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Let (V, ⟨, )⟩ be a finite dimensional inner product space over R. Let {vi : 1 ≤ i ≤ n} be
a basis of V . It follows from the definition of an inner product, the map (x, y) 7→ ⟨x, y⟩ is
bilinear, that is, linear in each of its variables: the maps x 7→ ⟨x, y0⟩ and y 7→ ⟨x0, y⟩ rare
linear from V to R, where x0, y0 are held fixed.

Let f : V → W be a linear map from a vector space V to another, W . Let {vi : 1 ≤ i ≤ n}
be a basis of V . If we know the values of f on the basic elements vi, then we know how
to write down the value of f(v) for any v ∈ V . Let v :=

∑n
i=1 xivi, where xi ∈ R. Then

f(v) =
∑n

i=1 xif(vi). This observation prompts us to ask the question: Is there an analogue
for an inner product?

Keep the notation of the first paragraph. Let v :=
∑n

i=1 xivi and y :=
∑n

j=1 yjvj . Then
we observe that

⟨v, w⟩ =

〈∑
i

xivi,
∑
j

yjvj

〉
=

n∑
i=1

〈
xivi,

n∑
j=1

yjvj

〉

=
n∑

i=1

xi

〈
vi,

n∑
j=1

yjvj

〉
=

n∑
i=1

n∑
j=1

xiyj ⟨vi, vj⟩ . (1)

Thus, if we know ⟨vi, vj⟩, 1 ≤ i, j ≤ n, then we know how to find ⟨v, w⟩ for v, w ∈ V .
Let aij := ⟨vi, vj⟩, 1 ≤ i, j ≤ n. We note that aij = aji for all i, j. Thus if we define A to

be the n× n-square matrix whose (i, j)-th entry is aij , then A is a real symmetric matrix.
Let us now specialize to V = Rn. Let vi = ei be the standard i-th basic vector. We think

of vectors in Rn as column vectors (equivalently, as n×1 matrices). Let ⟨ , ⟩ be a (new) inner
product on Rn. It follows from the previous discussion, especially, from (1), that

⟨x, y⟩ =
n∑

i,j=1

aijxiyj , where aij := ⟨ei, ej⟩ . (2)

Recall that the standard dot product on Rn is given by x · y = ytx, the product of the matrix
yt of type 1×n with the matrix x of type n× 1. As is the practice, the resulting 1× 1-matrix
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ytx is identified with its entry, a real number. Note that

⟨x, y⟩ = yt ·Ax = Ax · y. (Verify!) (3)

Thus the new inner product on Rn is obtained by using a symmetric matrix and the
standard dot product on Rn. Take some time to relish this wonderful finding!

Now one can ask the question: Given a real symmetric square matrix A of size n, is the
map (x, y) 7→ Ax · y, as defined in (3), an inner product on Rn? Just for simplicity, let us
denote the image of (x, y) under this map by ⟨x, y⟩, though it may not be an inner product.

Note that the map is bilinear. (Verify! Use various properties of the matrix operations!)
So, we need only check whether it is positive definite, that is, whether Ax · x ≥ 0 for all
x ∈ Rn and whether Ax · x = 0 iff x = 0.

Let us restrict ourselves to R2. Let A =

(
a h

h b

)
be real symmetric matrix. Then it

follows form (3) that〈(
x1

y1

)
,

(
x2

y2

)〉
= ax1x2 + h(x2y1 + x1y2) + by1y2. (V erify!) (4)

As observed earlier, this map is bilinear. Is it positive definite? Clearly this is false. For
example, look at the diagonal 2×2-matrix A with diagonal entries 1 and −1. Then ⟨e1, e1⟩ = 1

whereas ⟨e2, e2⟩ = −1. (Verify this.) Also, if A is the matrix all whose entries are 1, then
⟨e1 − e2, e1 − e2⟩ = 0.

It transpires that we need to impose some extra conditions on the symmetric matrix A

so that we can ensure the positive definiteness. We play around to find these.
Let x = e1, then ⟨e1, e1⟩ = a using the expression (4). Hence we conclude that a > 0. In

a similar way, using x = e2, we find that we need to ensure b > 0.
Can h be zero? Yes, it can. For, if h = 0, then the right side (4) becomes ax1x2 + by1y2.

In particular, if v = (x, y)t, then ⟨v, v⟩ = ax2 + by2. This is always nonnegative since a and
b are positive. Also, it is zero iff each of the summands ax2 and by2 is zero. It follows that
x = 0 = y and v = 0. Thus positive definiteness is ensured. Let us summarize: If a > 0,
b > 0 and h = 0, then (4) defines an inner product on R2.

So, we assume that a > 0, b > 0 and h ̸= 0. Can the determinant ab−h2 = 0? If you know
your linear maps well, you may know that A defines a linear map on R2, where v 7→ Av. If
detA = 0, then this linear map has a nontrivial kernel. Let v = (x, y)t be a nonzero element
in the kernel. Then ⟨v, v⟩ = vt · Av = vt · 0 = 0. Therefore we conclude that ⟨ , ⟩ is not an
inner product if detA = 0.

Let us prove this in a different way. If detA = 0, then ab = h2. Since h ̸= 0, we arrive
at a

h = h
b . Let t := a

h = h
b . Then we find that a = th and h = bt. Hence a = t2b. Hence the
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matrix A =

(
bt2 tb

tb b

)
. Let v = (−1, t). (Note that Av = 0). An easy calculation using (4)

shows that ⟨v, v⟩ = 0:

“ax2 + 2hxy + bt2” = bt2 + 2(tb)(−t) + bt2 = 0.

Note that v is a nonzero vector. Hence we conclude that det(A) = ab− h2 ̸= 0.
Can det(A) be negative? Let v = (x, y)t be arbitrary. Then

⟨v, v⟩ = ax2 + 2hxy + by2 = a

(
x+

h

a
y

)2

+

(
b− h2

a

)
y2. (5)

Note that if det(A) < 0, then for y ̸= 0, the second term on the right side of the last equation
is negative. Can we make the first term zero? Yes, if we let x = −h

a . Hence if v =
(
−h

a , 1
)
,

then ⟨v, v⟩ = det(A)
a < 0. Hence we conclude that det(A) > 0.

Let us summarize our findings. If A =

(
a h

h b

)
be real symmetric matrix such that (4) is

an inner product on R2, then (i) a > 0 and b > 0 and (ii) det(A) = ab− h2 > 0.
We now prove that these conditions are sufficient to ensure that (4) defines an inner

product on R2.
That the map (v, w) 7→ wtAv is bilinear is already noted. So we need only check the

positive definiteness. Let us use (5). Each of the terms on the right side of this equation is
clearly nonnegative. (Why?) If ⟨v, v⟩ = 0, then each of the terms is zero. Look at the second
term. If it is zero, since

(
b− h2

a

)
= det(A)

a > 0, it follows that y = 0. Then the first term
becomes ax2 = 0 Since a > 0, we conclude that x = 0. Hence v = (0, 0).

Before we state the result let us show that one of the conditions is redundant. If a > 0

and det(A) > 0, then it follows b > 0. For, ab−h2 > 0 ⇐⇒ ab > h2. Since h2 ≥ 0, it follows
that ab ≥ 0. Since a > 0, we conclude that b ≥ 0. Can it be zero? If it is then det(A) = −h2.
Since det(A) > 0, this is a contradiction. Hence b > 0. Thus we have proved the following
result.

Theorem 1. Let A =

(
a h

h b

)
be real symmetric matrix such that a > 0 and detA > 0. Then

the map ((
x1

y1

)
,

(
x2

y2

))
7→

〈(
(x1

y1

)
,

(
x2

y2

)〉
:= ax1x2 + h(x2y1 + x1y2) + by1y2. (6)

defines an inner product on R2.
Furthermore, any inner product on R2 arises this way.

Ex. 2. Now that you know the secret, go ahead and create at least two new inner products
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on R2. For practice, do verify that they are indeed inner products directly. Hint: Revisit the
“completing the squares” trick in (5).

Remark 3. This remarks aims to put these in a different perspective. The playground is
now calculus of two variables. Let f : R2 → R be twice continuously differentiable functions.
That is, all partial derivatives of order less than or equal to 2 exist and are continuous. For
simplicity, let us assume that ∂f

∂x (0, ) = 0 = ∂y
∂( 0, 0). Thus the origin is a critical point of f .

Is it a local minimum? The way forward to answer this question is to look at the so-called
Hessian matrix  ∂2f

∂x2 (0, 0)
∂2f
∂x∂y (0, 0)

∂2f
∂y∂x(0, 0)

∂2f
∂y2

(0, 0)

 .

Note that this matrix is symmetric. (Why?) Now (0, 0) is a point of local minimum if the
Hessian matrix of f at the origin defines an inner product on R2. In less intimidating
terms(?), the origin is a point of local minimum if the Hessian matrix of f at the origin is
positive definite.

The analytical argument hinges on the 2nd order Taylor expansion. For all (x, y) near
to to the origin we have

f(x, y) = f(0, 0) +
∂f

∂x
(0, 0) +

∂f

∂y
(0, 0) +

∂2f

∂x2
(0, 0)x2 +

∂2f

∂x∂y
(0, 0)xy +

∂2f

∂y2
(0, 0)y2

+ higher order terms

= f(0, 0) + 0 + 0 + ax2 + 2hxy + by2 + higher order terms

= f(0, 0) + ax2 + 2hxy + by2 + higher order terms,

where a = ∂2f
∂x2 (0, 0), b = ∂2f

∂y2
(0, 0) and h = ∂2f

∂x∂y (0, 0). Note that for (x, y) ̸= (0, 0), the
expression ax2 + 2hxy + by2 > 0.

For (x, y) very near to zero, the higher order terms are negligible. So, f(x, y) − f(0, 0)

is “approximately equal to” ax2 + 2hxy + by2 which is positive for all (x, y) ̸= (0, 0) near
the origin. Hence f(0, 0) is a local minimum. Of course, in analysis, the last two qualitative
statements are proved rigorously.
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