Complex Analysis: Handout-1 (Basic Calculus on C)

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 Limits

We shall be brief in this section.

Definition 1. Let $A \subset X$ be a subset of a metric space. Let $x_0 \in X$ be a cluster point of A, not necessarily in A. Let $f: A \to \mathbb{C}$ be a function. We say that $\lim_{x \to x_0} f(x)$ exists if there exists $\ell \in \mathbb{C}$ such that for any given $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
x \in A \quad \text{and} \quad 0 < d(x, x_0) < \delta \Rightarrow |f(x) - \ell| < \varepsilon.
$$

It is easy to show that ℓ with this property, if exists, is unique. In such a case, we write $\lim_{x\to x_0} f(x) = \ell$. Note that f need not be defined at x_0 .

The study of this concept may be reduced to that of sequences and their limits because of the following exercise.

Ex. 2. With the above notation, $\lim_{x\to x_0} f(x) = \ell$ iff for every sequence (x_n) in A (with $x_n \neq x_0$ for $n \in \mathbb{N}$) such that $\lim x_n = x_0$ we have $\lim f(x_n) = \ell$. Hint: Go through the proof of the equivalence of the definitions of continuity in terms of sequences and $\varepsilon - \delta$. (Refer to Theorem ??.)

Proposition 3. Let $\lim_{x\to x_0} f(x) = \alpha$ and $\lim_{x\to x_0} g(x) = \beta$. Then (i) $\lim_{x\to x_0} (af + bg)(x) = a\alpha + b\beta$ for $a, b \in \mathbb{C}$. (ii) $\lim_{x\to x_0} (fg)(x) = \alpha\beta$. (iii) $\lim_{x\to x_0} (f/g)(x) = \alpha/\beta$ if $\beta \neq 0$.

Proof. Use the above exercise Ex. 2 and the algebra of limits theorem.

 \Box

Ex. 4. Show that $\lim_{z \to i} \frac{z^4 - 1}{z - i} = -4i$.

Ex. 5. Let $f: U \subset \mathbb{C} \to \mathbb{C}$ be given. Show that f is continuous at $z_0 \in U$ iff $\lim_{z \to z_0} f(z) =$ $f(z_0)$.

Definition 6. Let $f: \mathbb{C} \to \mathbb{C}$ be a function. We use the notation $\lim_{z\to\infty} f(z) = \ell$ to mean that if given $\varepsilon > 0$ there exists an $R > 0$ such that for all z with $|z| > R$, we have $|f(z)-\ell| < \varepsilon$.

We use the notation $\lim_{z\to z_0}|f(z)| = \infty$ to say that if for a given $M > 0$, there exists $r > 0$ such that $|f(z)| > M$ for all $z \in B(z_0, r)$.

Note that we have not yet introduced the point at infinity.

Ex. 7. Prove that $\lim_{z\to\infty}(1/z^n) = 0$ for any $n \in \mathbb{N}$.

Ex. 8. Prove or disprove that $\lim_{z\to\infty} |e^{-z}| = 0$.

Ex. 9. Let $p(z) := \sum_{k=0}^{n} a_k z^k$ be a nonconstant polynomial. Show that there exists $R > 1$ such that $|p(z)| > \frac{1}{2}$ $\frac{1}{2}|a_n||z|^n$ for $|z| \ge R$. In particular, $|p(z)| \to \infty$ as $|z| \to \infty$. *Hint:* Observe that

$$
|\frac{p(z)}{z^n}| \ge |a_n| - \sum_{k=0}^{n-1} \frac{|a_k|}{|z|}, \quad \text{for } |z| \ge 1.
$$

2 Functions from $\mathbb R$ to $\mathbb C$

We deal with differentiation of functions from $\mathbb R$ to $\mathbb C$.

Definition 10. Let $f : [a, b] \to \mathbb{C}$ be given. We say that f is differentiable function at $t \in [a, b]$ if there exists a complex number α such that for a given $\varepsilon > 0$ there is a $\delta > 0$ such that

$$
0 \neq h \in \mathbb{R}, \ |h| < \delta \ \& \ t + h \in [a, b] \Rightarrow |\frac{f(t + h) - f(t)}{h} - \alpha| < \varepsilon.
$$

That is, f is differentiable at t iff $\lim_{h\to 0} \frac{f(t+h)-f(t)}{h}$ $\frac{h^{(1)} - f(t)}{h}$ exists. If the limit exists and if we denote it by α , then α is unique and called the derivative of f at t. It is denoted by $f'(t)$.

Ex. 11. With the above notation, write $f := u + iv$ where $u(t) := \text{Re}(f(t))$ and $v(t) :=$ Im $(f(t))$. Then f is differentiable at $t \in [a, b]$ iff the real valued functions $u, v : [a, b] \to \mathbb{R}$ are differentiable at t. Furthermore, $f'(t) = u'(t) + iv'(t)$. Also, if f is differentiable at t, then it is continuous at t.

Remark 12. If f is as above, we may think of f as a differentiable curve in the complex plane: $f(t) = u(t) + iv(t)$ which corresponds to $(u(t), v(t)) \in \mathbb{R}^2$. And $f'(t) \equiv (u'(t), v'(t))$ is thought of as the tangent vector to the curve at t. In physical terms, we may think of $f(t)$ as the position of a particle at time t and $f'(t)$ as the "velocity".

Example 13. Let $z, w \in \mathbb{C}$. Let $\gamma : [0, 1] \to \mathbb{C}$ be given by $\gamma(t) := z + t(w - z)$. Then γ is the line segment $[z, w]$ joining z and w and $\gamma'(t) = w - z$, since $\frac{\gamma(t+h)-\gamma(t)}{h} - (w - z) = 0$, for $h \neq 0$.

Example 14. Let $a \in \mathbb{C}$, $R > 0$. Consider the map $\sigma : [0, 2\pi] \to \mathbb{C}$ given by $\sigma(t) :=$ $a + R(\cos t + i \sin t)$. Then σ is the circle with centre at a and radius R. Also, $\sigma'(t)$ $R(-\sin t + i\cos t).$

Remark 15. The analogue of mean value theorem is false for complex valued functions of a real variable. For, consider $f : [0, 2\pi] \to \mathbb{C}$ given by $f(t) := \cos t + i \sin t$. Then $f(2\pi) - f(0) = 0$ while $|f'(t)| = 1$ for all $t \in [0, 2\pi]$.

Ex. 16. Let $h: [a, b] \to \mathbb{C}$ be differentiable with $h'(t) = 0$. Then h is a constant. Hint: Invoke the result from real analysis to the real and imaginary parts of h .

3 Differentiable Functions on C

Definition 17. Let $U \subset \mathbb{C}$ be open. A function $f: U \to \mathbb{C}$ is said to be differentiable at $z \in U$ if there exists an $\alpha \in \mathbb{C}$ such that given $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
\left|\frac{f(z+h)-f(z)}{h}-\alpha\right|<\varepsilon,\quad\text{for }0<|h|<\delta.
$$

The number α is unique (Exercise!) and called the *derivative* of f at z. It is denoted by $f'(z)$.

Note that f is differentiable at $z \in U$ iff the limit

$$
\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
$$

exists.

If f is differentiable at each $z \in U$, then f is said to be *holomorphic* on U. Let $H(U)$ denote the set of functions holomorphic on U.

If $f \in H(\mathbb{C})$, then f is called an *entire* function.

If $f: U \to \mathbb{C}$ is differentiable and if $g := f': U \to \mathbb{C}$ is differentiable at $z \in U$, we denote $f''(z) = g'(z)$. f'' is called the second derivative of f at z. More generally, we define inductively the *n*-th derivative of f at z by setting $f^{(0)}(z) := f(z)$ and $f^{(n)}(z) := (f^{(n-1)})'(z)$, the derivative of $f^{(n-1)}$ at z. In general, the first, second and third derivatives are denoted by f', f'' and f''' respectively. If $f^{(n)}(z)$ exists for all $n \in \mathbb{N}$ and for all $z \in U$, we say that f is infinitely differentiable on U.

Proposition 18. Let $f: U \to \mathbb{C}$ be given and $z \in U$. Then f is differentiable at z iff there exists a function $f_1: U \to \mathbb{C}$, continuous at z and such that $f(w) = f(z) + (w - z)f_1(w)$. Furthermore, $f'(z) = f_1(z)$.

Proof. Let f be differentiable at z. Define $f_1(w) := \frac{f(w) - f(z)}{w - z}$ for $w \neq z$ and $f_1(z) = f'(z)$. To check the continuity of f_1 at z, let $\varepsilon > 0$ be given. Since f is differentiable at z, for this ε there exists a δ such that if $0 < |w - z| < \delta$, then $\left| \frac{f(w) - f(z)}{w - z} - f'(z) \right| < \varepsilon$, that is, $|f_1(w) - f_1(z)| < \varepsilon$ for $|w - z| < \delta$. Hence f_1 is continuous at z.

Conversely, if f_1 exists as specified, observe that $f_1(w)$ must equal $\frac{f(w)-f(z)}{w-z}$ for $w \neq z$. We claim that f is differentiable at z and $f'(z) = f_1(z)$: By continuity of f_1 at z, given $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |w - z| < \delta$, then $\left| \frac{f(w) - f(z)}{w - z} - f_1(z) \right| < \varepsilon$. This precisely means that f is differentiable at z and $f'(z) = f_1(z)$.

Corollary 19. If f is differentiable at z, then f is continuous at z.

Proof. Using the notation of the last proposition, we have $f(w) = f(z) + (w-z)f_1(w)$. Hence

$$
\lim_{w \to z} f(w) = \lim_{w \to z} (f(z) + (w - z) f_1(w)) = f(z),
$$

since f_1 is continuous at z, the second term goes to 0.

Reason: Note that if f_1 is continuous at z, then it is bounded in an open disk around z, say, by M. (See Ex. ??.) Then $\lim_{w\to z}(w-z)f_1(w)=0$.

Example 20. Let $f: U \to \mathbb{C}$ be a constant. Then f is holomorphic on U and $f'(z) = 0$ for all $z \in U$.

4 Integration of functions from R to C

Let $I = [a, b] \subseteq \mathbb{R}$ and $f: I \to \mathbb{C}$ be continuous. Then we define the integral of f by

$$
\int_a^b f \equiv \int_a^b f(t) dt := \int_a^b \text{Re } f + i \int_a^b \text{Im } f.
$$

Here the integrals are Riemann and they exist since $\text{Re}(f)$ and $\text{Im}(f)$ are continuous.

Ex. 21. Let $f: [0, 2\pi] \to \mathbb{C}$ be given by $f(t) = e^{int}$ for some $n \in \mathbb{Z}$. Compute $\int_0^{2\pi} f(t) dt$.

Ex. 22. Let $C([a, b], \mathbb{C})$ denote the complex vector space of continuous functions on [a, b]. Show that the map $f \mapsto \int_a^b f(t) dt$ is a complex linear map from $C([a, b], \mathbb{C})$ to \mathbb{C} .

Theorem 23 (Fundamental Theorem of Calculus).

(i) Let $f: [a, b] \to \mathbb{C}$ be continuous. Define $F(x) := \int_a^x f(t) dt$. Then F is differentiable and $F'(x) = f(x)$ for $x \in [a, b]$.

(ii) Let $G: [a, b] \to \mathbb{C}$ be differentiable with $g := G'$ continuous. Then $\int_a^b g(t) dt = G(b)$ $G(a)$.

Proof. The strategy is to make use of our definitions of derivative and the integral of a complex valued function of a real variable and make use the fundamental theorem of calculus for real valued functions of a real variable.

Let us write $f(t) = u(t) + iv(t)$. Then u and v are continuous and

$$
F(x) = \int_{a}^{x} f(t) dt = \int_{a}^{x} u(t) dt + i \int_{a}^{x} v(t) dt.
$$

Now F is differentiable iff $\int_a^x u(t) dt$ and $\int_a^x v(t) dt$ are so. By the fundamental theorem of calculus, it follows that these two indefinite integrals are differentiable and their derivatives are $u(x)$ and $v(x)$ respectively. Hence $F'(x)$ exists and is equal to $u(x) + iv(x) = f(x)$. This proves (i).

Proof of (ii) is similar and the reader should do it on his own.

Let $H(x) := \int_a^x g(t) dt$. Then, $H'(x) = g(x)$ by (i). so that $(H - G)' = 0$. Thus $H - G$ is a constant on [a, b] whence $H(b) - G(b) = H(a) - G(a)$, or $H(b) - H(a) = G(b) - G(a)$. Since $H(a) = 0$, (ii) follows.

 \Box

Ex. 24. Do Ex. 21 now!

Ex. 25. Do Ex. 16. *Hint:* $h(x) - h(a) = \int_a^x h'(t) dt$.

Ex. 26. Let $\lambda = a + ib \in \mathbb{C}^*$. Evaluate $\int_0^t e^{\lambda s} ds$. Equating the real parts, show that

$$
(a^{2} + b^{2}) \int_{0}^{t} e^{as} \cos bs \, ds = e^{at} [a \cos bt + b \sin bt] - a.
$$

Ex. 27. Let γ : $[a, b] \to \mathbb{C}$ be a continuously differentiable map with $\gamma(t) \neq z_0$ for all $t \in [a, b]$. (We think of γ as a path not passing through z_0 .) Let $g(t) := \int_a^t$ $\gamma'(s)$ $\frac{\gamma(s)}{\gamma(s)-z_0}$ ds, for $t \in [a,b]$. Show that $h(t) := e^{-g(t)}[\gamma(t) - z_0]$ is a constant and hence deduce that

$$
\exp(g(t)) = \frac{\gamma(t) - z_0}{\gamma(a) - z_0}, \quad \text{for } t \in [a, b].
$$

What can you say about $g(b)$ if $\gamma(b) = \gamma(a)$? Take $z_0 = 0$ and do you see the meaning of g? We shall return to this exercise later. See Definition ??, Example ?? and Theorem ??.

Corollary 28 (Integration by parts). Let $f, g : [a, b] \to \mathbb{C}$ be continuously differentiable. Then

$$
\int_{a}^{b} f(t)g'(t) dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt.
$$

Proof. This follows from Theorem 23. Recall that $(fg)'(t) = f'(t)g(t) + f(t)g'(t)$. Both sides are continuous functions and so we can integrate them to obtain

$$
\int_{a}^{b} f'(t)g(t) dt + \int_{a}^{b} f(t)g'(t) dt = \int_{a}^{b} (fg)'(t) dt
$$

= $[f(t)g(t)]_{a}^{b}$,

by the fundamental theorem of calculus. The result follows from this.

Proposition 29 (Change of Variable). Let h: $[c, d] \rightarrow \mathbb{R}$ be continuously differentiable and $f : [a, b] \to \mathbb{R}$ be continuous. Assume that $h([c, d]) \subset [a, b]$. Then

$$
\int_c^d (f \circ h)(s)h'(s) ds = \int_{h(c)}^{h(d)} f(t) dt.
$$

Proof. Consider $\varphi(s) := \int_{h(c)}^{h(s)} f(t) dt$. Then φ is the composition of the functions $s \mapsto h(s)$ and $x \mapsto \int_{h(c)}^x f(t) dt$. Hence $\varphi'(s) = f(h(s))h'(s)$ by chain rule and Theorem 23. Again, by the same theorem, we have

$$
\int_{h(c)}^{h(d)} f(t) dt = \varphi(d) - \varphi(c) = \int_c^d \varphi'(s) ds = \int_c^d f(h(s))h'(s) ds.
$$

(Why does the integrand on the left most side make sense?)

 \Box

Proposition 30. Let $f: I \to \mathbb{C}$ be continuous. Then

$$
|\int_a^b f(t)dt| \le \int_a^b |f(t)|dt.
$$

Proof. If f is real valued, then $-|f(t)| \leq f(t) \leq |f(t)|$ so that $\int -|f| \leq \int |f|$ Hence $| \int f | \leq \int |f|$ in this case.

Let f be complex valued. Choose $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ and $\alpha \int_a^b f(t)dt \in \mathbb{R}$. (If $\int_a^b f(t)dt =$ re^{it} is a polar representation, then we may take $\alpha = e^{-it}$.) By linearity, $\alpha \int_a^b f = \int_a^b \alpha f$ so that

$$
\int_{a}^{b} \operatorname{Re} \left(\alpha f(t) \right) dt = \operatorname{Re} \left(\alpha \int_{a}^{b} f(t) dt \right) = \alpha \int_{a}^{b} f(t) dt. \tag{1}
$$

Also, observe that

$$
|\text{Re}(\alpha f(t)| \le |\alpha f(t)| = |\alpha||f(t)| = |f(t)|. \tag{2}
$$

 \Box

Hence

$$
\begin{aligned}\n|\int_a^b f(t)dt| &= |\alpha \int_a^b f(t)dt| \qquad \text{(by our choice of } \alpha) \\
&= |\int_a^b \text{Re}(\alpha f(t))dt| \qquad \text{(by 1)} \\
&\leq \int_a^b |\text{Re}(\alpha f(t))|dt \qquad \text{(by the real case)} \\
&\leq \int_a^b |f(t)|dt \qquad \text{(by 2 and monotonicity of the integral)}.\n\end{aligned}
$$

This completes the proof.

Proposition 31. If $f_n: [a, b] \to \mathbb{C}$ are continuous and they converge uniformly on $[a, b]$ to an $f: [a, b] \to \mathbb{C}$, then f is necessarily continuous and we have $\lim_{n} \int_a^b f_n(t) dt = \int_a^b f(t) dt$.

Proof. Follows from the observation:

$$
\begin{aligned} \left| \int_{a}^{b} f_n(t) dt - \int_{a}^{b} f(t) dt \right| &= \left| \int_{a}^{b} [f_n(t) - f(t)] dt \right| \\ &\le \int_{a}^{b} |f_n(t) - f(t)| dt \\ &\le \int_{a}^{b} \varepsilon_n = \varepsilon_n (b - a), \end{aligned}
$$

where $\varepsilon_n := \sup\{|f_n(t) - f(t)| : t \in [a, b]\}.$ Since $f_n \to f$ uniformly on $[a, b], \varepsilon_n \to 0.$ The result follows. (Question: Where did we use the fact that f is continuous?) \Box

We give applications of this result which constitute some of the important results of Cauchy Theory in the next chapter.

Ex. 32. Let $f(z) := \sum_{n=0}^{\infty} a_n(z-z_0)^n$ for $z \in B(z_0, R)$. Then for $0 \le r \le R$, and $0 \le t \le 2\pi$, we have the Parseval identity:

$$
\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})|^2 dt = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}.
$$
 (3)

If $|f(z)|$ ≤ $M(r)$ for $|z - z_0| = r$, then

$$
\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \le M(r)^2.
$$
 (4)

Hint: Observe that $\int_0^{2\pi} |s_n(t)|^2 dt = \sum_{k=0}^n |a_k|^2 r^{2k}$. Then use Ex. ??.