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Abstract

The purpose of this article is to highlight how the characterizing properties of de-
terminants allow us to compute the determinants. Though the determinants are defined
using normalization, mutli-linearity and skew-symmetry, students are not exposed to the
utility of this definition in the computation of the determinants. Typically, students use
the Laplace expansion when evaluating a determinant. We give a few examples to show
how the abstract definition coupled/combined with Laplace expansion makes the com-
putations easier. One should also note that Laplace expansion is computationally very
inefficient, as it involves (asymptotically) n! operations whereas row operations involve
n3 operations.

Let F be a field (or a commutative ring with 1). We state the definition, the effect of
elementary row/column operations on the determinant of a matrix, det(A) = det(AT ), and
the determinant of an upper/lower triangular matrix is the product of its diagonal entries.

Example 1. We compute the determinant of the following matrix.


2 4 5 0
1 0 1 0
−2 3 1 2
6 −5 4 −3

. By

carrying out the elementary row operations R1−2R2, R3+2R2, R4−6R2, R1 ↔ R2, R2−R3,
R3 − 3R2, R3 +R4 and R4 + 2R3, we arrive at upper triangular matrix

1 0 1 0
0 1 0 −2
0 0 1 −5
0 0 0 −23

 whose determinant is −23. Since we employed R1 ↔ R2, the deter-

minant of the original matrix is 23.

Example 2. Consider the matrix A : +


0 1 2 3
1 1 1 1
−2 −2 3 3
1 −2 −2 −3

. By carrying out the elementary

row operations R1 ↔ R2, R3 +2R1, R4 −R1, R4 +3R2, 1
5R3, R4 − 3R3, we arrive the matrix

B :=


1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 2

. Hence we see that detA = (−1)× 5× detB = −10.
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Example 3. Consider the matrix A =

∣∣∣∣∣∣∣∣
1 3 1 1
2 1 5 2
1 −1 2 3
4 1 −3 7

∣∣∣∣∣∣∣∣. Carrying out the elementary row

operation R2−2R1, R3−R1, and R4−4R1, we arrive at the matrix B =


1 3 1 1
0 −5 3 0
0 −4 1 2
0 −11 −7 3

.

Hence detA = detB = det

 −5 3 0
−4 −1 2
−11 −7 3

. Carrying out the elementary row operation

2R3 − 3R2, we arrive at C =

 −5 3 0
−4 −1 2
−10 −17 0

. Expanding by the 23-rd element, we obtain

detC = (−1)2+3[(−5)× (−17)− (−10)× 3] = −115.

Example 4. Consider Dn :=

∣∣∣∣∣∣∣∣∣∣∣

2 1 0 . . . 0 0 0
1 2 1 . . . 0 0 0

... . . . ...
0 0 0 . . . 1 2 1
0 0 0 . . . 0 1 2

∣∣∣∣∣∣∣∣∣∣∣
. We observe that D1 = 2, D2 =

∣∣∣∣2 1
1 2

∣∣∣∣ =

3 and D3 =

∣∣∣∣∣∣
2 1 0
1 2 1
0 1 2

∣∣∣∣∣∣ = 4. We claim that Dn = n+ 1.

Expanding Dn by the first row, we get

Dn = 2Dn−1 −

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 . . . 0 0 0
0 2 1 0 . . . 0 0 0
0 1 2 1 . . . 0 0 0

... . . . ...
0 0 0 0 . . . 1 2 1
0 0 0 0 . . . 0 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We expand the determinant on the RHS by the first column to get the recurrence relation
Dn = 2Dn−1 −Dn−2. Using induction, we show that Dn = n+ 1.

Example 5. Evaluate Dn :=

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 . . . 0
−1 0 3 . . . n
−1 −2 0 . . . n
...

−1 −2 −3 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
. Hint: Have a look at D3 and D4, if

nothing strikes you.

Example 6 (Vandermonde Determinant). Let a1, · · · , an be distinct nonzero elements of R.
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Consider the column vectors (ak1, a
k
2, . . . , a

k
n)

T for 0 ≤ k ≤ n− 1. Consider the determinant

D(a1, . . . , an) :=

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
a1 a2 . . . an
...

... . . . ...
an−1
1 an−1

2 . . . an−1
n

∣∣∣∣∣∣∣∣∣ .
The determinant D is known as Vandermonde determinant and it is ubiquitous in diverse
areas of mathematics. The value of the determinant is

∏
j>i(aj − ai). You may start with

n = 2 and n = 3 to get acquainted with this determinant. We show by induction that
D(a1, . . . , an) =

∏
j>i(aj − ai).

We have D2 =

∣∣∣∣1 1
a b

∣∣∣∣ = b − a. Conisder D3 =

∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣. Caary out the R3 − aR2

to obtain

∣∣∣∣∣∣
1 1 1
a b c
0 (b− a)b (c− a)c

∣∣∣∣∣∣. Now we do R2 − aR1 to arrive at
(
1 1 1
0 b− a c− a

)
. We

expand by the first column to get

D3 = 1 ·
∣∣∣∣ b− a c− a
(b− a)b (c− a)c

∣∣∣∣ = (b− a)(c− a)

∣∣∣∣1 1
b c

∣∣∣∣ = (b− a)(c− a)(c− b).

Now to evalauate Dn, consider the following column operations in order:

Rn − a1Rn−1 → Rn−1 − a1Rn−2 → · · · → R2 − a1R1.

The resulting determinant is

D(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 (a2 − a1) (a3 − a1) . . . (an − a1)
0 (a2 − a1)a2 (a3 − a1)a3 . . . (an − a1)an

...
0 (a2 − a1)a

n−2
2 (a3 − a1)a

n−2
3 . . . (an − a1)a

n−2
n

∣∣∣∣∣∣∣∣∣∣∣
= (a2 − a1)(a3 − a1) · · · (an − a1)


1 1 . . . 1
a2 a3 . . . an

...
an−2
2 an−2

3 . . . an−2
n


=

∏
j>1

(aj − a1)D(a2, . . . , an)

=
∏
j>1

(aj − a1)
∏

r>k≥2

(ar − ak)

=
∏
j>i

(aj − ai).

We expanded by the first column and used the multi-linearity of the determinant in its
column arguments and arrived at the second equality in the displayed array of equations.
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Ex. 7. If α1, . . . , an are distinct complex numbers then for any complex numbers b1, . . . , bn
there exists a polynomial P of degree at most n − 1 uniquely determined by the con-
ditions P (aj) = bj , 1 ≤ j ≤ n. Hint: If P (X) := c + 0 + c1X + · · · + cn−1X

n−1 is
the required polynomial, then (c0, c1, . . . , cn−1)

T is the unqiue solution of a linear system
D(a1, . . . , an)(x1, . . . , xn)

T = (b1, . . . , bn)
T . Here D(a1, . . . , an) denotes the vandermonde

matrix (and not the determinant).
Example 8. We show that∣∣∣∣∣∣∣∣∣

1 + a1 a2 . . . an
a1 1 + a2 . . . an
...

... . . . ...
a1 a2 . . . 1 + an

∣∣∣∣∣∣∣∣∣ = 1 + a1 + a2 + · · ·+ an.

The given determinant is det

(
e1 + a1v, e2 + a2v, . . . , en + anv

)
, where v = e1 + · · ·+ en. Let

us look at n = 3.
det(e1 + a1v, e2 + a2v, e3 + a3v) = det(e1, e2 + a2v, e3 + a3v) + det(a1v, e2 + a2v, e3 + a3v)

= [det(e1, e2, e3) + det(e1, a2v, e3) + det(e1, e2, a3v)]

+ det(a1v, e2, e3)

= (1 + a2 + a3) + a1 = 1 + a1 + a2 + a3.

Now proceed by induction.
Example 9. The matrix of this example is from differential geometry and the computation of
its determinant is required while computing the volume element of a (hyper) surface given
as a graph. The matrix is 

1 + x21 x1x2 . . . x1xn
x2x1 1 + x22 . . . x2xn

...
... . . . ...

xnx1 xnx2 . . . 1 + x2n

 .

The trick here is, as in the last case, to realize the ith column vector Ci, which is the vector
ei + xiv, where

v =

x1
...
xn

 =
∑
i

xiei ∈ Rn.

Again, it may be worthwhile to start looking at the cases n = 2, 3 and then complete the
solution by induction.
Example 10. Let A ∈ M(n,F). Consider the associated linear map TA : Fn → Fn given by
TAx = Ax where x ∈ Fn is considered as a column vector. Let {v1, . . . , vn} be an eigenbasis
of Fn. Assume that TAvj = Avj = λjvj . Then detA = λ1 · · ·λn.

Note that by the defintion of the determinant, detA is the unique element of F such that
for any u1, . . . , un ∈ Fn, we have

det(Au1, . . . , Aun) = det(A) det(u1, . . . , un).

Apply this with uj = vj to get the result.
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