Linear Maps from \mathbb{R}^m to \mathbb{R}^n

S Kumaresan kumaresa@gmail.com

December 8, 2023

Abstract

We classify (find) all linear maps $T \colon \mathbb{R}^m \to \mathbb{R}^n$. The plan is in the following list of steps.

- 1. Find all linear maps from \mathbb{R} to \mathbb{R} . They are of the from f(x) = ax where a = f(1).
- 2. Find all linear maps from \mathbb{R}^n to \mathbb{R} . They are of the from $f(x) = \sum_k a_k x_k$ where $a_k = f(e_k)$.
- 3. The projection maps $\pi_i \colon \mathbb{R}^m \to \mathbb{R}$, $1 \le i \le m$, defined by $\pi_i(x_1, \ldots, x_m) = x_i$ are linear. Note that $\pi_i(x) = x \cdot e_i$.
- 4. Composition of linear maps is a linear map.
- 5. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be linear. Let $T_i := \pi_i \circ T$. We "know" what T_i looks like from Item 2. $T_i x = a_{i1}x_1 + \cdots + a_{im}x_m$, $1 \le i \le n$. Note that $a_{ij} = Te_j \cdot e_i$.
- 6. Let $Tx = (y_1, \dots, y_n)$. Then $y_i := \pi_i(y) = \pi_i(Tx) = (\pi_i \circ T)(x)$.
- 7. Matrix representation of $T: \mathbb{R}^m \to \mathbb{R}^n$. Let

$$A := \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}. \text{ Note that } Tx = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}.$$

- 8. What is *Te_i*? Geometric meaning of the matrix *A* of *T*: *Ae_i* is the *i*-th column of *A*.
- 9. What is the geometric meaning of the rows? The *i*-th row constitutes the coordinates of *T_ix*.
- 10. Matrix representation of a linear map $T: \mathbb{R}^m \to \mathbb{R}^n$.

We start with the question: What are all the linear maps from \mathbb{R} to \mathbb{R} ? Let $f : \mathbb{R} \to \mathbb{R}$ be linear. Given $x \in \mathbb{R}$, we write it as $x = x \cdot 1$ where we treat x on the right side as a scalar and 1 as a (basic) vector. That is, we consider $\{1\}$ as a basis for \mathbb{R} and express

the vector *x* as a scalar multiple of the basic vector 1. Since *f* is linear, $f(x) = f(x \cdot 1) = xf(1) = ax$ where a := f(1). Thus, if $f : \mathbb{R} \to \mathbb{R}$ is linear, then *f* is given by f(x) = ax where a = f(1). Conversely, if $a \in \mathbb{R}$ and if we define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = ax, then *f* is linear. We also note that f(1) = a. Thus we have arrived at the following lemma.

Lemma 1. A map
$$f : \mathbb{R} \to \mathbb{R}$$
 is linear iff $f(x) = ax$ for all $x \in \mathbb{R}$, where $a = f(1)$.

Let us now look at a linear map $f : \mathbb{R}^m \to \mathbb{R}$. We consider \mathbb{R}^m as the space of column vectors. Let $e_i := (0, ..., 0, 1, 0, ..., 0)^t$ be the standard basic vectors, $1 \le i \le m$. If $x = (x_1, ..., x_m)^t \in \mathbb{R}^m$, we note that $x = x_1e_1 + \cdots + x_me_m$. Since f is linear we see that

$$f(x) = f(x_1e_1 + \dots + x_me_m)$$

= $f(x_1e_1) + \dots + f(x_me_m)$
= $x_1f(e_1) + \dots + x_mf(e_m)$.

If we let $a_i := f(e_i)$, we see that $f(x) = a_1x_1 + \cdots + a_mx_m$. In conclusion, if $f : \mathbb{R}^m \to \mathbb{R}$ is linear then f is of the from $f(x) = a_1x_1 + \cdots + a_mx_m$ where $a_i = f(e_i), 1 \le i \le m$. Conversely, if $f : \mathbb{R}^m \to \mathbb{R}$ is defined by $f(x) = a_1x_1 + \cdots + a_mx_m$ where $a_i \in \mathbb{R}$ are arbitrary, then f is linear and we have $a_i = f(e_i), 1 \le i \le m$. We have thus arrived at the following result.

Lemma 2. Any linear map $T: \mathbb{R}^m \to \mathbb{R}$ is of the form $T(x) = a_1x_1 + \cdots + a_mx_m$ and we have $a_i = T(e_i), 1 \le i \le m$. In particular, T is a first degree polynomial in the variables x_i , $1 \le i \le m$, with zero constant term.

Recall the standard dot product on \mathbb{R}^m : If $x, y \in \mathbb{R}^m$, then $x \cdot y = x_1y_1 + \cdots + x_my_m$. Using this dot product, we can reformulate the last lemma as follows.

Proposition 3. Let $T: \mathbb{R}^m \to \mathbb{R}$ be a linear map. Then there exists a unique vector $a \in \mathbb{R}^n$ such that for all $x \in \mathbb{R}^m$ we have $T(x) = x \cdot a$. The vector $a = (a_1, \ldots, a_m)$ is prescribed by $a_i = T(e_i), 1 \le i \le m$.

Let us look at the projection map $\pi_i \colon \mathbb{R}^m \to \mathbb{R}$ defined by $\pi_i((x_1, \ldots, x_m)^t) = x_i$, $1 \le i \le m$. It is easy to check that it is linear. By Lemma 2, we know that it is of the form $\pi_i(x) = \sum_k a_k x_k$. What are a_k 's? Note that $a_k = 0$ if $k \ne i$ and $a_i = 1$. Let us formulate this as a lemma.

Lemma 4. Let the projection map $\pi_i \colon \mathbb{R}^m \to \mathbb{R}$ be defined by $\pi_i((x_1, \ldots, x_m)^t)$. Then π_i is linear and we have $\pi_i(x) = \sum_k a_k x_k$ where $a_k = \begin{cases} 1 & k = i \\ 0 & k \neq i. \end{cases}$ In terms of the dot-product, $\pi_i(x) = x \cdot e_i, 1 \le i \le m$.

We claim that the composition of linear maps is linear.

Lemma 5. Let U. V and W be vector spaces. Let $A: U \rightarrow V$ and $B: V \rightarrow W$ be linear maps. Then composition $B \circ A: U \rightarrow W$ is a linear map.

Proof. This is an easy verification and is left to the reader.

Now, let a linear map $T: \mathbb{R}^m \to \mathbb{R}^n$ be given. Do you know how to generate *n*-linear maps $T_i: \mathbb{R}^m \to \mathbb{R}$? Lemmas 4-5 give us a way of generating such maps. How about $T_i := \pi \circ T: \mathbb{R}^m \to \mathbb{R}$? We know how to express these maps $T_i: \mathbb{R}^m \to \mathbb{R}$. They are given by

$$T_i x := T_i(x) = a_{i1} x_1 + a_{i2} x_2 + \dots + a_{im} x_m$$
, where $a_{ij} \in \mathbb{R}$. (1)

But we wanted to know Tx! Observe that if we write Tx = y, then to know y is the same as knowing its coordinates y_i , $1 \le i \le n$. That is easily achieved. Note that $y_i = \pi_i(y) = \pi_i(Tx) = (\pi_i \circ T)(x)$. Hence

$$y = Tx = ((\pi_{1} \circ T)(x), (\pi_{2} \circ T)(x), \dots, (\pi_{n} \circ T)(x))^{t}$$

$$= (T_{1}(x), T_{2}(x), \dots, T_{n}(x))^{t}$$

$$= (a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1m}x_{m}, \dots, a_{n1}x_{1} + a_{n2}x_{2} + \dots , a_{nm}x_{m})^{t} \qquad (2)$$

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix} = Ax, \text{ say.} \qquad (3)$$

Observation 6. If $T \colon \mathbb{R}^m \to \mathbb{R}^n$ is a linear map, then we found the following:

- (i) For $x \in \mathbb{R}^m$, the vector $Tx = (p_1(x), \dots, p_n(x))^t$ where each p_i is a first degree polynomial with zero constant term.
- (ii) Each p_i is given by $p_i(x) = a_{i1}x_1 + \cdots + a_{im}x_m$ where $a_{ij} = T_i(e_j) = \pi_i(Te_j) = (Te_j) \cdot e_i$.
- (iii) There is an $(n \times m)$ -matrix A such that Tx = Ax where x is considered as a matrix of size $m \times 1$.

Conversely, if *A* is an $(n \times m)$ -matrix and if we define Tx := Ax for $x \in \mathbb{R}^m$, then *T* is a linear map from \mathbb{R}^m to \mathbb{R}^n . This follows from the properties of the matrix multiplication. Thus we have proved the following theorem.

Theorem 7. A map $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear iff there exists $(n \times m)$ -matrix A such that Tx = Ax.

There are a few more observations that bring out the 'geometric perspective' to a matrix. We already saw the geometric meaning of the rows. The entries of the *i*-th row

are the coefficients of the $T_i x \in \mathbb{R}^n$ expressed as a linear combination of the standard basic vectors of \mathbb{R}^n . The columns also admit a geometric meaning. Look at $Te_i = Ae_i$. This is nothing other than the *i*-th column of *A*.

The matrix *A* is unique: If Tx = Ax = Bx, then (A - B)(x) = 0 for all $x \in \mathbb{R}^m$. In particular, if we take $x = e_i$, then the *i*-th column of the matrix A - B is the zero vector in \mathbb{R}^n , $1 \le i \le n$. Thus each column of A - B is the zero vector in \mathbb{R}^n and hence A - B is the zero matrix. Hence, A = B.

The matrix *A* in (3) is known as the matrix of the linear map *T*. Why is the last paragraph relevant here?

An observation: Note that the proofs of Lemmas 1-2 indicate the following result.

Theorem 8. Let V be a finite dimensional vector space and let W be a vector space. Let $T: V \rightarrow W$ be linear. Let $\{v_1, \ldots, v_n\}$ be a basis of V. If we "know" Tv_i , say, $Tv_i = w_i$, $1 \le i \le n$, then we "know" Tv for any $v \in V$. If $v = \sum_i a_i v_i$, then $Tv = \sum_i a_i w_i$.

There is a 'converse' to the last result.

Theorem 9. Let V be a finite dimensional vector space and let W be a vector space. Fix a basis $\{v_k : 1 \le k \le n\}$ of V. Let $w_1, w_2, ..., w_n$ be a finite sequence of vectors in W. (Note that w_j 's need not be distinct.) Define $T: V \to W$ by setting

$$Tv = a_1w_1 + a_2w_2 + \dots + a_nw_n$$
, where $v = \sum_{k=1}^n a_kv_k$. (4)

Then T is a linear map from V to W.

Proof. If $u, v \in V$ and if $u = \sum_k a_k v_k$ and $v = \sum_k b_k v_k$, note that $v + w = \sum_k (a_k + b_k) v_k$ and for $\lambda \in \mathbb{R}$, $\lambda v = \sum_k (\lambda a_k) v_k$. Hence we have

$$T(u+v) = \sum_{k} (a_k + b_k) w_k = \sum_{k} a_k w_k + \sum_{k} b_k w_k = Tu + Tv$$

$$T(\lambda v) = \sum_{k} (\lambda a_k) w_k = \lambda (\sum_{k} a_k w_k) = \lambda Tv.$$

Hence *T* is linear.

What is significant in the last theorem is that we can "prescribe" arbitrary vectors (from *W*) to Tv_k and "extend *T* linearly" by (4) to any vector *v*. Theorems 8 and 9 substantiate the following important take-way: when dealing with a linear map $T: V \rightarrow W$, we should not be concerned with the explicit expressions for *T* in terms of "coordinates", but we should focus on its action on a (*conveniently chosen*) basis.

To appreciate this, carry out the following exercise: Construct a linear map from \mathbb{R}^2 to \mathbb{R}^3 and another from \mathbb{R}^3 to \mathbb{R}^2 and express them in terms of coordinates! Use (u, v) as coordinates for \mathbb{R}^2 and (x, y, z) as coordinates for \mathbb{R}^3 .

Observation 6-(i) suggests we may define $A : \mathbb{R}^3 \to \mathbb{R}^2$ and $B : \mathbb{R}^2 \to \mathbb{R}^3$ as follows:

$$A(x,y,z) = (p_1(x,y,z), p_2(x,y,z)) = (3x - 4y + 5z, -x + 2y + z), \text{ say.}$$
(5)

$$B(u,v) = (q_1(u,v), q_2(u,v), q_3(u,v)) = (3u + 2v, u - v, u + v), \text{ say.}$$
(6)

Theorems 8 and 9 suggest to define $A : \mathbb{R}^3 \to \mathbb{R}^2$, we choose arbitrary vectors $w_1, w_2, w_3 \in \mathbb{R}^2$ and set $Ae_i = w_i$, $1 \le i \le 3$. For instance, take $w_1 = (3, -1)$, $w_2 = (-4, 2)$, $w_3 = (5, 1)$. Then

$$A(x, y, z) = xAe_1 + yAe_2 + zAe_3 = xw_1 + yw_2 + zw_3 = (3x - 4y + 5z, -x + 2y + z).$$

Voilà! We got the expression for *A* in (5). Can you carry out a similar exercise for *B*? That is, can you define Be_1 , $Be_2 \in \mathbb{R}^3$ suitably so that you get the expression for *B* in (6)? Here $e_1 = (1,0)$ and $e_2 = (0,1)$ are the standard basis of \mathbb{R}^2 .

Remark 10. If I remember correctly, this article was written after recording the following video. Though it is not an exact transcription, this article captures the spirit of the lecture! Linear Maps RmtoRn: https://youtu.be/njIqG4-aQr4