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The aim of this article is to make good students of analysis become aware of the equivalent
criteria for an ordered field to have LUB Property. Most often, students are under the
impression that the Cauchy completeness of an ordered field is equivalent to the LUB property.
This article is aimed at the first year students of M.Sc. as the level of sophistication is higher
in the article. We prove below that for an ordered field the LUB property, the Bolzano-
Weierstrass property, the Heine-Borel property and the fact that any monotone bounded
sequence is convergent are equivalent.

To appreciate the main result, we introduce the reader to the field R[[X]] of formal power
series over R. An element of this field is of the form

f(X) = anXn + a−n+1X
−n+1 + · · ·+ a−1X

−1 + a0 + a1X + a2X
2 + · · · ,

where the coefficients ak ∈ R, for k ∈ Z. We can also think of them as functions a : Z → R
such that there exists n0(a) ∈ N such that a−n = 0 if n > n0(a). Or equivalently, we can
think of them as doubly infinite sequence

(. . . , 0, 0, 0, a−n, a−n+1, . . . , a−1, a0, a1, . . . , am, , . . .).

But the first expression is quite important, as it allows us to multiply two such elements. Let
f(X) :=

∑
k∈Z akX

k and g(X) :=
∑

r∈Z brX
r. Then we add and multiply them out as we do

in the case of polynomials:

f(X) + g(X) :=
∑
m

(am + bm)Xm

f(X) · g(X) :=
∑
n∈Z

(
∑
r+s=n

arbs)X
n.

One can show that with these operations, R[[X]] becomes a field. We introduce an order on
this field as follows: We compare the coefficients of the lowest power of X. If they are equal,
then we move on to the next higher power and so on. You may also think of this as the
lexicographic order on the set of all doubly infinite sequences in F .

In any ordered field F , we can define the absolute value |x| for any x ∈ F in the usual
manner. This absolute value defines a metric on F again in the standard way: d(x, y) :=
|x− y|. We say that a sequence (xn) in F is convergent if there exists an x ∈ F such that for
every positive ε ∈ F , there exists an n0 ∈ N such that |x − xn| ≤ ε for all n ≥ n0. Cauchy
sequences are defined similarly.
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Ex. 1. Show that R[[X]] is complete in the sense of Cauchy: every Cauchy sequence is
convergent. Hint: Note that a small positive element of this field will have nonzero coefficients
for Xk for all k ≤ N for very large N . Use this to conclude that any Cauchy sequence will
have the property that for any fixed k, there exists n(k) such that the coefficients of Xk in
the k-th terms of the sequence, for k ≥ n(k), becomes a constant.

Ex. 2. Show that R[[X]] does not have Archimedean property by showing that N is bounded
above by f(X) = 1/X. Hence conclude that R[[X]] does not enjoy the LUB property.

Theorem 3 (Heine-Borel). Every open cover of a bounded and closed subset in an ordered
field with the LUB property admits a finite subcover.

Proof. Let E be a closed and bounded subset. Let {Uα : α ∈ A} be an open cover of E. For
each element x of the field, let

Ex := {y ∈ E : y ≤ x}.

Now let
C := {x : Ex is covered by finitely many Uα}.

Since E is closed and bounded, b := inf E ∈ E. (For, if b = inf E, then for each n ∈ N,
b+ 1/n is not a lower bound for E and hence there exists yn ∈ E such that b ≤ y < b+ 1/n.
By Sandwich lemma, yn → b. Since E is closed, b ∈ E.)

Now, Eb = {b} and hence b ∈ C. If C has no upper bound, then it contains an x > supE.
For this x, Ex = E and hence the theorem is proved.

Let, if possible, C be bounded above. Let x0 := supC. If, for some ε > 0, the interval
(x0− ε, x0 + ε)∩E = ∅, then Ex0−ε = Ex0+ε = Ex for all x0− ε < x < x0 + ε. Since x0 is the
least upper bound for C, there exists an x ∈ C such that x0 − ε < x < x0 + ε. But then Ex
and hence Ex0+ε admits a finite subcover. It follows that x0 + ε ∈ C, contradicting the fact
that x0 = supC. We therefore are led to conclude that for each ε > 0, there exists a point of
E in (x0 − ε, x0 + ε). That is, x0 lies in the closure of E which is E, since E is closed.

If x0 ∈ E, then there exists α0 such that x0 ∈ Uα0 . Since Uα0 is open, there exists a δ > 0
such that (x0− δ, x0 + δ) ⊂ Uα. Since x0− δ is not an upper bound for C, there exists x ∈ C
such that x0− δ < x. But Ex is covered finitely many Uα’s, say, by Uαk

, 1 ≤ k ≤ n. But then
{Uαr : 0 ≤ r ≤ n} is a finite subcover of Ex0+δ/2. Hence x0 + δ/2 ∈ C, again a contradiction.
This forces us to conclude that C is unbounded.

Ex. 4. Exhibit a bounded closed subset of R[[X]] with an open cover which does not admit
a finite subcover.

Theorem 5 (Bolzano-Weierstrass). Every bounded infinite subset of an ordered field in which
Heine-Borel theorem is true has a cluster point.

Proof. Assume that an infinite subset A has no cluster point. Then, for each x ∈ A, there
exists εx > 0 such that (x−εx, x+εx) has no point of A other than x. Then {(x−εx, x+εx) :
x ∈ A} is an open cover of A. It does not admit any finite subcover. Since A has no cluster
point, it is automatically closed. Hence we have produced a closed and bounded subset and
an open cover of it which does not admit a finite subcover. This is a contradiction to our
assumption that the filed enjoys the Heine-Borel property.

Ex. 6. Show that Bolzano-Weierstrass property fails in R[[X]].
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Lemma 7. Every bounded monotone sequence in an ordered field in which Bolzano Weier-
strass theorem holds is convergent.

Proof. Assume that (xn) is nondecreasing. If the range {xn} is finite, let x := max{xn}.
Then x = xn0 and hence xn = x for all n ≥ n0, since (xn) is nondecreasing. In this case,
limn xn = x.

If the range is infinite, then there is a cluster point, say, x by the Bolzano-Weierstrass
property. We claim that x is an upper bound for the range. For, if not, there exists n0 such
that xn0 > x. Since xn < xn0 only if n < n0, it follows that x is a cluster point of the finite
set {xn : 1 ≤ n ≤ n0}, which is impossible. Hence x is an upper bound for {xn}. We now
show that limxn = x. Given ε > 0, there exists n0 such that xn0 ∈ (x− ε, x+ ε). Now , we
have

x− ε < xn0 ≤ xn ≤ x < x+ ε for n ≥ n0.

Ex. 8. Give an example of a bounded monotone sequence in R[[X]] which is not convergent.

Lemma 9. If F is an ordered field in which every bounded monotone sequence has a limit,
then F has Archimedean property.

Proof. Assume that there exists an a > 0 and b > 0 in F such that na ≤ b for all n ∈ N. Then
the sequence (an) where an := na is monotone and bounded. Hence by hypothesis, lim an
exists in F . Call this limit c. Note that c is the least upper bound for the set {an}. We have

c ≥ (n+ 1)a = na+ a, and hence c− a ≥ na = an ∀n ∈ N.

This shows that c− a is an upper bound for {an}. Since a > 0, this is a contradiction to the
fact that c is the least upper bound for {an}.

Lemma 10. Let F be an ordered field in which every bounded monotone sequence is conver-
gent. Then F has the LUB property.

Proof. Let A be a nonempty set bounded above, say, by b. Let a ∈ A. If (a+ b)/2 is an upper
bound for A, set

a1 = a, b1 =
a+ b

2
;

If (a+ b)/2 is not an upper bound, then set

a1 =
a+ b

2
, b1 = b.

Now set (a1 + b1)/2 equal to b2 or a2 according as (a1 + b1)/2 is or is not an upper bound
for A. We continues this way to define monotone sequences (an) and (bn) with the following
properties:

(i) bn is an upper bound for A for each n.
(ii) an is not an upper bound for A for each n.
(iii) bn − an = 2−n(b− a) for each n.

Let c = lim bn. First we note that c is an upper bound for A. For, if x > c holds for some
x ∈ A, then x > bn for some n. This contradicts (i). Finally, if y < c, then by (iii), and
Lemma 9, y < an for some n. It follows from (ii), y is not an upper bound. Hence c is the
least upper bound of A.
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Remark 11. It is so obvious that (b − a)/2n → 0 that we may not appreciate how the
Archimedean property enters the proof of the above lemma. See the exercise (Ex. 12) below.

Ex. 12. Compute the (an) and (bn) as in the proof of Lemma 10 where

a = (1/X) + 0 + 0X + 0X2 + · · ·
b = 1 + 0X + 0X2 + · · ·

How do these sequences behave? What is the relevance of this to the last remark?

We have thus arrived at the main result of this article.

Theorem 13. Let F be an ordered field. Then the following four properties are equivalent:
(a) Every nonempty subset of F which is bounded above has a least upper bound in F .
(b) Every open cover of a bounded closed subset of F admits a finite subcover.
(c) Every bounded infinite subset of F has a cluster point.
(d) Every bounded monotone sequence in F has a limit in F .

Proof. Follows from the earlier results.
(a) =⇒ (b) is Heine-Borel Theorem (Thm. 3).
(b) =⇒ (c) is Bolzano Weierstrass Theorem (Thm. 5).
(c) =⇒ (d) is Lemma 7.
(d) =⇒ (a) is Lemma 10.

Project: Formulate the nested interval property for an ordered field. Investigate whether it
is equivalent to the LUB property.
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