Complex Analysis: Handout-7 (Path Integrals)

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 Path Integrals

Definition 1. Let γ be smooth path in U and $f : [\gamma] \to \mathbb{C}$ be continuous. We define the *integral* of f over γ by setting

$$
\int_{\gamma} f(z)dz := \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.
$$

If γ is just a path, using the above notation, we set

$$
\int_{\gamma} f(z) dz := \sum_{j=0}^{n-1} \int_{t_j}^{t_{j+1}} f(\gamma(t)) \gamma'(t) dt.
$$

Note that the integrals on the RHS make sense, since γ' exists and is continuous on $[t_j, t_{j+1}]$. The complex number $\int_{\gamma} f$ is called the integral of f over the path γ .

Note also that if $\gamma(t) = t, t \in [a, b],$ then $\int_{\gamma} f(z)dz = \int_a^b f(t)dt$.

Show that $\int_{\gamma} \cos z \, dz = \cosh(1) - i \sinh(1)$ where γ is the line segment from $-\pi/2 + i$ to $\pi + i$.

Example 2. Let $\gamma, \sigma, \tau \colon [0, 2\pi] \to \mathbb{C}^*$ be given by $\gamma(t) = e^{it}$, $\sigma(t) = e^{2it}$ and $\tau(t) = e^{-it}$. Note that $[\gamma] = [\sigma] = [\tau]$. Let $f(z) = z^{-1}$ for $z \in \mathbb{C}^*$. We have $\int_{\gamma} f = 2\pi i$, $\int_{\sigma} f = 4\pi i$ and $\int_{\tau} f = -2\pi i$. Thus the path integral depends on the path and not on the trace. See also the next exercise.

Ex. 3. Compute the following path-integrals $\int_{\gamma} f(z) dz$: (1) $f(z) := |z|^2$ and γ is the line segment from 2 to 3 + i. Ans. $\frac{20(1+i)}{3}$. (2) $f(z) := \text{Re}(z)$ and γ is the line segment from 1 to $-i$. Ans. $\frac{-(1+i)}{2}$.

Theorem 4. Let $f: U \to \mathbb{C}$ be continuous. Assume that there exists an $F: U \to \mathbb{C}$ such that $F' = f$ on U. Let $\gamma: [a, b] \to U$ be any path. Then

$$
\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a)).
$$

In particular, if γ is closed, then $\int_{\gamma} f(z) = 0$.

 \Box

Corollary 5. If $f: U \to \mathbb{C}$ is continuous and has a primitive in U, then $\int_{\gamma} f = 0$ for any closed path γ in U.

Example 6. Show that $\int_{\gamma} (z-a)^n dz$, where $\gamma(t) = a + re^{it}$, $0 \le t \le 2\pi$ given by

$$
\int_{\gamma} (z-a)^n dz = \begin{cases} 0 & n \neq -1 \\ 2\pi i & n = -1. \end{cases}
$$

Ex. 7. Let $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$. For $n \in \mathbb{N}$, show that

$$
\frac{1}{2\pi} \int_{\gamma} (2\cos\theta)^{2n} d\theta = \frac{(2n)!}{n!n!}.
$$

Hint: Evaluate $\int_{\gamma}(z + \frac{1}{z})$ $\frac{1}{z}$)²ⁿ $\frac{dz}{z}$ using binomial expansion. Among the terms of the form $\binom{2n}{k}$ $\sum_{k=0}^{\infty} z^{2n-k} z^{-k}$, which is the term that will contribute to the integral? Look at Example 6.

Proposition 8. Let γ be a path and $f : [\gamma] \to \mathbb{C}$ be continuous. Then $\int_{\tilde{\gamma}} f dz = -\int_{\gamma} f dz$.

Proposition 9. Let $f: U \to \mathbb{C}$ be continuous with a primitive F in U. Let γ_i , $j = 1, 2$, be paths in U both having the same initial (resp. terminal) points z and w respectively. Then $\int_{\gamma_1} f = F(w) - F(z) = \int_{\gamma_2} f$. Thus, in this case $\int_{\sigma} f$ depends only on the end points of σ for any path σ in U .

Proposition 10 (ML Inequality). Let $\gamma: [a, b] \to \mathbb{C}$ be a path. Let $f: [\gamma] \to \mathbb{C}$ be continuous with $|f(\gamma(t))| \leq M$ for all $t \in [a, b]$. We have

$$
|\int_{\gamma} f dz| \leq ML(\gamma). \tag{1}
$$

Ex. 11. Establish the following: $(1) | \int_{\gamma}$ dz $\frac{dz}{z^2+4}$ | $\leq \frac{\pi R}{(R^2-4)}$ where $\gamma(t) = Re^{it}$ for $0 \leq t \leq \pi$ and $R > 2$. (2) $|\int_{\gamma} e^{-z} dz| \leq 2$, where γ is the line segment from $-i$ to *i*. (3) | \int_{γ} $\frac{dz}{z}$ $\frac{dz}{z^4} \leq 4\sqrt{2}$ where $\gamma := [i, 1].$ (4) | \int_{γ} e^z $\frac{z^2}{z}$ dz | \leq 2 πe where γ is the unit circle with the standard parametrization.

Ex. 12. Let $f: \mathbb{C} \to \mathbb{C}$ be continuous and bounded. Let $\gamma_R(t) := Re^{it}$ for $0 \le t \le 2\pi$. Show that $\lim_{R\to\infty} \frac{1}{2\pi}$ $\frac{1}{2\pi i}\int_{\gamma_R}$ $f(z)$ $\frac{J(z)}{(z-z_0)^2} dz = 0$ for each z_0 .

Proposition 13. Let $f: U \to \mathbb{C}$ be continuous. Then f has a primitive in U iff $\int_{\gamma} f = 0$ for any closed path γ in U.

Proposition 14. Let $\gamma: [a, b] \to \mathbb{C}$ be a path. Let $f_n: [\gamma] \to \mathbb{C}$ be continuous $(n \in \mathbb{N})$ and that f_n converge uniformly on $[\gamma]$ to a function $f : [\gamma] \to \mathbb{C}$. Then $\int_{\gamma} f_n \to \int_{\gamma} f$.

Proposition 15. Let $\gamma(t) := z_0 + re^{it}$ for $0 \le t \le 2\pi$. Then

$$
\int_{\gamma} \frac{dz}{z - a} = \begin{cases} 2\pi i & a \in B(z_0, r) \\ 0 & a \notin B[z_0, r]. \end{cases}
$$
\n(2)

Proof. Note that this is not Example 6. The trick here is to write

$$
\frac{1}{z-a} = \frac{1}{(z-z_0)-(a-z_0)} = \frac{1}{(z-z_0)[1-\frac{a-z_0}{z-z_0}]} = \frac{1}{z-z_0}\frac{1}{1-w},
$$

where $w := \frac{a-z_0}{z-z_0}$. If $a \in B(z_0, r)$, then $|w| < 1$ and we can substitute the geometric series expansion for $\frac{1}{1-w}$ in the integral. Since the convergence is uniform on [γ], by Corollary ??, we have

$$
\int_{\gamma} \frac{1}{z - a} dz = \int_{\gamma} \frac{1}{z - z_0} \sum_{n=0}^{\infty} (a - z_0)^n (z - z_0)^{-n}
$$

$$
= \sum_{n=0}^{\infty} (a - z_0)^n \int_{\gamma} (z - z_0)^{-n-1}
$$

$$
= 2\pi i,
$$

where we have used Example 6 to each of the terms of the series in the last but one line.

If $a \notin B[z_0, r]$ we then write $\frac{1}{z-a} = -\frac{1}{a-z_0} \frac{1}{1-w}$, where $w = \frac{z-z_0}{a-z_0}$ $\frac{z-z_0}{a-z_0}$. Proceeding as above, we get

$$
\int_{\gamma} \frac{1}{z - a} dz = \int_{\gamma} \frac{1}{a - z_0} \sum_{n=0}^{\infty} (a - z_0)^{-n} (z - z_0)^n
$$

$$
= \sum_{n=0}^{\infty} (a - z_0)^{-n-1} \int_{\gamma} (z - z_0)^n
$$

$$
= 0,
$$

again by Example 6.

Theorem 16. Let γ be any path and $f : [\gamma] \to \mathbb{C}$ be continuous. Then $F(z) := \int_{\gamma}$ $f(w)$ $\frac{f(w)}{w-z}$ dw is differentiable on $\mathbb{C} \setminus [\gamma]$. In fact, F is analytic in $\mathbb{C} \setminus [\gamma]$.

Proof. The trick employed in the proof of the last proposition is implemented again.

Note that $\mathbb{C} \setminus [\gamma]$ is open.¹ If $z_0 \notin [\gamma]$, choose $r > 0$ such that $B(z_0, r) \cap [\gamma] = \emptyset$. If $z \in B(z_0, r/3)$, then $\frac{z-z_0}{w-z_0}$ $\frac{z-z_0}{w-z_0}$ | < 1/2 for $w \in [\gamma]$. See Figure ??. Thus the series

$$
\frac{f(w)}{w - z} = \frac{f(w)}{w - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n
$$

of functions in w for fixed z and z_0 converges uniformly on $[\gamma]$. Therefore,

$$
F(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,
$$

where $a_n := \int_{\gamma}$ $\frac{f(w)}{(w-z)^{n+1}}$ dw.

 \Box

 \Box

¹We show that $[\gamma]$ is closed in \mathbb{C} . Let $p \in \mathbb{C}$ be a limit point of $[\gamma]$. Then there exist $t_n \in [a, b]$ such that $\gamma(t_n) \to p$. Since $t_n \in [a, b]$, by Bolzano-Weierstrass theorem applied to $[a, b]$, (t_n) has a convergent subsequence, say (t_{n_k}) , converging to $t_0 \in [a, b]$. Since γ is continuous at t_0 , we deduce that $\gamma(t_{n_k}) \to \gamma(t_0)$. Hence $p = \gamma(t_0)$, by the uniqueness of the limit. We may also show that $[\gamma]$ is closed, by observing that $[\gamma]$ is compact.