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The aim of the is article is provide simple and direct proofs of the following well-known
and most useful results in the theory of compact spaces.

Theorem 1 (Heine-Borel). A subset K ⊂ R
n is compact if and only if K is closed and

bounded.

Theorem 2. Let X be a compact space. Let f : X → C be continuous. Then
(i) f is bounded, that is, there exists a positive constant C such that |f(x)| ≤ C for all

x ∈ X.
(ii) If we further assume that f is real-valued, then f attains its maximum and minimum

values.

To make the article self-contained and accessible to students and teachers of B.Sc., I
shall include the necessary definitions and prerequisites in the context of metric spaces only.
Relevant modifications, if any, for the general case will be indicated at appropriate places.
A reader with necessary background may jump to the proofs of these theorems which start
after Lemma 12.

Definition 3. A subset K of a metric space (X, d) is said to be compact if a family of open
sets {Ui : i ∈ I} is given with the property that K ⊆ ∪i∈IUi, then we can find a finite subset
F ∈ I, say, F = {i1, i2, . . . , in} such that K ⊆ ∪n

i=jUij .

We say that the given family is an open cover of K. If we can find such a finite family,
we say that we can find/extract a finite subcover for K from the given cover of K.

Thus, K is compact if and only if from any open cover of K, we can extract a finite
subcover.

We say that X is compact if X is a compact subset of X.

Example 4. A trivial example is any finite subset K ⊂ X.

Remark 5. The above definition makes sense for any subset of a topological space.

Definition 6. A subset A of a metric space (X, d) is bounded if it is contained in an open
ball B(x0, r). for some x0 ∈ X and r > 0.
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Remark 7. Our definition of bounded subsets is very geometric and uses only the primitive
notion (that is, the concept of an open ball) in a metric space and is intuitive. By definition
the empty set is bounded.

It is an easy exercise to see that if A is bounded if and only if for any arbitrary x ∈ X,
there exists R > 0 (depending on x) such that A ⊂ B(x,R). (For, if A ⊂ B(x0, r), then
A ⊂ B(x,R) where R = r + d(x, x0), Check!)

The standard definition runs as follows. Given a nonempty set A ⊂ X, we define its
diameter

diam (A) := sup{d(x, y) : x, y ∈ A}, as an extended real number, possibly +∞.

We say that A is bounded if A is empty or if A is nonempty and diam (A) < ∞. We leave
the equivalence of both the definitions as an easy exercise to the reader.

Lemma 8. Any compact subset of a metric space is bounded.

Proof. Let K ⊂ X be compact. Let x0 ∈ X be arbitrary. Consider Un := B(x0, n) for n ∈ N.
(Note that Ui ⊆ Uj, if i ≤ j.) We claim that {Un : n ∈ N} is an open cover of K. Given any
x ∈ X, by the Archimedean property of R, there exists n ∈ N such that d(x, x0) < n. Hence
x ∈ Un. As a consequence X ⊂ ∪n∈NUn. In particular, K ⊆ ∪n∈NUn. Since K is compact,
there exists a finite subcover, say, Un1

, . . . , Unk
of K. If we let N = max{ni : 1 ≤ i ≤ k},

then Uni
⊂ UN so that

K ⊆ ∪k
i=1Uni

= UN .

That is, K ⊂ B(x0, N) and hence bounded.

Remark 9. As there is no satisfactory notion of bounded subsets in an arbitrary topological
space, there is no analogue of the above lemma in the context of topological spaces.

Lemma 10. Let K be a compact subset of a metric space. Then K is closed in X.

Proof. It suffices to show that the complement of K in X is open. Let z ∈ X \K be given. Let
x ∈ K be arbitrary. Then x 6= z and hence there exist open balls B(x, rx) and B(z, δx) such
that B(x, rx) ∩B(z, δx) = ∅. The collection {B(x, rx) : x ∈ K} is obviously an open cover of
K. Since K is compact, we can extract a finite subcover, say, {Bi = B(xi, rxi

) : 1 ≤ i ≤ n}.
Let us denote by Vi = B(z, rxi

) the corresponding open balls centered at z. Then V := ∩n
i=1Vi

is an open set containing z. We claim that V ⊂ X \K. For, let x ∈ K ∩ V . Since Bi form
an open cover of K, x ∈ Bi for some 1 ≤ i ≤ n. Now, x ∈ Bi ∩ V , but Bi ∩ V ⊂ Bi ∩ Vi = ∅,
a contradiction! This proves our claim. We have thus shown any z ∈ X \K lies in an open
set V whose intersection with K is empty. That is, any such z is an interior point of X \K.
In other words, X \K is open.

Remark 11. The above result holds true in any Hausdorff space. The open balls B(x, rx)
and B(z, δx) are replaced by open sets Ux ∋ x and Vx ∋ z such that Ux ∩ Vx = ∅. These are
obtained by using the Hausdorff property of the space.

Lemma 12. If C is closed subset a compact set K in a metric space, then C is compact.
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Proof. First of all observe that C must be closed in X. For, the compact set K is closed in
X by the above lemma. Thus C, being a closed subset of a closed set, is closed.

Let {Ui : i ∈ I} be an open cover of C. We add the open set U := X \ C to this cover.
We claim that U ∪ {Ui : i ∈ I} is an open cover of K. For, let x ∈ K be arbitrary. If
x ∈ C, then x ∈ ∪i∈IUi. If x ∈ K \ C, then x ∈ U . Thus, given any x ∈ K, it follows that
x ∈ U ∪ (∪i∈IUi). The claim follows. Since K is compact, we can extract a finite subcover.
Note that U may or may not be a member of this finite subcover. (It may happen that the
original cover of C is also an open cover of K.) If U is not a member of this finite cover of
K, then C, being a subset of K, is contained in the union of the finite collection. Thus we
have extracted a finite subcover of C from the original collection.

In the case when U is a member of the finite subcover of K, we can remove it from the
finite collection and we shall be left with a finite collection, say, {Uik : 1 ≤ k ≤ n}. We claim
that this is an open cover of C. This is obvious, since

C ⊂ K ⊂
(

∪n
j=1Uij

)

∪ U,

given any x ∈ C, x has to lie in one of the Uij ’s only, as U = X \ C.

Remark 13. The above result remains true in a Hausdorff space. The proof goes through
verbatim.

Proof of Theorem 1: Let K be a compact subset of Rn. Then by Lemmas 3 and 4, it
follows that K is closed and bounded in R

n.

The difficult part is to prove the converse. Let K ⊂ R
n be closed and bounded. Since K is

bounded, it follows that K ⊂ B(0, R) for some R > 0. Let Q denote the n-dimensional cube
[−R,R]× · · · × [−R,R] (n-times) in R

n. Then K ⊂ B(0, R) ⊂ Q. (For, if x = (x1, . . . , xn) ∈
B(0, R), then

√

∑

i x
2
i < R so that |xi| < R for 1 ≤ i ≤ R.) If we show that Q is compact,

then K, being a closed subset of Q, is compact by Lemma 12.

To make the geometric ideas clear, we shall restrict our attention to the case when n = 2.
Our proof carries through for all n including n = 1.

The crucial geometric observation is contained in the following exercise.

Ex. 14. Let a, b, c, d ∈ R be such that b−a = d−c. Let S := [a, b]× [c, d] be the square in R
2.

The vertices of S are (a, c), (b, c), (b, d) and (a, d). We call the point (a, c) as the bottom left
vertex of S. The pair of midpoints of its opposite sides are given by ([a+ b]/2, c), ([a+ b]/2, d)
and (a, [c+d]/2), (b, [c+d]/2]). By joining the midpoints of opposite sides, we get four smaller
squares. Observe that if (a1, c1) is the bottom left vertex of any of these squares, we have
a ≤ a1 and c ≤ c1.

Look at Figure 1 to see this geometrically.

We continue with the proof of Heine-Borel Theorem. Let K be a closed and bounded set
in R

2. Then there exists R > 0 such that K ⊂ S := [−R,R]× [−R,R]. Since a closed subset
of a compact set is compact, it suffices to show that S is compact.

Suppose that S is not compact. Then there is an open cover {Ui : i ∈ I} of which there
is no finite subcover of S. Let us divide the square S into four smaller squares by joining the

3



a b

c

d
(a,d)

(a,c) (b,c)

(b,d)

((a+b)/2,c)

((a+b)/2,d)

(a,(c+d)/2) (b,(c+d)/2)

Figure 1:

pairs of midpoints of opposite sides. (See Exercise 14 above.) One of these square will not
have a finite subcover from the given cover. For, otherwise, all these four squares will have
finite subcovers so that S itself will admit a finite subcover. Choose one such smaller square
and call it S1. Note that the length of its sides is R and that if (a1, c1) is the bottom left
vertex of S1, then a1 ≥ a0 = −R and c1 ≥ c0 = −R. We repeat the argument by subdividing
S1 into four squares and choosing one of the smaller squares which does not admit a finite
subcover of {Ui}. Call this smaller square as S2. Note that the length of its sides is R/2 and
that if (a2, c2) is the bottom left vertex of S2, then a1 ≤ a2 and c1 ≤ c2.

Proceeding recursively, we have a sequence of squares Sn such that Sn dose not admit a
finite subcover and the length of sides of Sn is 2−n+1R and its bottom left vertex (an, cn) is
such that an−1 ≤ an and cn−1 ≤ cn. Thus we have two sequences of real numbers (an) and
(cn). They are bounded and monotone. Hence there exist real numbers a and c such that
an → a and cn → c. It follows that (an, cn) → (a, c) ∈ R

2. Since S is closed, we infer that
(a, c) ∈ S. Hence there is Ui0 in the open cover such that (a, c) ∈ Ui0 . Since Ui0 is open there
exists an r > 0 such that B((a, c), r) ⊂ Ui0 .

Choose n ∈ N so that (1) diamSn = 2−n+1
√
2R < r/2 and (2) d((a, c), (an, cn)) < r/2.

We then have, for any (x, y) ∈ Sn,

d((a, c), (x, y)) ≤ d((a, c), (an, cn)) + d((an, cn), (x, y)) < r/2 + 2−n+1
√
2R < r.

Thus Sn ⊂ B((a, c), r) ⊂ Ui0 . But then {Ui0} is a finite subcover for Sn, contradicting our
choice of Sk’s. Therefore, our assumption that S is not compact is not tenable.

Remark 15. The proof carries through for all dimensions n. Let a cube Q =
∏n

k=1[ai, bi] be
given. Let us call the point (a1, . . . , an) as the left bottom corner of the cube. If we bisect
each of the sides [ai, bi] of this cube, we get 2n subcubes. The noteworthy feature is that the
if (c1, . . . , cn) is the left bottom corner of any of these subcubes, then ai ≤ ci for 1 ≤ i ≤ n.
The rest of the proof is as above.

Proof of Theorem 2: To prove the first part, consider the sets Un := {x ∈ X : |f(x)| < n}
for n ∈ N. Clearly, Un ⊂ Un+1. Also, since f is continuous, and

Un = f−1(B(0, n)), the inverse image of the open ball ,
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we conclude that Un is open. Furthermore, by Archimedan property of R, given any x ∈ X,
there exists n ∈ N such that |f(x)| < n. Hence x ∈ Un. In other words, {Un : n ∈ N} is an
open cover of the compact set X. By compactness, we can find a finite subcover Un1

, . . . , Unk

of X. If we let N = max{ni : 1 ≤ i ≤ k}, it follows (since (Un) is an increasing sequence of
subsets) that X ⊂ UN . Thus, if x ∈ X, x ∈ UN or which is same as saying |f(x)| < N for all
x ∈ X. The first part is completely proved.

To prove the second part, let us assume that f is real valued. The subset {f(x) : x ∈
X} ⊂ R is a nonempty bounded subset of R by the first part. Hence sup{f(x) : x ∈ X} ∈ R.
Call it M . We claim that there exists an a ∈ X such that f(a) = M . Suppose that this is
false. This means that for any x ∈ X, we have f(x) < M . We consider the following sets:

Un := {x ∈ X : f(x) < M − 1/n}.

We note the following facts about Un. (i) Un ⊂ Un+1 or more generally, Um ⊂ Un for
all m < n ∈ N. (ii) Un is open for any n. For, Un is the inverse image of the open set
(−∞,M − 1/n) ⊂ R under the continuous map f . (iii) The family {Un : n ∈ N} is an
open cover of X. We need only show that X ⊂ ∪nUn. Given any x ∈ X, since f(x) < M ,
M−f(x) > 0. By the Archimedean property of R, there exists n ∈ N such that n(M−f(x)) >
1. Hence M − f(x) > 1/n or f(x) < M − 1/n. We conclude that ∈ Un.

Now we proceed as earlier to conclude thatX = UN for someN ∈ N. (For, by compactness
of X, we can extract a finite subcover, say, Un1

, . . . , Unk
of X. Let N := max{n1, . . . , nk}.

Using property (i) of Un’s, it follows that Unj
⊂ UN for 1 ≤ j ≤ k. This means that

X ⊂ ∪k
j=1Uij = UN .

This leads us to conclude that f(x) < M − 1/N for all x ∈ X. But then l.u.b. {f(x) : x ∈
X} ≤ M − 1/N , contradicting our assumption that the supremum f on X is M . Thus we
are forced to conclude that our assumption that there exists no x ∈ X such thatf(x) = M is
incorrect.

One similarly proves that there exists b ∈ X such that f(b) ≤ f(x) for all x ∈ X.
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