Complex Analysis: Handout-7 (Properties of Holomorphic Functions)

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1 (Cauchy Integral Formula). Let U be an open set star-shaped at $p \in U$. Let $f \in H(U)$. Let γ be a closed path in U. Then for any $a \in U \setminus [\gamma]$, we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-a} \, dw = f(a) \left[\frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w-a} \right]. \tag{1}$$

Corollary 2. Let U be any open set and $B(z_0, R) \subset U$. Let $f \in H(U)$. Let $\gamma(t) := z_0 + re^{it}$, 0 < r < R and $0 \le t \le 2\pi$. Then we have

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z}, \qquad z \in B(z_0, r).$$
(2)

Theorem 3. Any holomorphic function f on an open set U is an analytic function. In particular, f' is also holomorphic in U.

Theorem 4 (CIF for Derivatives). Let $f \in H(U)$ and $B(z_0, R) \subset U$. Let $\gamma_r(t) := z_0 + re^{it}$ for 0 < r < R. We have

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma_r} \frac{f(w)}{(w-z)^{n+1}} \, dw.$$
(3)

In particular, we obtain the Cauchy's estimates for the derivatives:

$$|f^{(n)}(z_0)| \le n! r^{-n} M(r), \text{ where } M(r) := \sup\{|f(z)| : |z - z_0| = r\}.$$
(4)

Corollary 5. Let $f \in H(U)$ and $B(a, R) \subset U$. Then the Taylor series of f converges to f absolutely and uniformly on compact subsets of B(a, R).

Theorem 6 (Liouville's Theorem). Let f be a bounded entire function on \mathbb{C} , say, $|f(z)| \leq M$ for $z \in \mathbb{C}$. Then f is a constant.

Theorem 7. Let U be a connected open set in \mathbb{C} , and let $f: U \to \mathbb{C}$ be holomorphic. Suppose that the set of zeros $Z(f) := \{z \in U : f(z) = 0\}$ has a cluster point in U. Then f = 0 on U.

Corollary 8 (Identity Theorem). Let U be connected and open. Let A be a subset of U which has a cluster point in U. Let $f, g: U \to \mathbb{C}$ be holomorphic. Assume that f(z) = g(z) for all $z \in A$. Then f = g on U.

Theorem 9 (Mean Value Property). Let $f \in H(U)$ and $B(a, R) \subset U$ and $\gamma_r(t) = a + re^{it}$, 0 < r < R. Then

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) dt.$$
 (5)

Theorem 10 (Maximum Modulus Principle). Let $U \subset \mathbb{C}$ be a connected open set. Let $f \in H(U)$. Assume that there exists $a \in U$ such that $|f(a)| \ge |f(z)|$ for all $z \in B(a, R) \subset U$. Then f is a constant in U.

Corollary 11. Let U be a bounded and connected open set in \mathbb{C} , $f \in H(U)$ and continuous on the closure \overline{U} of U. Then either f is a constant or |f| attains its maximum on the boundary of U.

Corollary 12 (Minimum Modulus Principle). If f is a nonconstant holomorphic function on a connected open set U then $z \in U$ cannot be a relative local minimum of |f| unless f(z) = 0.

Theorem 13 (Open Mapping Theorem). The image of an open connected set U under a nonconstant holomorphic function is open.

Theorem 14 (Schwarz Lemma). Let $f: B(0,1) \to B(0,1)$ be holomorphic. Assume that f(0) = 0. Then (i) $|f(z)| \le |z|$ for all $z \in B(0,1)$ and

(ii) $|f'(0)| \le 1$.

Furthermore, equality holds in (i) for some nonzero z or equality holds in (ii) iff f(z) = cz for some c with |c| = 1.

Theorem 15 (Weierstrass). Let $f_n \in H(U)$ for $n \in \mathbb{N}$. Assume that f_n converges to f uniformly on compact subsets of U. Then $f \in H(U)$. Furthermore, for any $k \in \mathbb{N}$, $f_n^{(k)}$ converges to $f^{(k)}$ uniformly on compact subsets of U.