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Abstract

The purpose of this article is to highlight how the characterizing properties of de-
terminants allow us to compute the determinants. Though the determinants are defined
using normalization, mutli-linearity and skew-symmetry, students are not exposed to the
utility of this definition in the computation of the determinants. Typically, students use
the Laplace expansion when evaluating a determinant. We give a few examples to show
how the abstract definition coupled/combined with Laplace expansion makes the com-
putations easier. One should also note that Laplace expansion is computationally very
inefficient, as it involves (asymptotically) n! operations whereas row operations involve
n? operations.

Let F be a field (or a commutative ring with 1). We state the definition, the effect of
elementary row/column operations on the determinant of a matrix, det(A4) = det(A”), and
the determinant of an upper/lower triangular matrix is the product of its diagonal entries.

2 4 5 0
: : . 1 0 1 0

Example 1. We compute the determinant of the following matrix. 9 3 1 92 | By
6 -5 4 -3

carrying out the elementary row operations R} —2Ry, R3+2R3, R4—6R9, R; <> Ry, Ro— R3,
R3 — 3Ry, R3 + R4 and R4 + 2R3, we arrive at upper triangular matrix

101 0
010 -2 . . .
00 1 -5 whose determinant is —23. Since we employed R; <+ Rp, the deter-
0 0 0 —23
minant of the original matrix is 23.
0 1 2 3
. . 1 1 1 1 .
Example 2. Consider the matrix A : + 9 _9 3 3| By carrying out the elementary

1 -2 -2 -3
row operations Ry <> Ry, R3+2R1, Ry — Ry, R4+ 3R, %Rg, R4 — 3R3, we arrive the matrix

1111
01 2 3

B = 00 1 1l Hence we see that det A = (—1) x 5 x det B = —10.
0 0 0 2



1 1 1
. . 2 1 5 2 .
Example 3. Consider the matrix A = 1 -1 92 3l Carrying out the elementary row
4 1 -3 7
1 3 1 1
. . : 0 -5 3 0
operation Ry —2R1, R3— Ry, and R4 —4R;, we arrive at the matrix B = 0 -4 1 2
0 —-11 -7 3
-5 3 0
Hence det A = det B = det | —4 —1 2]. Carrying out the elementary row operation
-1 -7 3
-5 3 0
2R3 — 3Ry, we arrive at C' = | —4 —1 2 |. Expanding by the 23-rd element, we obtain
—-10 —-17 0
det C = (—1)*"3[(=5) x (—17) — (—=10) x 3] = —115.
210 0 00
1 21 0 00
Example 4. Consider D,, := : : . We observe that D1 = 2, Dy = E ;' =
0 00 1 21
0 00 01 2

3 and D3 =

S = N

10
2 1| = 4. We claim that D,, = n + 1.
1 2

Expanding D,, by the first row, we get

1100 ... 000
1 0 00
0 1 1 0 00
D, =2D,_1 —
000O0 ... 121
0000 ... 01

We expand the determinant on the RHS by the first column to get the recurrence relation
D, =2D,_1 — D,,_3. Using induction, we show that D,, =n + 1.

1 2 3 ... 0
-1 0 3 ... n

Example 5. Evaluate D, := -1 =2 0 ... 7n| Hint: Have a look at D3 and Dy, if
-1 -2 -3 ... 0

nothing strikes you.

Example 6 (Vandermonde Determinant). Let aq,--- ,a, be distinct nonzero elements of R.



Consider the column vectors (a}, a5, ..., ak)” for 0 <k <n — 1. Consider the determinant
1 | . |
al a e A,
D(a17 ) an) -
n—1 n—1 n—1
ay as coooay

The determinant D is known as Vandermonde determinant and it is ubiquitous in diverse
areas of mathematics. The value of the determinant is HJN( — a;). You may start with
n = 2 and n = 3 to get acquainted with this determinant. We show by induction that

D(ai,...,an) = [[;5i(a; — ai).

1 1
We have Dy = '1 1‘ =b—a. Conisder D3 = |a b c¢|. Caary out the R3 — aRs
@ b a’> v
1 1 1 1 1 1
to obtain |a b c . Now we do Ry — aR; to arrive at (O bea c— a)' We
0 (b—a)b (c—a)c
expand by the first column to get
b—a c—a 11
Dg_l"(b—a)b (c—a)c_(b_a)(c_a)b C—(b—a)(c—a)(c—b).

Now to evalauate D, consider the following column operations in order:
R,—a1R,_1— Ry 1—a1Rp_9— -+ — Ro—a1Ry.

The resulting determinant is

1 1 1 .. 1
0 (a2 —ay) (a3 —a1) (an —ai)
D(al,ag,...,an) =10 (a2 _al)a2 (a3 _al)a3 (an _al)an
0 (a2 —a1)ay™? (az—a1)ay > ... (an—a1)al 2
1 1 1
a9 as Qp,
= (ag —a)(a3 —a1) -+~ (an — a1) :
ay 2 ag._Q an—2

=[] (aj — a1)D(aa, ..., an)

i>1

- - ) TT 0=
j>1 r>k>2
Tl

j>t

We expanded by the first column and used the multi-linearity of the determinant in its
column arguments and arrived at the second equality in the displayed array of equations.



Ex. 7. If ay,...,a, are distinct complex numbers then for any complex numbers by,...,b,
there exists a polynomial P of degree at most n — 1 uniquely determined by the con-
ditions P(aj) = bj, 1 < j < n. Hint: f P(X) == c+ 0+ X + -+ X" tis
the required polynomial, then (cg,c1,...,c 1) is the unqiue solution of a linear system
D(a1,...,an)(z1,...,2,)" = (b1,...,b,)T. Here D(ay,...,a,) denotes the vandermonde
matrix (and not the determinant).

Example 8. We show that

1+a; as . an
a 1+as ... an
: =l4+arta+---+an
aq as ... 1+ay
The given determinant is det <61 +a1v,e9 +asgv, ..., e, + anv>, where v =¢e1+---+e¢,. Let

us look at n = 3.
det(e1 + a1v, ez + agv, e3 + azv) = det(eq, e2 + agv, e3 + agv) + det(aiv, e2 + agv, e3 + agv)
= [det(e1, ea, e3) + det(e1, agv, e3) + det(eq, 2, azv)]
+ det(ajv, ez, €3)
=(14+as+a3z)+a =1+a;+ a2+ as.
Now proceed by induction.

Example 9. The matrix of this example is from differential geometry and the computation of
its determinant is required while computing the volume element of a (hyper) surface given
as a graph. The matrix is

1+ l‘% 1Ty ... T1Tn
Trox1 1+ x% ... ToXy,

2
Tpll Tpr2 ... 14z

The trick here is, as in the last case, to realize the ith column vector Cj;, which is the vector
e; + x;v, where
1

v=1| | = Z zie; € R™.
Tn i
Again, it may be worthwhile to start looking at the cases n = 2,3 and then complete the
solution by induction.

Example 10. Let A € M(n,F). Consider the associated linear map 74: F™ — F" given by
Tyx = Ax where x € F" is considered as a column vector. Let {vy,...,v,} be an eigenbasis
of . Assume that Tyv; = Av; = Aju;. Thendet A = Ay --- Ay,

Note that by the defintion of the determinant, det A is the unique element of F such that
for any uy,...,u, € F", we have

det(Auq, ..., Au,) = det(A) det(uq, ..., up).

Apply this with u; = v; to get the result.



