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Theorem 1. [a, b] is compact.

Proof. Given an open cover U of [a, b], let

E := {x ∈ [a, b] | [a, x] is covered by finitely many elements of U}.

We note that E 6= ∅, since a ∈ E: For, [a, a] = {a} and since U is an open cover there exists
U ∈ U such that a ∈ U . Hence [a, a] is covered by the single element U .

E is bounded by b. Hence the supremum of E, say β exists.

We claim that β ∈ E and that β = b. The claim proves the result. Suppose the claim is
false.

Now β ∈ [a, b] since [a, b] is closed. There exists V ∈ U such that β ∈ V . Hence there
exists ε > 0 such that (β − ε, β + ε) ⊆ V , as V is open. Assume that β 6= b. Then we may
assume that ε is so small that (β − ε, β + ε) ⊆ [a, b]. Since β = supE, β − ε is not an upper
bound of E. Thus, there exists x ∈ E, such that β − ε < x ≤ β. Since x ∈ E, there exists
finitely many Ui ∈ U , 1 ≤ i ≤ n such that [a, x] ⊆ ∪ni=1Ui. But then [a, β + ε

2 ] ⊆ ∪ni=1Ui ∪ V .
Hence β + ε

2 ∈ E, a contradiction since β ≥ x, for all x ∈ E. Hence β = b.

Ex. 2. Let a, b, c, d ∈ R be such that b−a = d− c. Let S := [a, b]× [c, d] be the square in R2.
The vertices of S are (a, c), (b, c), (b, d) and (a, d). We call the point (a, c) as the bottom left
vertex of S. The pair of midpoints of its opposite sides are given by ([a+ b]/2, c), ([a+ b]/2, d)
and (a, [c+d]/2), (b, [c+d]/2]). By joining the midpoints of opposite sides, we get four smaller
squares. Observe that if (a1, c1) is the bottom left vertex of any of these squares, we have
a ≤ a1 and c ≤ c1.

Theorem 3. A subset of R2 is compact iff it is closed and bounded.

Proof. Let K be a closed and bounded set in R2. Then there exists R > 0 such that K ⊂
S := [−R,R]× [−R,R]. Since a closed subset of a compact set is compact, it suffices to show
that S is compact.

Suppose that S is not compact. Then there is an open cover {Ui : i ∈ I} of which there
is no finite subcover of S. Let us divide the square S into four smaller squares by joining the
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pairs of midpoints of opposite sides. (See the exercise above.) One of these square will not
have a finite subcover from the given cover. For, otherwise, all these four squares will have
finite subcovers so that S itself will admit a finite subcover. Choose one such smaller square
and call it S1. Note that the length of its sides is R and that if (a1, b1) is the bottom left
vertex of S1, then a1 ≥ a0 = −R and c1 ≥ c0 = −R. We repeat the argument by subdividing
S1 into four squares and choosing one of the smaller squares which does not admit a finite
subcover of {Ui}. Call this smaller square as S2. Note that the length of its sides is R/2 and
that if (a2, c2) is the bottom left vertex of S2, then a1 ≤ a2 and c1 ≤ c2.

Proceeding recursively, we have a sequence of squares Sn such that Sn dose not admit a
finite subcover and the length of sides of Sn is 2−n+1R and its bottom left vertex (an, cn) is
such that an−1 ≤ an and cn−1 ≤ cn. Thus we have two sequences of real numbers (an) and
(cn). They are bounded and monotone. Hence there exist real numbers a and c such that
an → a and bn → b. It follows that (an, cn) → (a, c) ∈ R2. Since S is closed, we infer that
(a, b) ∈ S. Hence there is Ui0 in the open cover such that (a, c) ∈ Ui0 . Since Ui0 is open there
exists an r > 0 such that B((a, c), r) ⊂ Ui0 .

Choose n ∈ N so that (1) diamSn = 2−n+1
√

2R < r/2 and (2) d((a, c), (an, cn)) < r/2.
We then have, for any (x, y) ∈ Sn,

d((a, c), (x, y)) ≤ d((a, c), (an, cn)) + d((an, cn), (x, y)) < r/2 + 2−n+1
√

2R < r.

Thus Sn ⊂ B((a, c), r) ⊂ Ui0 . But then {Ui0} is a finite subcover for Sn, contradicting our
choice of Sk’s. Therefore, or assumption that S is not compact is not tenable.

Theorem 4. A subset of Rn is compact iff it is closed and bounded.

Proof. One can adapt the proof of Thm. 3 to prove the theorem including the case when
n = 1. We leave the details to the reader.

Theorem 5. For a metric space (X, d), the following are equivalent:
(1) X is compact: every open cover has a finite subcover.
(2) X is complete and totally bounded.
(3) Every infinite set has a cluster point.
(4) Every sequence has a convergent subsequence.

Proof. (1) =⇒ (2): Let (X, d) be compact. Given ε > 0, {B(x, ε) | x ∈ X } is an open
cover of X. Let {B(xi, ε) | 1 ≤ i ≤ n} be a finite subcover. Hence X is totally bounded.

Now let (xn) be a Cauchy sequence in X. Then for every k ∈ N there exits nk such that
d(xn, xnk

) < 1
k for all n > nk. Let Uk :=

{
x ∈ X

∣∣ d(x, xnk
) > 1

k

}
. Then Uk is open: If

y ∈ Uk and δ := d(xnk
, y) − 1

k then B(y, δ) ⊆ Uk. Now xn /∈ Uk for n > nk. Hence no finite
subcover of Uk’s cover X: For, if they did, say, X = ∪mi=1Ui we take n > max{n1, . . . , nm}.
Then xn /∈ Uk for any k with 1 ≤ k ≤ m. This implies that {Uk} cannot cover X. Thus there
exists x ∈ X \ ∪∞k=1Uk. But then d(x, xnk

) < 1
k . Hence xnk

→ x. Since (xn) is Cauchy we see
that xn also converges to limk xnk

. Thus X is complete. We have thus shown (1) implies (2).

(2) =⇒ (3): Let E be an infinite subset of X. Let Fn be a finite subset of X such
that X = ∪x∈FnB(x, 1n). Then for n = 1 there exists x1 ∈ F1 such that E ∩ B(x1, 1) is
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infinite. Inductively choose xn ∈ Fn such that E ∩ (∩nk=1B(xk,
1
k )) is infinite. Since there

is a ∈ E ∩ B(xm,
1
m) ∩ B(xn,

1
n) we see that d(xm, xn) ≤ d(xm, a) + d(a, xn) < 1

m + 1
n <

2
m

if m < n. Thus (xn) is Cauchy. Since X is complete xn converges to some x ∈ X. Also
d(x, xn) < 2

n for all n. Thus B(x, 3/n) includes B(xn,
1
n) which includes infinitely many

elements of E. Thus x is a cluster point of E. Hence (3) is proved.

(3) =⇒ (4): If (xn) is a sequence in X we let {xn | n ∈ N} be its image. If this set is
finite then (4) trivially follows. So assume that {xn | n ∈ N} is infinite. Let x be a cluster
point of this set. Then there exist elements xnk

such that d(x, xnk
) < 1

k for all k. Thus
xnk
→ x and (4) is thereby proved.

(4) =⇒ (1): Let {Uα} be an open cover of X. For x ∈ X, let

rx := sup {r ∈ R | B(x, r) ⊆ for some Uα } .

We claim that ε := inf {rx | x ∈ X } > 0. If not there is a sequence (xn) such that rxn → 0.
But (xn) has a convergent subsequence, say, xnk

→ x. Now x ∈ Uα for some α and hence
there is an r > 0 such that B(x, r) ⊂ Uα. For k large enough d(x, xnk

) < r
2 so that rxnk

> r
2

for all sufficiently large k – a contradiction. Hence the claim is proved.

Let ε := inf {rx | x ∈ X }. Choose any x1 ∈ X. Inductively choose xn such that xn /∈
∪n−1k=1B(xi, ε/2). We cannot do this for all n. For otherwise, (xn) will not have a convergent
subsequence since d(xn, xm) > ε

2 for all m 6= n. Hence X = ∪Nk=1B(xk,
ε
2) for some N . But

then for each k there is an αk such that B(xk,
ε
2) ⊂ Uαk

. Hence X = ∪Nk=1Uαk
. Thus {Uα}

has a finite subcover or X is compact.

Ex. 6. Prove Thm. 3 using the fourth characterization (in Thm. 5) of compact metric spaces.

Theorem 7 (Tychonoff). The product of compact spaces is compact. That is, X :=
∏
Xα is

compact if each Xα is compact.

Proof. Let F0 be a family of closed sets in X with the finite intersection property (f.i.p). We
shall show that there is a point common to all the sets F ∈ F0.

We apply Zorn’s lemma to get a family F ⊆ F0 of (not necessarily closed) sets in X
with finite intersection property: Two families F and G are related iff F ⊆ G. Now let C
be any totally ordered chain of families with finite intersection property. That is, if there
exists F ,G ∈ C, then either F ⊆ G or G ⊆ F . This chain has an upper bound, viz.,
H = ∪F∈CF , where H has the finite intersection property. To see that H has the finite
intersection property, let A1, . . . , An ∈ H. Then there exists Fj ∈ C such that Aj ∈ Fj ∈ C.
Since C is totally ordered, and F1, . . . ,Fn are finite in number, there exists k with 1 ≤ k ≤ n
such that Fj ⊆ Fk for all k. But then A1, . . . , An ∈ Fk and Fk has the finite intersection
property. Hence A1 ∩ · · · ∩An 6= ∅.

Hence by Zorn’s lemma, there exists a maximal family F ∈ C, with F ⊇ F0. Let Fα
denote {Eα := Pα(E), E ∈ F}. Then Fα ⊆ P (Xα) has the finite intersection property,
(here Pα : X → Xα is the canonical projection map). For otherwise, Eα1 ∩ · · · ∩ Eαn = ∅ will
imply E1 ∩ · · · ∩ En = ∅, where Pα(Ei) = Eαi . Hence, Fα = {Eα} has finite intersection
property.

3



Since Xα is compact, there exists xα ∈ ∩Eα where the intersection is over all Eα ∈ Fα.
Let x ∈

∏
Xα be such that x(α) := xα.

Claim: x ∈ ∩F∈FF .

Since F ⊇ F0, the claim completes the proof of the theorem.

Proof of the Claim:

Let U be an open set in X. By definition of product topology, there exists α1, . . . , αn and
open sets Uαi ⊆ Xαi , 1 ≤ i ≤ n such that x ∈ ∩ni=1P

−1
αi

(Uαi) ⊆ U with x ∈ ∩ni=1P
−1
αi

(Uαi).

This implies xαi ∈ Uαi for all i. By hypothesis on xα’s, xαi ∈ Fαi for all Fαi ∈ Fαi . That
is, Uαi ∩ Fαi 6= ∅, for all Fαi ∈ Fαi . Hence P−1αi

(Uαi) has a non-empty intersection with
every F ∈ F . Therefore P−1αi

(Uαi) ∈ F (otherwise F ∪ {P−1αi
(Uαi)} ⊃ F and the former has

finite intersection property, contradicting the maximality of F). This being true for all i,
and F has finite intersection property, it follows that ∩ni=1P

−1
αi

(Uαi) ∈ F . Since F has the
finite intersection property, this basic open set and hence U intersects each member of F
non-trivially. Since U was an arbitrary open neighborhood of x, this means that x ∈ F , for
all F ∈ F . Hence the claim.

Ex. 8. Prove Thm. 4 using Tychonoff’s theorem.
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