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Theorem 1. [a,b] is compact.

Proof. Given an open cover U of [a,b], let
E :={x € [a,b] | [a, ] is covered by finitely many elements of U/}.

We note that E # (), since a € E: For, [a,a] = {a} and since U is an open cover there exists
U € U such that a € U. Hence [a, a] is covered by the single element U.

FE is bounded by b. Hence the supremum of F, say [ exists.

We claim that 5 € F and that 8 = b. The claim proves the result. Suppose the claim is
false.

Now § € [a,b] since [a,b] is closed. There exists V' € U such that § € V. Hence there
exists € > 0 such that (6 —¢,8+¢) C V, as V is open. Assume that 5 # b. Then we may
assume that ¢ is so small that (8 —¢,8 +¢) C [a,b]. Since § =sup E, § — € is not an upper
bound of E. Thus, there exists x € E, such that 8 —e < x < 8. Since z € F, there exists
finitely many U; € U, 1 <1 < n such that [a,z] C U}, U;. But then [a,3+ 5] C UL, U; UV.
Hence 3 + 5 € E, a contradiction since 3 > x, for all z € E. Hence 3 = b. ]

Ex. 2. Let a,b,c,d € R be such that b—a = d —c. Let S := [a, b] X [¢, d] be the square in R.
The vertices of S are (a,c), (b,c), (b,d) and (a,d). We call the point (a, c) as the bottom left
vertex of S. The pair of midpoints of its opposite sides are given by ([a+b]/2,¢), ([a+b]/2,d)
and (a, [c+d]/2), (b, [c+d]/2]). By joining the midpoints of opposite sides, we get four smaller
squares. Observe that if (aj,c;) is the bottom left vertex of any of these squares, we have
a<a and ¢ < ¢y.

Theorem 3. A subset of R? is compact iff it is closed and bounded.

Proof. Let K be a closed and bounded set in R?. Then there exists R > 0 such that K C
S :=[-R, R] x [-R, R]. Since a closed subset of a compact set is compact, it suffices to show
that S is compact.

Suppose that S is not compact. Then there is an open cover {U; : i € I} of which there
is no finite subcover of S. Let us divide the square S into four smaller squares by joining the



pairs of midpoints of opposite sides. (See the exercise above.) One of these square will not
have a finite subcover from the given cover. For, otherwise, all these four squares will have
finite subcovers so that .S itself will admit a finite subcover. Choose one such smaller square
and call it S;. Note that the length of its sides is R and that if (a1,b;) is the bottom left
vertex of Sp, then a; > ag = —R and ¢; > ¢g = —R. We repeat the argument by subdividing
S1 into four squares and choosing one of the smaller squares which does not admit a finite
subcover of {U;}. Call this smaller square as Sz. Note that the length of its sides is R/2 and
that if (ag,c2) is the bottom left vertex of Sa, then a; < ag and ¢; < co.

Proceeding recursively, we have a sequence of squares 5,, such that S,, dose not admit a
finite subcover and the length of sides of S, is 27" R and its bottom left vertex (ay,c,) is
such that a,—; < a, and ¢,—1 < ¢,. Thus we have two sequences of real numbers (a,) and
(cn). They are bounded and monotone. Hence there exist real numbers a and ¢ such that
an — a and b, — b. It follows that (an,c,) — (a,c) € R%. Since S is closed, we infer that
(a,b) € S. Hence there is U;, in the open cover such that (a,c) € U;,. Since U, is open there
exists an r > 0 such that B((a,c),r) C Uj,.

Choose n € N so that (1) diam S, = 27"T1V/2R < /2 and (2) d((a,c), (an,cn)) < /2.
We then have, for any (z,y) € Sy,

d((a,c), (z,y)) < d((a,c), (an, cn)) + d((an, ), (z,y)) < r/2+27"TV2R < 1.

Thus S, C B((a,c),r) C Uj,. But then {U,,} is a finite subcover for S, contradicting our
choice of S}’s. Therefore, or assumption that S is not compact is not tenable. ]

Theorem 4. A subset of R™ is compact iff it is closed and bounded.

Proof. One can adapt the proof of Thm. 3 to prove the theorem including the case when
n = 1. We leave the details to the reader. O

Theorem 5. For a metric space (X,d), the following are equivalent:
(1) X is compact: every open cover has a finite subcover.
(2) X is complete and totally bounded.
(8) Every infinite set has a cluster point.
(4) Every sequence has a convergent subsequence.

Proof. (1) = (2): Let (X,d) be compact. Given ¢ > 0, {B(z,e) | * € X} is an open
cover of X. Let {B(x;,e) | 1 <i<n} be a finite subcover. Hence X is totally bounded.

Now let (z,,) be a Cauchy sequence in X. Then for every k € N there exits ny such that
d(zp, 2n,) < 7 for all n > ng. Let Uy := {z € X ‘ d(z,xp,) > £ }. Then Uy is open: If
y € Uy and 6 := d(xy,,y) — % then B(y,0) C Ug. Now x, ¢ Uy for n > ni. Hence no finite
subcover of Uy’s cover X: For, if they did, say, X = U U; we take n > max{ny,...,nm}.
Then z,, ¢ Uy, for any k with 1 < k < m. This implies that {Uy} cannot cover X. Thus there
exists z € X \ U, Uy. But then d(z, z,,) < +. Hence x,, — z. Since (z,,) is Cauchy we see
that z,, also converges to limy x,,. Thus X is complete. We have thus shown (1) implies (2).

(2) = (3): Let E be an infinite subset of X. Let F,, be a finite subset of X such
that X = Ugep, B(x, %) Then for n = 1 there exists x1 € F; such that E N B(xy,1) is



infinite. Inductively choose z,, € F), such that E N (N}_,B(xk, 1)) is infinite. Since there
is a € ENB(zm, L) N Bz, 2) we see that d(zm,zn) < d(zm,a) +d(a,z,) < L +1 <2
if m < n. Thus (z,) is Cauchy. Since X is complete z,, converges to some x € X. Also
d(z,x,) < 2 for all n. Thus B(z,3/n) includes B(zy, ) which includes infinitely many
elements of E. Thus z is a cluster point of E. Hence (3) is proved.

(3) = (4): If (x,) is a sequence in X we let {z,, | n € N} be its image. If this set is
finite then (4) trivially follows. So assume that {z, | n € N} is infinite. Let = be a cluster
point of this set. Then there exist elements x,, such that d(z,zy,) < % for all k. Thus
Zpn, — « and (4) is thereby proved.

(4) = (1): Let {U,} be an open cover of X. For x € X, let
ry :=sup{r € R | B(z,r) C for some Uy, }.

We claim that € :=inf {r, | = € X} > 0. If not there is a sequence (x,) such that r, — 0.
But (x5,) has a convergent subsequence, say, x,, — z. Now z € U, for some « and hence
there is an r > 0 such that B(z,r) C U,. For k large enough d(z, x,,) < § so that ry, > 3
for all sufficiently large k — a contradiction. Hence the claim is proved.

Let ¢ := inf{r, | z € X}. Choose any z; € X. Inductively choose z, such that z,, ¢
UPZ{ B(w,e/2). We cannot do this for all n. For otherwise, (x,,) will not have a convergent
subsequence since d(xy, T,,) > § for all m # n. Hence X = Ul B(xy, $) for some N. But
then for each k there is an oy, such that B(xy, §) C Uy,. Hence X = Uﬁleak- Thus {U,}
has a finite subcover or X is compact. ]

Ex. 6. Prove Thm. 3 using the fourth characterization (in Thm. 5) of compact metric spaces.

Theorem 7 (Tychonoff). The product of compact spaces is compact. That is, X =[] X is
compact if each X, is compact.

Proof. Let Fy be a family of closed sets in X with the finite intersection property (f.i.p). We
shall show that there is a point common to all the sets F' € Fy.

We apply Zorn’s lemma to get a family F C Fy of (not necessarily closed) sets in X
with finite intersection property: Two families F and G are related iff 7/ C G. Now let C
be any totally ordered chain of families with finite intersection property. That is, if there
exists F,G € C, then either ¥ C G or G C F. This chain has an upper bound, viz.,
H = UgecF, where H has the finite intersection property. To see that H has the finite
intersection property, let Aq,..., A, € H. Then there exists F; € C such that A; € F; € C.
Since C is totally ordered, and Fi,...,F, are finite in number, there exists k with 1 < k <n
such that F; C Fj, for all k. But then Ay,..., A, € F; and F}, has the finite intersection
property. Hence A1 N---NA, # 0.

Hence by Zorn’s lemma, there exists a maximal family F € C, with F O Fy. Let F¢
denote {E“ := P,(E), E € F}. Then F, C P(X,) has the finite intersection property,
(here P,: X — X, is the canonical projection map). For otherwise, E{ N--- N ES = () will
imply By N --- N E, = 0, where Py(E;) = E®. Hence, F* = {E“} has finite intersection
property.



Since X, is compact, there exists x, € NE® where the intersection is over all E* € F<.
Let x € [[ X4 be such that z(a) := zq4.

Claim: x € NperF.
Since F O Fop, the claim completes the proof of the theorem.
Proof of the Claim:

Let U be an open set in X. By definition of product topology, there exists a1, ..., a, and
open sets Uy, C X,,, 1 <1i < n such that z € ﬂ?zlPa_il(Uai) C U with z € ﬂ?zlpojil(Uai).
This implies o, € U,, for all i. By hypothesis on x,’s, 7o, € Fg, for all F,, € F%. That
is, Ua, N Fo, # 0, for all F,, € F*. Hence P, '(Uy,) has a non-empty intersection with
every F € F. Therefore P, (U,,) € F (otherwise F U {P;}(Uy,)} D F and the former has
finite intersection property, contradicting the maximality of F). This being true for all i,
and F has finite intersection property, it follows that N}, P, (Us,) € F. Since F has the
finite intersection property, this basic open set and hence U intersects each member of F
non-trivially. Since U was an arbitrary open neighborhood of z, this means that = € F, for

all ' € F. Hence the claim. O

Ex. 8. Prove Thm. 4 using Tychonoft’s theorem.



