Compact Spaces

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1. [a, b] is compact.

Proof. Given an open cover $\mathcal U$ of [a, b], let

 $E := \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many elements of } \mathcal{U}\}.$

We note that $E \neq \emptyset$, since $a \in E$: For, $[a, a] = \{a\}$ and since U is an open cover there exists $U \in \mathcal{U}$ such that $a \in U$. Hence $[a, a]$ is covered by the single element U.

E is bounded by b. Hence the supremum of E, say β exists.

We claim that $\beta \in E$ and that $\beta = b$. The claim proves the result. Suppose the claim is false.

Now $\beta \in [a, b]$ since $[a, b]$ is closed. There exists $V \in \mathcal{U}$ such that $\beta \in V$. Hence there exists $\varepsilon > 0$ such that $(\beta - \varepsilon, \beta + \varepsilon) \subseteq V$, as V is open. Assume that $\beta \neq b$. Then we may assume that ε is so small that $(\beta - \varepsilon, \beta + \varepsilon) \subseteq [a, b]$. Since $\beta = \sup E, \beta - \varepsilon$ is not an upper bound of E. Thus, there exists $x \in E$, such that $\beta - \varepsilon < x \leq \beta$. Since $x \in E$, there exists finitely many $U_i \in \mathcal{U}$, $1 \leq i \leq n$ such that $[a, x] \subseteq \bigcup_{i=1}^n U_i$. But then $[a, \beta + \frac{\varepsilon}{2}]$ $\left[\frac{\varepsilon}{2}\right] \subseteq \cup_{i=1}^n U_i \cup V.$ Hence $\beta + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} \in E$, a contradiction since $\beta \geq x$, for all $x \in E$. Hence $\beta = b$. \Box

Ex. 2. Let $a, b, c, d \in \mathbb{R}$ be such that $b - a = d - c$. Let $S := [a, b] \times [c, d]$ be the square in \mathbb{R}^2 . The vertices of S are $(a, c), (b, c), (b, d)$ and (a, d) . We call the point (a, c) as the bottom left vertex of S. The pair of midpoints of its opposite sides are given by $([a+b]/2, c), ([a+b]/2, d)$ and $(a, [c+d]/2), (b, [c+d]/2])$. By joining the midpoints of opposite sides, we get four smaller squares. Observe that if (a_1, c_1) is the bottom left vertex of any of these squares, we have $a \leq a_1$ and $c \leq c_1$.

Theorem 3. A subset of \mathbb{R}^2 is compact iff it is closed and bounded.

Proof. Let K be a closed and bounded set in \mathbb{R}^2 . Then there exists $R > 0$ such that $K \subset$ $S := [-R, R] \times [-R, R]$. Since a closed subset of a compact set is compact, it suffices to show that S is compact.

Suppose that S is not compact. Then there is an open cover $\{U_i : i \in I\}$ of which there is no finite subcover of S . Let us divide the square S into four smaller squares by joining the

pairs of midpoints of opposite sides. (See the exercise above.) One of these square will not have a finite subcover from the given cover. For, otherwise, all these four squares will have finite subcovers so that S itself will admit a finite subcover. Choose one such smaller square and call it S_1 . Note that the length of its sides is R and that if (a_1, b_1) is the bottom left vertex of S_1 , then $a_1 \ge a_0 = -R$ and $c_1 \ge c_0 = -R$. We repeat the argument by subdividing S_1 into four squares and choosing one of the smaller squares which does not admit a finite subcover of $\{U_i\}$. Call this smaller square as S_2 . Note that the length of its sides is $R/2$ and that if (a_2, c_2) is the bottom left vertex of S_2 , then $a_1 \le a_2$ and $c_1 \le c_2$.

Proceeding recursively, we have a sequence of squares S_n such that S_n dose not admit a finite subcover and the length of sides of S_n is $2^{-n+1}R$ and its bottom left vertex (a_n, c_n) is such that $a_{n-1} \le a_n$ and $c_{n-1} \le c_n$. Thus we have two sequences of real numbers (a_n) and (c_n) . They are bounded and monotone. Hence there exist real numbers a and c such that $a_n \to a$ and $b_n \to b$. It follows that $(a_n, c_n) \to (a, c) \in \mathbb{R}^2$. Since S is closed, we infer that $(a, b) \in S$. Hence there is U_{i_0} in the open cover such that $(a, c) \in U_{i_0}$. Since U_{i_0} is open there exists an $r > 0$ such that $B((a, c), r) \subset U_{i_0}$.

Choose $n \in \mathbb{N}$ so that (1) diam $S_n = 2^{-n+1}\sqrt{2}R < r/2$ and (2) $d((a, c), (a_n, c_n)) < r/2$. We then have, for any $(x, y) \in S_n$,

$$
d((a, c), (x, y)) \le d((a, c), (a_n, c_n)) + d((a_n, c_n), (x, y)) < r/2 + 2^{-n+1}\sqrt{2}R < r.
$$

Thus $S_n \subset B((a, c), r) \subset U_{i_0}$. But then $\{U_{i_0}\}\$ is a finite subcover for S_n , contradicting our choice of S_k 's. Therefore, or assumption that S is not compact is not tenable. \Box

Theorem 4. A subset of \mathbb{R}^n is compact iff it is closed and bounded.

Proof. One can adapt the proof of Thm. 3 to prove the theorem including the case when $n = 1$. We leave the details to the reader. \Box

Theorem 5. For a metric space (X, d) , the following are equivalent:

- (1) X is compact: every open cover has a finite subcover.
- (2) X is complete and totally bounded.
- (3) Every infinite set has a cluster point.
- (4) Every sequence has a convergent subsequence.

Proof. (1) \implies (2): Let (X, d) be compact. Given $\varepsilon > 0$, $\{B(x, \varepsilon) \mid x \in X\}$ is an open cover of X. Let $\{B(x_i, \varepsilon) \mid 1 \leq i \leq n\}$ be a finite subcover. Hence X is totally bounded.

Now let (x_n) be a Cauchy sequence in X. Then for every $k \in \mathbb{N}$ there exits n_k such that $d(x_n, x_{n_k}) \leq \frac{1}{k}$ $\frac{1}{k}$ for all $n > n_k$. Let $U_k := \{x \in X \mid d(x, x_{n_k}) > \frac{1}{k}\}$ $\frac{1}{k}$. Then U_k is open: If $y \in U_k$ and $\delta := d(x_{n_k}, y) - \frac{1}{k}$ $\frac{1}{k}$ then $B(y,\delta) \subseteq U_k$. Now $x_n \notin U_k$ for $n > n_k$. Hence no finite subcover of U_k 's cover X: For, if they did, say, $X = \bigcup_{i=1}^m U_i$ we take $n > \max\{n_1, \ldots, n_m\}$. Then $x_n \notin U_k$ for any k with $1 \leq k \leq m$. This implies that $\{U_k\}$ cannot cover X. Thus there exists $x \in X \setminus \cup_{k=1}^{\infty} U_k$. But then $d(x, x_{n_k}) < \frac{1}{k}$ $\frac{1}{k}$. Hence $x_{n_k} \to x$. Since (x_n) is Cauchy we see that x_n also converges to $\lim_k x_{n_k}$. Thus X is complete. We have thus shown (1) implies (2).

(2) \implies (3): Let E be an infinite subset of X. Let F_n be a finite subset of X such that $X = \bigcup_{x \in F_n} B(x, \frac{1}{n})$. Then for $n = 1$ there exists $x_1 \in F_1$ such that $E \cap B(x_1, 1)$ is

infinite. Inductively choose $x_n \in F_n$ such that $E \cap (\bigcap_{k=1}^n B(x_k, \frac{1}{k})$ $(\frac{1}{k})$) is infinite. Since there is $a \in E \cap B(x_m, \frac{1}{m})$ $\frac{1}{m}$) $\cap B(x_n, \frac{1}{n})$ $\frac{1}{n}$) we see that $d(x_m, x_n) \leq d(x_m, a) + d(a, x_n) < \frac{1}{m} + \frac{1}{n} < \frac{2}{m}$ \overline{m} if $m < n$. Thus (x_n) is Cauchy. Since X is complete x_n converges to some $x \in X$. Also $d(x, x_n) < \frac{2}{n}$ $\frac{2}{n}$ for all *n*. Thus $B(x, 3/n)$ includes $B(x_n, \frac{1}{n})$ $\frac{1}{n}$) which includes infinitely many elements of E . Thus x is a cluster point of E . Hence (3) is proved.

(3) \implies (4): If (x_n) is a sequence in X we let $\{x_n \mid n \in \mathbb{N}\}\$ be its image. If this set is finite then (4) trivially follows. So assume that $\{x_n \mid n \in \mathbb{N}\}\$ is infinite. Let x be a cluster point of this set. Then there exist elements x_{n_k} such that $d(x, x_{n_k}) < \frac{1}{k}$ $\frac{1}{k}$ for all k. Thus $x_{n_k} \to x$ and (4) is thereby proved.

 $(4) \implies (1)$: Let $\{U_{\alpha}\}\$ be an open cover of X. For $x \in X$, let

$$
r_x := \sup \{ r \in \mathbb{R} \mid B(x,r) \subseteq \text{ for some } U_\alpha \}.
$$

We claim that $\varepsilon := \inf \{r_x \mid x \in X\} > 0$. If not there is a sequence (x_n) such that $r_{x_n} \to 0$. But (x_n) has a convergent subsequence, say, $x_{n_k} \to x$. Now $x \in U_\alpha$ for some α and hence there is an $r > 0$ such that $B(x, r) \subset U_\alpha$. For k large enough $d(x, x_{n_k}) < \frac{r}{2}$ $\frac{r}{2}$ so that $r_{x_{n_k}} > \frac{r}{2}$ $\overline{2}$ for all sufficiently large $k - a$ contradiction. Hence the claim is proved.

Let $\varepsilon := \inf \{ r_x \mid x \in X \}.$ Choose any $x_1 \in X$. Inductively choose x_n such that $x_n \notin Y$ $\cup_{k=1}^{n-1} B(x_i, \varepsilon/2)$. We cannot do this for all n. For otherwise, (x_n) will not have a convergent subsequence since $d(x_n, x_m) > \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ for all $m \neq n$. Hence $X = \bigcup_{k=1}^{N} B(x_k, \frac{\varepsilon}{2})$ $\frac{\varepsilon}{2}$ for some N. But then for each k there is an α_k such that $B(x_k, \frac{\varepsilon}{2})$ $\frac{\varepsilon}{2}) \subset U_{\alpha_k}$. Hence $X = \bigcup_{k=1}^N U_{\alpha_k}$. Thus $\{U_{\alpha}\}\$ has a finite subcover or X is compact.

Ex. 6. Prove Thm. 3 using the fourth characterization (in Thm. 5) of compact metric spaces.

Theorem 7 (Tychonoff). The product of compact spaces is compact. That is, $X := \prod X_{\alpha}$ is compact if each X_{α} is compact.

Proof. Let \mathcal{F}_0 be a family of closed sets in X with the finite intersection property (f.i.p). We shall show that there is a point common to all the sets $F \in \mathcal{F}_0$.

We apply Zorn's lemma to get a family $\mathcal{F} \subseteq \mathcal{F}_0$ of (not necessarily closed) sets in X with finite intersection property: Two families F and G are related iff $\mathcal{F} \subseteq \mathcal{G}$. Now let C be any totally ordered chain of families with finite intersection property. That is, if there exists $\mathcal{F}, \mathcal{G} \in \mathcal{C}$, then either $\mathcal{F} \subseteq \mathcal{G}$ or $\mathcal{G} \subseteq \mathcal{F}$. This chain has an upper bound, viz., $\mathcal{H} = \cup_{\mathcal{F} \in \mathcal{C}} \mathcal{F}$, where H has the finite intersection property. To see that H has the finite intersection property, let $A_1, \ldots, A_n \in \mathcal{H}$. Then there exists $\mathcal{F}_j \in \mathcal{C}$ such that $A_j \in \mathcal{F}_j \in \mathcal{C}$. Since C is totally ordered, and $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are finite in number, there exists k with $1 \leq k \leq n$ such that $\mathcal{F}_j \subseteq \mathcal{F}_k$ for all k. But then $A_1, \ldots, A_n \in \mathcal{F}_k$ and \mathcal{F}_k has the finite intersection property. Hence $A_1 \cap \cdots \cap A_n \neq \emptyset$.

Hence by Zorn's lemma, there exists a maximal family $\mathcal{F} \in \mathcal{C}$, with $\mathcal{F} \supseteq \mathcal{F}_0$. Let \mathcal{F}^{α} denote $\{E^{\alpha} := P_{\alpha}(E), E \in \mathcal{F}\}\$. Then $\mathcal{F}_{\alpha} \subseteq P(X_{\alpha})$ has the finite intersection property, (here $P_{\alpha} \colon X \to X_{\alpha}$ is the canonical projection map). For otherwise, $E_1^{\alpha} \cap \cdots \cap E_n^{\alpha} = \emptyset$ will imply $E_1 \cap \cdots \cap E_n = \emptyset$, where $P_\alpha(E_i) = E_i^\alpha$. Hence, $\overline{\mathcal{F}^\alpha} = {\overline{E^\alpha}}$ has finite intersection property.

Since X_α is compact, there exists $x_\alpha \in \Omega$ where the intersection is over all $E^\alpha \in \mathcal{F}^\alpha$. Let $x \in \prod X_\alpha$ be such that $x(\alpha) := x_\alpha$.

Claim: $x \in \bigcap_{F \in \mathcal{F}} \overline{F}$.

Since $\mathcal{F} \supseteq \mathcal{F}_0$, the claim completes the proof of the theorem.

Proof of the Claim :

Let U be an open set in X. By definition of product topology, there exists $\alpha_1, \ldots, \alpha_n$ and open sets $U_{\alpha_i} \subseteq X_{\alpha_i}$, $1 \leq i \leq n$ such that $x \in \bigcap_{i=1}^n P_{\alpha_i}^{-1}(U_{\alpha_i}) \subseteq U$ with $x \in \bigcap_{i=1}^n P_{\alpha_i}^{-1}(U_{\alpha_i})$. This implies $x_{\alpha_i} \in U_{\alpha_i}$ for all i. By hypothesis on x_{α} 's, $x_{\alpha_i} \in \overline{F}_{\alpha_i}$ for all $F_{\alpha_i} \in \mathcal{F}^{\alpha_i}$. That is, $U_{\alpha_i} \cap \overline{F}_{\alpha_i} \neq \emptyset$, for all $F_{\alpha_i} \in \mathcal{F}^{\alpha_i}$. Hence $P_{\alpha_i}^{-1}(U_{\alpha_i})$ has a non-empty intersection with every $F \in \mathcal{F}$. Therefore $P_{\alpha_i}^{-1}(U_{\alpha_i}) \in \mathcal{F}$ (otherwise $\mathcal{F} \cup \{P_{\alpha_i}^{-1}(U_{\alpha_i})\} \supset \mathcal{F}$ and the former has finite intersection property, contradicting the maximality of \mathcal{F}). This being true for all i, and F has finite intersection property, it follows that $\bigcap_{i=1}^n P_{\alpha_i}^{-1}(U_{\alpha_i}) \in \mathcal{F}$. Since F has the finite intersection property, this basic open set and hence U intersects each member of $\mathcal F$ non-trivially. Since U was an arbitrary open neighborhood of x, this means that $x \in \overline{F}$, for all $F \in \mathcal{F}$. Hence the claim. \Box

Ex. 8. Prove Thm. 4 using Tychonoff's theorem.