A Diagnostic Quiz in Complex Analysis

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Notes:

- (1) U stands for a connected open subset of \mathbb{C} .
- (2) Analytic \equiv holomorphic.
- (3) References to concepts or theorems, given in brackets, are meant as hints.
- (4) $B(a,r) := \{ z \in \mathbb{C} : |z-a| < r \}.$
 - 1. Find the real and imaginary part of the functions: (i) $f(z) = \overline{z}$, (ii) $f(z) = e^{-z^2}$.
 - 2. True or false? The function $z \mapsto \overline{z}$ is analytic on \mathbb{C} . (Cauchy Riemann equations)
 - 3. What are all the real valued analytic functions on a connect open subset of C? (Cauchy-Riemann equations/Open mapping theorem)
 - 4. Define $\int_{\gamma} f$ where γ is a continuously differentiable path and $f: \mathbb{C} \to \mathbb{C}$ is continuous.
 - 5. Let $f: U \to \mathbb{C}$ admit a primitive, say, g on U and γ be a piecewise smooth path in U. What is $\int_{\gamma} f$?
 - 6. True or false? $|\int_{\gamma} f| \leq \int_{\gamma} |f|$.
 - 7. Define the radius of convergence of a power series.
 - 8. Let the power series $\sum_{n=0}^{\infty} c_n z^n$ have R > 0 as its radius of convergence. True or false? The sequence of partial sums converge uniformly on the disk B(0, R) of convergence.
 - 9. What is the sum of the series $\sum_{n=1}^{\infty} n z^{n-1}$? (Term-wise operations on a power series)
 - 10. Let the power series $\sum_{n=0}^{\infty} c_n z^n$ have R > 0 as its radius of convergence. Does it have a primitive in B(0, R), that is, does there exist an analytic function g on B(0, R) such that f = g' on B(0, R)? (Term-wise operations on a power series)
 - 11. State a version of Cauchy's theorem you have learnt.
 - 12. Let f be analytic on B(0,1). True or false? There exists an analytic $g: B(0,1) \to \mathbb{C}$ such that g' = f on the unit disk. (Cauchy's theorem)
 - 13. Give a primitive of f(z) = 1/z on the upper half-plane Im z > 0. (Branches of logarithm)

- 14. Let U := B(i, 1). Let γ be any closed path/contour in U. What is the value of $\int_{\gamma} \frac{dz}{z}$? (Winding number/Cauchy's theorem/Residue theorem)
- 15. Evaluate (i) $\int_{\gamma} \frac{z^2+1}{z+1}$ and (ii) $\int_{\gamma} \frac{e^z}{(z-1)^2}$ where $\gamma(t) = 2e^{it}$. (Cauchy integral formula)
- 16. Let U be a connected open subset of \mathbb{C} and let f be analytic on U. True or false? The Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$ converges on an open disk $B(a, r_a) \subset U$ for each $a \in U$.
- 17. Let U be a connected open subset of \mathbb{C} and let f be analytic on U. True or false? f is a power series function on U, that is, there exist $a \in U$ and constants $c_n \in \mathbb{C}$ such that $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$.
- 18. True or false? If f is an entire function then there exist constants $c_n \in \mathbb{C}$ such that $f(z) = \sum_{n=0}^{\infty} c_n z^n$ for all $z \in \mathbb{C}$.
- 19. Give a complete list of all analytic functions $f: \mathbb{C} \to B(0, 1)$. (Liouville's theorem)
- 20. True or false? Let $f: \mathbb{C} \to \mathbb{C}$ be a nonconstant entire function. Then $|f(z)| \to \infty$ as $|z| \to \infty$. (A correct understanding of Liouville's theorem)
- 21. Any nonconstant polynomial maps \mathbb{C} onto \mathbb{C} . (Fundamental theorem of algebra)
- 22. Let f be a function on U such that for every $\varepsilon > 0$, there exists g analytic on U such that $|f(z) g(z)| < \varepsilon$ for all $z \in U$. Then f is analytic on U. (Uniform convergence, Morera and Weierstrass theorems)
- 23. Let $f: B(0,1) \to \mathbb{C}$ be analytic and be such that f(x) = x for all $x \in (0,1)$. What can you conclude about f? (Identity/Uniqueness theorem)
- 24. Let $f, g: U \to \mathbb{C}$ be analytic. Assume that f(z) = g(z) for all $z \in K$, an infinite compact subset of U. True or false: $f \equiv g$ on U. (Bolzano-Weierstrass and Identity/Uniqueness theorems)
- 25. Let f be analytic on a connected open set U. If f vanishes on an uncountable subset of U, then f is identically zero. (Bolzano-Weierstrass and identity/uniqueness theorems)
- 26. Let $f: U \to \{z \in \mathbb{C} : |z| \le 1\}$ be an analytic function which is onto. What can you conclude about f? (Maximum modulus principle)
- 27. What kind of singularities does $\frac{\sin z}{z}$ have at z = 0?
- 28. What kind of singularities does a nonconstant polynomial have in the extended complex plane? (Laurent expansion at ∞)
- 29. Which entire functions have essential singularity at ∞ ? Does an analogue of Casorati-Weierstrass theorem hold for such functions?
- 30. True or false? If f is defined on $U := \{z \in \mathbb{C} : 0 < |z| < 1\}$ and f has an essential singularity at 0, then f(U) is an open dense set in \mathbb{C} . (Casorati-Weierstrass and open mapping theorems).
- 31. What is the residue at z = 0 of an entire function f? of the function g(z) := f(z)/z?

- 32. True or false? Residue theorem is a generalization of the Cauchy integral formula.
- 33. Let $\gamma(t) = 2e^{it}, 0 \le t \le 2\pi$. Evaluate $\int_{\gamma} \frac{e^z}{z-1} dz$. (Residue theorem)
- 34. Let P(z) be a nonconstant polynomial and $\gamma_R(t) := Re^{it}$, $0 \le t \le 2\pi$. What is the value of $\frac{1}{2\pi i} \int_{\gamma_R} \frac{P'(z)}{P(z)} dz$ for all sufficiently large R? (Argument principle)
- 35. Find all analytic functions on U that take vales in the hyperbola $\{z \in \mathbb{C} : \text{Re } z \cdot \text{Im } z = 1\}$. (Open mapping theorem)
- 36. Let $f: U \to \mathbb{C}$ be holomorphic such that its real part is also holomorphic. What can you conclude about f? (Open mapping theorem, twice!)
- 37. Let $f: \mathbb{C}^* \to \mathbb{C}$ be analytic and bounded on \mathbb{C}^* . True or false: f is a constant. (Riemann's theorem on removable singularity and open mapping theorem)
- 38. Let P be a polynomial of degree 2 or greater. Show that $\int_{\gamma_R} \frac{dz}{P(z)} = 0$ for all sufficiently large R. (Residues at ∞)
- 39. Let $f: \mathbb{C} \to \mathbb{C}$ be analytic taking values in the upper half-plane $\{z \in \mathbb{C} : \text{Im}(z) > 0\}$. True or false: f is a constant. (Conformal equivalence and Liouville)
- 40. * Do you understand the following statement? A continuous argument exists on an open connected set U iff a continuous branch of logarithm exists on U.
- 41. * Do you know the relation between the following concepts? Existence of a continuous branch of logarithm on U and the concept of evenly covered neighbourhoods in the context of covering spaces?