Non-constant $f(X) \in \mathbb{Z}[X]$ has Zeros in \mathbb{Z}_p for Infinitely Many Primes p

S Kumaresan Gitam Universsity kumaresa@gmail.com

6/11/23

Let $f(X) = c_0 + c_1 X + \cdots + c_n X^n \in \mathbb{Z}[X]$ be a nonconstant polynomial with integral coefficients. Observe that $n \ge 1$ and $c_n \ne 0$. We say that $k \in \mathbb{Z}$ is a zero (or root) of f modulo N if $f(k) \equiv 0 \pmod{N}$. Recall that if R and S are commutative rings with identity and if $\varphi \colon \mathbb{R} \to S$ is a ring homomorphism, we have an induced homomorphism $\overline{\varphi} \colon R[X] \to S[X]$ defined by $\overline{\varphi}(f)(X) := \varphi_{c_0} + \varphi(c_1)X + \cdots + \varphi(c_n)X^n$. Using this notion, we see that f has aa zero modulo N iff $\varphi(f)$ has a zero in \mathbb{Z}_N .

Let $k \in \mathbb{Z}$ b a zero of f. Then f has a zero in \mathbb{Z}_N for every $N \in \mathbb{N}$. (Why?)

Exercise 1. Prove that f has a zero in \mathbb{Z}_N iff there exists $k \in \mathbb{Z}$ and $m \in \mathbb{Z}$ such that f(k) = mN.

Exercise 2. Let $m \in \mathbb{Z}$. Let $N := f(m) \in \mathbb{Z}$. Prove that f has a zero in \mathbb{Z}_N . Can we conclude that there exist infinitely many $N \in \mathbb{N}$ such that f has a zero in \mathbb{Z}_N ? If you want to conclude this, what do you need to observe/prove

The next result strengthens the result of the last exercise.

Theorem 3. Let $f(X) = c_0 + c_1X + \cdots + c_nX^n \in \mathbb{Z}[X]$ be a nonconstant polynomial. Then there exist infinitely many primes p such that f has a zero in \mathbb{Z}_p .

Proof. We may assume WLOG that f has not integral roots. (Why?) In particular, $c_0 \neq 0$. (Why?) Let p_i , $1 \leq i \leq r$ be the finite number of primes such that f has a zero modulo each p_i . We shall show show that there exists a prime p, different from each of the p_i 's such that f has a zero modulo p. (Does this remind you of anything you learned earlier?)

Let $\alpha := p_1 \cdots p_r c_0$. We define a new polynomial $g(X) \in \mathbb{Z}[x]$ via the identity:

$$f(\alpha X) = c_0 + c_1 \alpha X + \dots + c_n (\alpha X)^n$$

= $c_0 g(X)$. (Why is this possible?)

If we write $g(X) = d_0 + d_1X + \cdots + d_nX^n$, then each of the coefficients of the nonconstant term d_1, d_1, \ldots, d_n is divisible by $p_1 \ldots p_r$. (Why?) Since g is not a constant (Why?), there exists an integer $m \in \mathbb{Z}$ such that $g(m) \neq \pm 1$. (Why?) Let p be a prime divisor of g(m). Note that $g(m) \equiv 1(\pmod{p}_i), 1 \leq i \leq r$. Hence $p \notin \{p_1, \ldots, p_r\}$. (Why?) We observe that p divides $c_g(m) = f(\alpha m)$. (Why?) Hence f has a zero modulo p. (Why?)