
need to check the smoothness of transition maps.

Let us look at an example.

Example 1. Let us consider Gr(2,R3). Then Λ = {(12), (13), (23)}. The canonical form of

any element in U12 is of the form

1 0
0 1
r s

. Hence ϕ12(V ) = (r, s).

Let W ∈ U23. The canonical form is a matrix like

u v
1 0
0 1

. Hence ϕ23(W ) = (u, v). If

V ∈ U12 ∩ U23, then, the transition map is (r, s) 7→ (u, v). So we need to exhibit u = u(r, s)
and v = v(r, s) as smooth functions of r and s.

If V ∈ U12 ∩ U23, then in the canonical form (for U12), we deduce that r 6= 0. (Why?)
How do we get the canonical form valid in U23 from that of U12? Observe1 0

0 1
r s

(0 1
r s

)−1
=

1 0
0 1
r s

[(−1

r

)(
s −1
−r 0

)]

=

− s
r

1
r

1 0
0 1

 . (1)

Hence we see that u = −s/r and v = 1/r. Thus the transition functions are smooth.

Let V ∈ Uλ ∩ Uµ. Let Pλ be the canonical form of A such that V = VA. Let Qλµ be the
submatrix of Pλ consisting of only those rows that are indexed by µ. Let Zλµ the (n− k)× k
matrix consisting of the remaining rows of Pλ.

Consider the function fλµ : Uλ → R defined by fλµ(V ) := det(Qλµ). Then fλµ is continu-
ous. Also, V ∈ Uλ ∩ Uµ iff fλµ(V ) 6= 0. Hence we conclude that ϕλ(Uλ ∩ Uµ) is open.

Let V ∈ Uλ ∩ Uµ. Recall that ϕλ(V ) = Zλ and ϕµ(V ) = Zµ. So, we need to ask how to
express Zµ in terms of Zλ. Clearly, Zµ = ZλµQ

−1
λµ . (Note that this is what happened in (1).)

This establishes the smoothness of the transition maps.

We need to establish that Gr(k,Rn) is Hausdorff. If V,W ∈ Uλ, then they can be separated
by means of open sets. Let V ∈ Uλ and W ∈ Uµ, λ 6= µ but they are not in Uλ ∩ Uµ. Let
us understand this. When does V ∈ Uλ but V /∈ Uµ? It means that the submatrix Qλµ
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is not invertible, that is fλµ(V ) = 0. Similar remark applies to W and we conclude that
fµλ(W ) = 0. This suggests that we employ fλµ to separate them.

First of all, two observations: (i) Qλµ = Q−1µλ on Uλ ∩ Uµ and hence (ii) fλµfµλ = 1.
Since V ∈ Uλ \ Uµ, we see that fλµ(V ) = 0. Similarly, fµλ(W ) = 0. Let J := (−1, 1).

Then f−1λµ (J) is an open set ΩV ⊂ Uλ containing V . Similarly, f−1µλ (J) is an open set ΩW ⊂ Uµ
containing W . If Z ∈ ΩV ∩ΩW , then Z is an element of Uλ ∩Uµ. Hence fλµ(Z) makes sense.
Since Z ∈ ΩV , we conclude that |fλµ(Z)| < 1. Similarly, |fµλ(Z)| < 1. Hence the product
|fλµ(Z) · fµλ(Z)| < 1. This is a contradiction to the observation (ii) above.
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2 Grassmann Manifolds – A Linear Algebraic Approach

We discuss the Grasssmann manifolds from a different point of view. This is more demand-
ing and is good training ground for your understanding of linear algebra as well as your
perseverance.

Let Gr(k, n) ≡ Gr(k,Rn) denote the set of all k-dimensional vector subspaces of Rn. We
wish to make it a differential manifold of dimension (n − k)k. Note that as sets Gr(1, n) =
Pn(R), the n-dimensional projective space over R.

The first goal is for any given V ∈ Gr(k,Rn), we need find a parametrized set containing
V .

Let V be a k-dimensional linear subspace of Rn. Fix any complementary subspace V ′ of
V such that Rn = V ⊕ V ′. If we assume that Rn has an inner product structure, a natural
choice of V ′ is V ⊥, the orthogonal complement of V in Rn. We assume that this is the case
in the sequel.

Let UV be the set of all k-dimensional linear subspaces W such that W ∩V ⊥ = (0). Note
that V ∈ UV .

Let πV : Rn → V be the orthogonal projection corresponding to the orthogonal decompo-
sition Rn = V ⊕ V ⊥.

Claim 2. The restriction of πV to W ∈ UV is a linear isomorphism onto V .

Let w ∈ W . Let w = v + u, v ∈ V and u ∈ V ⊥. Then πV (w) = v. If w ∈ kerπV , then
v = 0 ad hence w = u ∈ W ∩ V ⊥ = (0). Hence πV restricted to W is one-one and the claim
follows.

Let A ∈ L(V, V ⊥), the set of linear maps from V to V ⊥. It is a vector space of dimension
(n− k)k. We set up a bijection of UV and L(V, V ⊥).

For any A ∈ L(V, V ⊥), we let Γ(A) := {v+Av : v ∈ V } ⊂ Rn. The set Γ(A) is traditionally
called the graph of A.

Claim 3. Γ(A) is a k-dimensional linear subspace of Rn such that Γ(A) ∩ V ⊥ = (0).

That it is a linear subspace is easy. Let x + Ax ∈ Γ(A) ∩ V ⊥. Since x + Ax ∈ V ⊥ and
since Ax ∈ V ⊥ (since A maps V to V ⊥), we see that x = (x + Ax) − Ax ∈ V ⊥. Thus
x ∈ V ∩ V ⊥ = (0).

Claim 4. Let W ∈ UV . Then there exists a unique A ∈ L(V, V ⊥) such that W = Γ(A).

Let x ∈ W . Using the decomposition Rn = V ⊕ V ⊥, we write x = y + z with y ∈ V an
z ∈ V ⊥. If the claim is true, then y + z = v +Av and hence we are led to define Ay = z.

Is A well-defined? That is, if x = y + z and x1 = y + z1 for x, x1 ∈W , we need to ensure
that z = z1. We observe that z − z1 = x − x1 ∈ W . But then the LHS z − z1 ∈ V ⊥. Thus
the element z − z1 ∈W ∩ V ⊥ = (0). We therefore conclude that z = z1.

That A is linear is easy.
Is A unique? That is, if B ∈ L(V, V ⊥) is such that W = Γ(A) = Γ(B), then is B = A?

Let v ∈ V . Then x := v + Av ∈ W as well as y := v +Bv ∈ W . Then x− y ∈ W . But then
x− y = Av −Bv ∈ V ⊥. Since W ∩ V ⊥ = (0), we conclude that Av = Bv for v ∈ V . That is,
A = B.

Thus we have established a bijection between UV and L(V, V ⊥):

Claim 5. The map ϕV : L(V, V ⊥)→ UV defined by ψV (A) := Γ(A) is a bijection.
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Let ϕV := ψ−1V : UV → L(V, V ⊥) be its inverse.
Thus we arrive at a ‘plausible’ candidate for an atlas on Gr(k,Rn). It is the collection

{(UV , ϕV ) : V ∈ Gr(k,Rn)}.

Claim 6. ϕ(UV ∩ UW ) = {A ∈ L(V, V ⊥) : Γ(A) ∩W⊥ = (0)}.

This is clear in view of the last two Claims.

Claim 7. ϕ(UV ∩ UW ) is open in L(V, V ⊥).

Note that if A is in ϕ(UV ∩ UW ), then Γ(A) ∩ W⊥ = (0) and hence the orthogonal
projection πV restricted to W is an isomorphism of W onto V . This is an “open condition”
and hence the claim.

We note that the transition map ϕW ◦ ϕ−1V = ϕW ◦ ψV .
Let A ∈ ϕ(UV ∩ UW ). Let Z := ψV (A) = Γ(A). Let B := (ϕW ◦ ψV )(A).
Then B ∈ L(W,W⊥) is the (unique) element such that Γ(B) = Z.
It therefore follows that we need to show that B “depends smoothly on” A, that is, to

express B in terms of A.
Let z ∈W = Γ(A) = Γ(B). Hence there exists v ∈ V and w ∈W such that z = v+Av =

w + Bw. We then have v + Av − w = Bw ∈ W⊥. Let πW : Rn → W be the orthogonal
projection. Then πW (v+Av−w) = πW (Bw) = 0, since Bw ∈W⊥. Let IA := I+A : V → Rn
be defined by IA(v) = v +Av. Then we see that

πW (v +Av − w) = 0 =⇒ πW (IA(v)) = w.

What do we know of πW ◦ IA?

Claim 8. πW ◦ IA : V →W is a linear isomorphism,

For, since A ∈ ϕV (UV ∩ UW ), πV : Γ(A) → V and πW : Γ(A) → W are linear isomor-
phisms.)

Hence we can express v as v = (πW ◦ IA)−1(w). Finally,

Bw = IA(v)− w = IA((πW ◦ IA)−1)(w)− w.

Claim 9. B “depends smoothly on” A.

Let F ⊂ {1, . . . , n} be a subset of k elements. Let VF be the linear span of {ei : i ∈ F}.
Let UF := UVF . What does ϕF stand for?

Claim 10. Given any V ∈ Gr(k, n) there exists a k-subset F ⊂ {1, . . . , n} such that V ∈ UF .
Hence {(UF , ϕF ) : F ⊂ {1, . . . , n}, |F | = k} is a finite atlas for Gr(k, n).

Claim 11. Let Vj ∈ Gr(k,Rn), j = 1, 2. Then there exists V ∈ Gr(k,Rn) such that Vj ∈ UV ,
j = 1, 2.

What are the ‘extreme’ cases for the pair (V1, V2)? It could be they are orthogonal com-
plements of each other (of course, this can happen only when n = 2k.) Or their intersection
is nontrivial. Experiment. Draw pictures for Gr(2, 4). Look at various possibilities such as
V1 = span {e1, e2} and V2 = span {e3, e4} or V1 := span {e1, e2} and V2 = span {e2, e3} and
arrive at a candidate for V .
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Let {u1, . . . , ur} be an orthonormal basis of V1 ∩V2. If V1 ∩V2 = (0), then the basis is the
empty set!

Let {u1, . . . , ur, v1, . . . , vs} be an orthonormal basis for V1. Let {u1, . . . , ur, w1, . . . , ws} be
an orthonormal basis for V2.

What do you know about 〈vi, wj〉? What is r + s?

Claim 12. Let V be the linear subspace spanned by {u1, . . . , ur, v1 + w1, . . . , vs + ws}. It is
k-dimensional.

Let c1u1 + · · ·+ crur + d1(v1 + w1) + · · ·+ ds(vs + ws) = 0. That is,

c1u1 + · · ·+ crur + d1v1 + · · ·+ dsvs + d1w1 + · · ·+ dsws = 0.

It follows that ci = 0, 1 ≤ i ≤ r and dj = 0, 1 ≤ j ≤ s.

Claim 13. Vj ∩ V ⊥ = (0), j = 1, 2. Hence Vj ∈ UV .

Let x ∈ V1 ∩ V ⊥. Then 〈x, ui〉 = 0 for 1 ≤ i ≤ r, since ui ∈ V , 1 ≤ i ≤ r. Hence we can
writ x = c1v1 + · · ·+ csvs as x ∈ V1. Since x ∈ V ⊥, we have

0 = 〈x, vi + wi〉 = 〈x, vi〉+

s∑
j=1

cj 〈vj , vi + wi〉 =
∑
j

cjδij +
∑
j

cj0 = ci + 0

Hence x = 0.

Claim 14. Gr(k, n) is Hausdorff.

Let V ≤ Rn be a k-dimensional vector subspace. Let πV denote the corresponding orthog-
onal projection. Note that the “operator norm” of PV is 1: ‖Pvx‖ ≤ ‖x‖ and for 0 6= x ∈ V ,
we have ‖PV x‖ = ‖x‖ for any x ∈ V .

It is easy to check that PV is symmetric: 〈Px, y〉 = 〈x, Py〉 for any x, y ∈ Rn. We have
P 2
V = PV with V = Im (PV ). Also, λ = 1 is an eigenvalue of multiplicity k and hence

Tr(PV ) = k. This gives a heuristic proof of the following claim.

Claim 15. The map V 7→ PV from Gr(k, n) to {P ∈ L(Rn) : P 2 = P, P t = P, Tr(P ) = k}
is a bijection. Hence Gr(k, n) is compact.
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3 Milnor’s Proof

In this section we give Milnor’s proof of the following result. The proof uses the change of
variable formula. Give Ref!

Theorem 16. There are no continuously differentiable tangent vector field F with ‖F (p)‖ = 1
for p ∈ S2k.

We need some preliminary lemmas. Recall that f : (X, d) → (Y, d) is lipschitz if there
exists a constant L such that d(f(x), f(x′)) ≤ Ld(x, x′) for all x, x′ ∈ X. We say f is locally
lipschitz if for every x ∈ X there exists a neighbourhood Ux of x such that the restriction of
f to Ux is lipschitz map from Ux to Y .

Let us reacall the following lemma Give Ref!

Lemma 17. Let (X, d) be a compact metric space. Let f : X → Y be locally Lipschitz from
X into another metric space Y . Then f is Lipschitz on X.

Proof. By local lipschitz condition, for any x ∈ X there exist rx > 0 and Lx > 0 such
that d(f(x1), f(x2)) ≤ Lxd(x1, x2) for all x1, x2 ∈ B(x, rx). By compactness, there exist
finitely many points xi such that X = ∪B(xi, ri) where ri := rxi . We let Li stand for the
lipschitz constant corresponding to xi and Bi for B(xi, ri). Consider the continuous function
h : X × X \ ∪i(Bi × Bi) given by h(x, y) := d(x, y). Then h is a continuous function on a
compact set taking values in positive reals. Hence there exists ε > 0 such that h(x, y) ≥ ε for
all (x, y) in the domain of the function h. If we take M ≥ max{Li, diam f(X)/ε}, then M is
a lipschitz constant for f on X.

Lemma 18. Let f : U → Rm be a C1 map from an open set U in Rn. Let K be a compact
set in U . Then f : K → Rm is Lipschitz.

Proof. This follows easily from the mean value theorem of differential calculus and the last
lemma. By the mean value theorem, if B[x, rx] ⊂ U , we have

‖f(x1)− f(x2)‖ ≤ sup
0≤t≤1

‖Df(x1 + t(x2 − x1))‖ ‖x1 − x2‖ , x1, x2 ∈ B[x, rx].

Since Df is continuous on U and hence on the compact set B[x, rx], f is lipschitz with the
lipschitz constant Lx = sup{‖Df(z)‖ : z ∈ B[x, rx]}. Thus f is locally lipschitz on K and
hence lipschitz on K.

Lemma 19. Let U be an open connected bounded set in Rn so that A = U is compact and
connected. Let F be a continuously differentiable vector field in an open set V ⊃ A. For
t ∈ R, let Ft(x) := x + tF (x), for x ∈ A. If t is sufficiently small, then the mapping Ft is
one-to-one and maps A onto Ft(A) whose volume is a polynomial function of t.

Explain why Ft(A) is a J-set

Proof. Since A is compact and F is C1, F is lipschitz on A, say with lipschitz constant
L: ‖F (x)− F (y)‖ ≤ L ‖x− y‖, for x, y ∈ A. If t is such that Ft is not one-to-one, then
Ft(x) = Ft(y) so that x − y = t(F (x) − F (y) and hence ‖x− y‖ ≤ L |t| ‖x− y‖. So, if we
choose |t| < 1/L, then Ft is one-to-one. The Jacobian matrix of Ft is of the form I + t( ∂fi∂xj

),

where I is the identity matrix. Hence the determinant of the Jacobian, DFt is a polynomial
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function of t of the form 1+ tα1(x)+ · · ·+ tnαn(x) where αi are continuous functions of x. By
change of variable formula, we see that the volume of the image of A under Ft is a polynomial
function of t:

m(Ft(A)) = a0 + a1t+ · · ·+ ant
n,

where ai is the integral of αi over A.

Lemma 20. Assume that F : Sn−1 → Rn be a C1 tangent vector field on the sphere with
‖F (x)‖ = 1 for all x. If t is sufficiently small, then Ft maps the unit sphere in Rn onto the
sphere of radius

√
1 + t2.

Proof 1. Assume that A is defined by the inequalities: 1/2 ≤ ‖x‖ ≤ 3/2. We extend the
vector field F on A by setting F (x) := ‖x‖F (x/ ‖x‖). We also define Ft(x) = x+ tF (x) on
this set A. Choose t small enough so that |t| < 1/3 and t < L−1. (L is the lipschitz constant
of F .) For each v0 ∈ Sn−1, the map ϕ : x 7→ v0 − tF (x) maps the complete metric space A
into itself. ϕ is a contraction. Hence by contraction mapping theorem there exists a unique
fixed point. Consequently, the equation Ft(x) = v0 has a unique solution. Thus for a given
v0 ∈ Sn−1, Ft(x) = v0 has a unique solution in A. Multiplying both x and v0 by

√
1 + t2, the

lemma follows. (Note that Ft(rx) = rFt(x).)
Proof 2. We assume that n ≥ 2. If t is sufficiently small, then DFt(x) is nonsingular on all
of the compact set A. (This follows from the expression for the determinant of the Jacobian
matrix DFt(x). See the proof of Lemma 19. Or, observe that the set of invertible matrices
is an open set, I lies in the open set and for t near to 0, the Jacobian matrices DFt(x) all lie
in a neighbourhood of I for all x ∈ A.) By inverse mapping theorem, Ft is an open map and
hence maps the interior of A into an open subset and Ft(S

n−1) is a relatively open subset
of the sphere of radius

√
1 + t2. But Ft(S

n−1) is a compact and hence closed subset of the
sphere of radius

√
1 + t2. Since n ≥ 2, the spheres in Rn are connected. Hence Ft(S

n−1) is
the sphere of radius

√
1 + t2.

Proof of Thm. 16. Given a C1 field F of unit tangent vectors on Sn−1, we consider any annular
region a ≤ ‖x‖ ≤ b and extend F to this region as in the last lemma. Then Ft maps the
sphere of radius r onto the sphere of radius r

√
1 + t2, for t near 0. Hence Ft maps the region

A onto the annular region between the spheres of radii a
√

1 + t2 and b
√

1 + t2. Obviously,
the volume of the latter region is given by

Volume of Ft(A) = (
√

1 + t2)nVolume of A.

If n is odd the volume of Ft(A) is not a polynomial function of t. This contradicts Lemma 19.

Theorem 21. An even dimensional sphere does not admit a continuous nowhere vanishing
tangent vector field.

Proof. Suppose F is such vector field. We produce an infinitely differentiable unit tangent
vector field. This will contradict Theorem 16.

Let m := inf{‖F (x)‖ : x ∈ Sn−1}. By (Stone-)Weierstrass theorem there exists a poly-
nomial map P : Sn−1 → Rn such that ‖P (x)− F (x)‖ < m/2 for all x ∈ Sn−1. We define
a differentiable vector field G by setting G(x) := P (x) − 〈P (x), x〉x for x ∈ S. Then G is
tangent to S. Also, G is nowhere zero. Let, if possible, G(x0) = 0. Then

P (x0) = 〈P (x0), x0〉x0. (2)
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Since ‖P (x)− F (x)‖ < m/2, by Cauchy-Schwarz inequality

|〈P (x)− F (x), x〉| < m/2. (3)

But 〈P (x)− F (x), x〉 = 〈P (x), x〉, since 〈F (x), x〉 = 0. It the follows from Eq. 3 that

|〈P (x), x〉| < m/2. (4)

Using this inequality in (2) we get

‖P (x0)‖ = |〈P (x0), x0〉| ‖x0‖ < m/2. (5)

Since ‖F (x)‖ ≥ m and ‖F (x)− P (x)‖ < m/2, by triangle inequality we see that ‖P (x)‖ ≥
m/2 for all x. This contradicts Eq. 5. Hence there is no x0 with G(x0) = 0. The vector field
G(x)/ ‖G(x)‖ is then a smooth unit tangent field on S.

Reference Milnor, J., Analytic Proofs of the “Hairy Ball Theorem” and the Brouwer Fixed
Point Theorem, Amer. Math. Monthly, vol.85, 1978.
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