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Definition 1. Let Vi , i = 1,2 and W be vector spaces over a field F. A map f : V1 ×V2 → W is
bilinear if f is linear in each of its variables when the other variable is fixed: v1 7→ f (v1, v2)
from V1 to W is linear for any fixed v2 ∈ V2 and v2 7→ f (v1, v2) from V2 to W is linear for any
fixed v1 ∈V1.

Ex. 2. How do you define a k-linear map f : V1 ×·· ·×Vk →W ?

Example 3. Two standard and familiar examples are the inner product on V and the multipli-
cation map on R. To be precise, let (V ,〈 ,〉) be a real inner product space. Let V1 =V2 =V and
f (v1, v2) := 〈v1, v2〉. Then f is bilinear.

Let V1 =V2 =R and let f : R×R→R be the multiplication map f (x, y) = x y , the product of
two real numbers. Then f is bilienar.

Example 4. Let M(2,R). We may consider it as a a direct sum as follows: Let A =
(

a b
c d

)
∈

M(2,R). Let C1 :=
(

a
c

)
and C2 :=

(
b
d

)
be the columns of A. Then A = (C1,C2) ∈ R2 ×R2. The

determinant map f (a) := det A is bilinear.
Is f a bilinear map of the rows? Make this question precise and answer it!

Ex. 5. Can you think of the determinant function on M(n,R) as a k-linear function for a suit-
able k?

Recall that a linear map between vector spaces is completely determined once we know
its values on the elements of a basis. Let us see whether we have an analogue for the bilin-
ear maps. To keep the notation simple, let V1 = V2 = V . Let f : V ×V → W be bilinear. Let
{v1, . . . , vn} be an ordered basis of V . Let x :=∑

i xi vi and y :=∑
i yi vi be vectors in V . We then

have

f (x, y) = f

(∑
i

xi vi ,
∑

j
y j v j

)
=∑

i , j
xi y j f (vi , v j ). (Why?)

Hence it follows that if we know f (vi , v j ), 1 ≤ i , j ≤ n, we “know" f (x, y) for any (x, y) ∈V ×V .
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Let us now assume that V := Vi = Rm , i = 1,2 and W = Rn . Let vi = ei , 1 ≤ i ≤ m, be the
standard basis on Rm . Let V and W be equipped with one of the three norms ‖ ‖. Then it
follows that∥∥ f (x, y)

∥∥≤∑
i , j

|xi |
∣∣y j

∣∣∥∥ f (ei ,e j )
∥∥≤C ‖x ‖∥∥ y

∥∥ , where C :=∑
i , j

∥∥ f (ei ,e j )
∥∥ . (1)

It is easy deduce the continuity of f from this estimate. (Exercise: Prove this.)

Ex. 6. Find an analogue of (1) for k-linear maps.

We keep the notation preceding (1). We now claim that f is differentiable. Let (u, v) ∈
Rm ×Rm . We show that f is differentiable at (u, v). Let (h,k) ∈Rm ×Rm . We then observe that

f (u +h, v +k)− f (u, v) = f (u +h, v)+ f (u +h,k)− f (u, v)

= f (u, v)+ f (h, v)+ f (u,k)+ f (h,k)− f (u, v)

= f (h, v)+ f (u,k)+ f (h,k).

We let A(h,k) := f (u,k)+ f (h, v). It is easy to verify that A is linear. The ‘error term’ E(h,k) is
f (h,k). In view of (1), we see that ‖E(h,k)‖ ≤ C ‖‖h‖‖k ‖ ≤C ‖(h,k)‖‖2. Thus f is differen-
tiable and the derivative is the linear map

D f (u, v) : (h,k) 7→ f (u,k)+ f (h, v). (2)

Ex. 7. Let f :

k−times︷ ︸︸ ︷
Rm ×·· ·×Rm → Rn be k-linear. Prove that f is differentiable and compute its

derivative.

We now apply this to the determinant map on M(2,R). Let A be as in Example 4. Let

M(2,R) 3 H :=
(

x y
z w

)
= (H1, H2) ∈ R2 ×R2 where Hi is the i -th column of H . By (2), we see

that

D f (A)(H) = det(C1, H2)+det(H1,C2)

= det

(
a y
c w

)
+det

(
x b
z d

)
= (aw − c y)+ (d x −bz). (3)

Let us recall that we have an inner product on M(2,R) which as obtained by identifying
M(2,R) with R4:(

a b
c d

)
7→ (a,b,c,d) so that

〈(
a b
c d

)
,

(
x y
z w

)〉
= ax +by + cz +d w.
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We also know that it can be intrinsically defined as follows:〈(
a b
c d

)
,

(
x y
z w

)〉
= Tr

((
a b
c d

)(
x y
z w

)T
)

.

If f is the determinant map on M(2,R), we know it is differentiable and we have computed
the derivative in (3). We now ask the question: What is its gradient? We would like to exhibit
the gradient as an element of M(2,R) as a matrix, not as a vector in R4! Thus, we need to find
a matrix B such that D f (A)(H) = 〈H ,B〉 = Tr(HB T ). A little inspection of (3) and reflection

leads us to B T =
(

d −c
−b a

)
. Do you recognize how B is related to A? If not, you may need to

review the algebra of matrices! B is the so-called adjunct matrix of A.

Ex. 8. You know what this exercise is about. State the exercise and solve it!

Now let us have some fun. The following material is not true to the title!

Let us denote an arbitrary element A ∈ M(2,R) by A =
(

x y
z w

)
. Thus f (A) := det(A) =

xw − y z. This is a polynomial function and hence is differentiable. So, to find the gradient it
suffices to find the partial derivatives! They are

∂ f

∂x
= w,

∂ f

∂y
=−z,

∂ f

∂z
=−y and

∂ f

∂w
= x.

So, if we wish to visualize the gradient of f as an element of M(2,R), it should look like(
∂ f
∂x

∂ f
∂y

∂ f
∂z

∂ f
∂w

)
=

(
w −z

−y x

)
.

Viola, we got it so easily!

Ex. 9. What should be the next question? Formulate it and try to answer it!

Hint for Ex. 9: The question is: Is there a similar easy method to compute the gradient of the
determinant function on M(n,R)?

The answer is: Yes, if you remember the facts on determinants! Recall the Laplace ex-
pansion of determinants in terms of cofactors. (We are not going to define cofactors!) Given
A := (ai j ) ∈ M(n,R), let Ci j denote the (i , j )-th cofactor of ai j . Then Laplace expansion says

ai 1C j 1 +·· ·+ai nC j n = δi j det(A) = a1i C1 j +·· ·+ani Cn j , . (4)

where δ is Kronecker delta. Can you now go ahead and complete the answer? Try on your
own. If you are lazy, follow the hint below.

Hint: Take j = i in (4). Observe that Ci j is independent of the (i , j )-th variable ai j . Com-

pute ∂det
∂ai k

. Does your answer agree with what we found when n = 2? ¦
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