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1 Limits

We shall be brief in this section.

Definition 1. Let A ⊂ X be a subset of a metric space. Let x0 ∈ X be a cluster point of A,
not necessarily in A. Let f : A → C be a function. We say that limx→x0 f(x) exists if there
exists ` ∈ C such that for any given ε > 0 there exists a δ > 0 such that

x ∈ A and 0 < d(x, x0) < δ ⇒ |f(x)− `| < ε.

It is easy to show that ` with this property, if exists, is unique. In such a case, we write
limx→x0 f(x) = `. Note that f need not be defined at x0.

The study of this concept may be reduced to that of sequences and their limits because
of the following exercise.

Ex. 2. With the above notation, limx→x0 f(x) = ` iff for every sequence (xn) in A (with
xn 6= x0 for n ∈ N) such that limxn = x0 we have lim f(xn) = `. Hint: Go through the proof
of the equivalence of the definitions of continuity in terms of sequences and ε − δ. (Refer to
Theorem ??.)

Proposition 3. Let limx→x0 f(x) = α and limx→x0 g(x) = β. Then
(i) limx→x0(af + bg)(x) = aα+ bβ for a, b ∈ C.
(ii) limx→x0(fg)(x) = αβ.
(iii) limx→x0(f/g)(x) = α/β if β 6= 0.

Proof. Use the above exercise Ex. 2 and the algebra of limits theorem.

Ex. 4. Show that limz→i
z4−1
z−i = −4i.

Ex. 5. Let f : U ⊂ C→ C be given. Show that f is continuous at z0 ∈ U iff limz→z0 f(z) =
f(z0).
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Definition 6. Let f : C → C be a function. We use the notation limz→∞ f(z) = ` to mean
that if given ε > 0 there exists an R > 0 such that for all z with |z| > R, we have |f(z)−`| < ε.

We use the notation limz→z0 |f(z)| = ∞ to say that if for a given M > 0, there exists
r > 0 such that |f(z)| > M for all z ∈ B(z0, r).

Note that we have not yet introduced the point at infinity.

Ex. 7. Prove that limz→∞(1/zn) = 0 for any n ∈ N.

Ex. 8. Prove or disprove that limz→∞ |e−z| = 0.

Ex. 9. Let p(z) :=
∑n

k=0 akz
k be a nonconstant polynomial. Show that there exists R > 1

such that |p(z)| > 1
2 |an||z|

n for |z| ≥ R. In particular, |p(z)| → ∞ as |z| → ∞. Hint: Observe
that

|p(z)
zn
| ≥ |an| −

n−1∑
k=0

|ak|
|z|

, for |z| ≥ 1.

2 Functions from R to C

We deal with differentiation of functions from R to C.

Definition 10. Let f : [a, b]→ C be given. We say that f is differentiable function at t ∈ [a, b]
if there exists a complex number α such that for a given ε > 0 there is a δ > 0 such that

0 6= h ∈ R, |h| < δ & t+ h ∈ [a, b]⇒ |f(t+ h)− f(t)

h
− α| < ε.

That is, f is differentiable at t iff limh→0
f(t+h)−f(t)

h exists. If the limit exists and if we denote
it by α, then α is unique and called the derivative of f at t. It is denoted by f ′(t).

Ex. 11. With the above notation, write f := u + iv where u(t) := Re (f(t)) and v(t) :=
Im (f(t)). Then f is differentiable at t ∈ [a, b] iff the real valued functions u, v : [a, b]→ R are
differentiable at t. Furthermore, f ′(t) = u′(t) + iv′(t). Also, if f is differentiable at t, then it
is continuous at t.

Remark 12. If f is as above, we may think of f as a differentiable curve in the complex
plane: f(t) = u(t) + iv(t) which corresponds to (u(t), v(t)) ∈ R2. And f ′(t) ≡ (u′(t), v′(t)) is
thought of as the tangent vector to the curve at t. In physical terms, we may think of f(t)
as the position of a particle at time t and f ′(t) as the “velocity”.

Example 13. Let z, w ∈ C. Let γ : [0, 1] → C be given by γ(t) := z + t(w − z). Then γ is

the line segment [z, w] joining z and w and γ′(t) = w− z, since γ(t+h)−γ(t)
h − (w− z) = 0, for

h 6= 0.

Example 14. Let a ∈ C, R > 0. Consider the map σ : [0, 2π] → C given by σ(t) :=
a + R(cos t + i sin t). Then σ is the circle with centre at a and radius R. Also, σ′(t) =
R(− sin t+ i cos t).

Remark 15. The analogue of mean value theorem is false for complex valued functions of a
real variable. For, consider f : [0, 2π]→ C given by f(t) := cos t+i sin t. Then f(2π)−f(0) = 0
while |f ′(t)| = 1 for all t ∈ [0, 2π].

Ex. 16. Let h : [a, b] → C be differentiable with h′(t) = 0. Then h is a constant. Hint:
Invoke the result from real analysis to the real and imaginary parts of h.
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3 Differentiable Functions on C

Definition 17. Let U ⊂ C be open. A function f : U → C is said to be differentiable at
z ∈ U if there exists an α ∈ C such that given ε > 0 there exists a δ > 0 such that

|f(z + h)− f(z)

h
− α| < ε, for 0 < |h| < δ.

The number α is unique (Exercise!) and called the derivative of f at z. It is denoted by f ′(z).

Note that f is differentiable at z ∈ U iff the limit

lim
h→0

f(z + h)− f(z)

h

exists.

If f is differentiable at each z ∈ U , then f is said to be holomorphic on U . Let H(U)
denote the set of functions holomorphic on U .

If f ∈ H(C), then f is called an entire function.

If f : U → C is differentiable and if g := f ′ : U → C is differentiable at z ∈ U , we
denote f ′′(z) = g′(z). f ′′ is called the second derivative of f at z. More generally, we define
inductively the n-th derivative of f at z by setting f (0)(z) := f(z) and f (n)(z) := (f (n−1))′(z),
the derivative of f (n−1) at z. In general, the first, second and third derivatives are denoted
by f ′, f ′′ and f ′′′ respectively. If f (n)(z) exists for all n ∈ N and for all z ∈ U , we say that f
is infinitely differentiable on U .

Proposition 18. Let f : U → C be given and z ∈ U . Then f is differentiable at z iff there
exists a function f1 : U → C , continuous at z and such that f(w) = f(z) + (w − z)f1(w).
Furthermore, f ′(z) = f1(z).

Proof. Let f be differentiable at z. Define f1(w) := f(w)−f(z)
w−z for w 6= z and f1(z) = f ′(z). To

check the continuity of f1 at z, let ε > 0 be given. Since f is differentiable at z, for this ε there

exists a δ such that if 0 < |w− z| < δ, then |f(w)−f(z)w−z − f ′(z)| < ε, that is, |f1(w)− f1(z)| < ε
for |w − z| < δ. Hence f1 is continuous at z.

Conversely, if f1 exists as specified, observe that f1(w) must equal f(w)−f(z)
w−z for w 6= z.

We claim that f is differentiable at z and f ′(z) = f1(z): By continuity of f1 at z, given ε > 0

there exists δ > 0 such that if 0 < |w − z| < δ, then |f(w)−f(z)w−z − f1(z)| < ε. This precisely
means that f is differentiable at z and f ′(z) = f1(z).

Corollary 19. If f is differentiable at z, then f is continuous at z.

Proof. Using the notation of the last proposition, we have f(w) = f(z)+(w−z)f1(w). Hence

lim
w→z

f(w) = lim
w→z

(f(z) + (w − z)f1(w)) = f(z),

since f1 is continuous at z, the second term goes to 0.
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Reason: Note that if f1 is continuous at z, then it is bounded in an open disk around z,

say, by M . (See Ex. ??.) Then limw→z(w − z)f1(w) = 0.

Example 20. Let f : U → C be a constant. Then f is holomorphic on U and f ′(z) = 0 for
all z ∈ U .

4 Integration of functions from R to C

Let I = [a, b] ⊆ R and f : I → C be continuous. Then we define the integral of f by∫ b

a
f ≡

∫ b

a
f(t) dt :=

∫ b

a
Re f + i

∫ b

a
Im f.

Here the integrals are Riemann and they exist since Re (f) and Im (f) are continuous.

Ex. 21. Let f : [0, 2π]→ C be given by f(t) = eint for some n ∈ Z. Compute
∫ 2π
0 f(t) dt.

Ex. 22. Let C([a, b],C) denote the complex vector space of continuous functions on [a, b].

Show that the map f 7→
∫ b
a f(t) dt is a complex linear map from C([a, b],C) to C.

Theorem 23 (Fundamental Theorem of Calculus).
(i) Let f : [a, b] → C be continuous. Define F (x) :=

∫ x
a f(t) dt. Then F is differentiable

and F ′(x) = f(x) for x ∈ [a, b].

(ii) Let G : [a, b] → C be differentiable with g := G′ continuous. Then
∫ b
a g(t) dt = G(b) −

G(a).

Proof. The strategy is to make use of our definitions of derivative and the integral of a complex
valued function of a real variable and make use the fundamental theorem of calculus for real
valued functions of a real variable.

Let us write f(t) = u(t) + iv(t). Then u and v are continuous and

F (x) =

∫ x

a
f(t) dt =

∫ x

a
u(t) dt+ i

∫ x

a
v(t) dt.

Now F is differentiable iff
∫ x
a u(t) dt and

∫ x
a v(t) dt are so. By the fundamental theorem of

calculus, it follows that these two indefinite integrals are differentiable and their derivatives
are u(x) and v(x) respectively. Hence F ′(x) exists and is equal to u(x) + iv(x) = f(x). This
proves (i).

Proof of (ii) is similar and the reader should do it on his own.

Let H(x) :=
∫ x

a
g(t) dt. Then, H ′(x) = g(x) by (i). so that (H −G)′ = 0. Thus H −G is

a constant on [a, b] whence H(b)−G(b) = H(a)−G(a), or H(b)−H(a) = G(b)−G(a).

Since H(a) = 0, (ii) follows.
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Ex. 24. Do Ex. 21 now!

Ex. 25. Do Ex. 16. Hint: h(x)− h(a) =
∫ x
a h
′(t) dt.

Ex. 26. Let λ = a+ ib ∈ C∗. Evaluate
∫ t
0 e

λs ds. Equating the real parts, show that

(a2 + b2)

∫ t

0
eas cos bs ds = eat[a cos bt+ b sin bt]− a.

Ex. 27. Let γ : [a, b]→ C be a continuously differentiable map with γ(t) 6= z0 for all t ∈ [a, b].

(We think of γ as a path not passing through z0.) Let g(t) :=
∫ t
a

γ′(s)
γ(s)−z0 ds, for t ∈ [a, b].

Show that h(t) := e−g(t)[γ(t)− z0] is a constant and hence deduce that

exp(g(t)) =
γ(t)− z0
γ(a)− z0

, for t ∈ [a, b].

What can you say about g(b) if γ(b) = γ(a)? Take z0 = 0 and do you see the meaning of g?
We shall return to this exercise later. See Definition ??, Example ?? and Theorem ??.

Corollary 28 (Integration by parts). Let f, g : [a, b]→ C be continuously differentiable. Then∫ b

a
f(t)g′(t) dt = [f(t)g(t)]ba −

∫ b

a
f ′(t)g(t) dt.

Proof. This follows from Theorem 23. Recall that (fg)′(t) = f ′(t)g(t) + f(t)g′(t). Both sides
are continuous functions and so we can integrate them to obtain∫ b

a
f ′(t)g(t) dt+

∫ b

a
f(t)g′(t) dt =

∫ b

a
(fg)′(t) dt

= [f(t)g(t)]ba,

by the fundamental theorem of calculus. The result follows from this.

Proposition 29 (Change of Variable). Let h : [c, d] → R be continuously differentiable and
f : [a, b]→ R be continuous. Assume that h([c, d]) ⊂ [a, b]. Then∫ d

c
(f ◦ h)(s)h′(s) ds =

∫ h(d)

h(c)
f(t) dt.

Proof. Consider ϕ(s) :=
∫ h(s)
h(c) f(t) dt. Then ϕ is the composition of the functions s 7→ h(s)

and x 7→
∫ x
h(c) f(t) dt. Hence ϕ′(s) = f(h(s))h′(s) by chain rule and Theorem 23. Again, by

the same theorem, we have∫ h(d)

h(c)
f(t) dt = ϕ(d)− ϕ(c) =

∫ d

c
ϕ′(s) ds =

∫ d

c
f(h(s))h′(s) ds.

(Why does the integrand on the left most side make sense?)
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Proposition 30. Let f : I → C be continuous. Then

|
∫ b

a
f(t)dt| ≤

∫ b

a
|f(t)|dt.

Proof. If f is real valued, then −|f(t)| ≤ f(t) ≤ |f(t)| so that
∫
−|f | ≤

∫
f ≤

∫
|f | Hence

|
∫
f | ≤

∫
|f | in this case.

Let f be complex valued. Choose α ∈ C with |α| = 1 and α
∫ b
a f(t)dt ∈ R. (If

∫ b
a f(t) dt =

reit is a polar representation, then we may take α = e−it.) By linearity, α
∫ b
a f =

∫ b
a αf so

that ∫ b

a
Re (αf(t)) dt = Re (α

∫ b

a
f(t) dt) = α

∫ b

a
f(t) dt. (1)

Also, observe that
|Re (αf(t)| ≤ |αf(t)| = |α||f(t)| = |f(t)|. (2)

Hence

|
∫ b

a
f(t)dt| = |α

∫ b

a
f(t)dt| (by our choice of α)

= |
∫ b

a
Re (αf(t))dt| (by 1)

≤
∫ b

a
|Re (αf(t))|dt (by the real case)

≤
∫ b

a
|f(t)|dt (by 2 and monotonicity of the integral).

This completes the proof.

Proposition 31. If fn : [a, b] → C are continuous and they converge uniformly on [a, b] to

an f : [a, b]→ C, then f is necessarily continuous and we have limn

∫ b
a fn(t) dt =

∫ b
a f(t) dt.

Proof. Follows from the observation:

|
∫ b

a
fn(t) dt−

∫ b

a
f(t) dt| = |

∫ b

a
[fn(t)− f(t)] dt|

≤
∫ b

a
|fn(t)− f(t)| dt

≤
∫ b

a
εn = εn(b− a),

where εn := sup{|fn(t) − f(t)| : t ∈ [a, b]}. Since fn → f uniformly on [a, b], εn → 0. The
result follows.(Question: Where did we use the fact that f is continuous?)

We give applications of this result which constitute some of the important results of
Cauchy Theory in the next chapter.
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Ex. 32. Let f(z) :=
∑∞

n=0 an(z−z0)n for z ∈ B(z0, R). Then for 0 ≤ r ≤ R, and 0 ≤ t ≤ 2π,
we have the Parseval identity:

1

2π

∫ 2π

0
|f(z0 + reit)|2 dt =

∞∑
n=0

|an|2r2n. (3)

If |f(z)| ≤M(r) for |z − z0| = r, then

∞∑
n=0

|an|2r2n ≤M(r)2. (4)

Hint: Observe that
∫ 2π
0 |sn(t)|2 dt =

∑n
k=0 |ak|2r2k. Then use Ex. ??.
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