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The aim of this article is to introduce the readers to an easier way of working with con-
nectedness concept. If the reader’s background does not include general (abstract) topological
spaces, he may assume that the spaces are metric spaces.

1 Connectedness

Definition 1. A topological space X is said to be connected, if the only subsets of X which
are both open and closed are the empty set ∅ and X. In other words, a topological space is
connected whenever a subset A is both open and closed in X, then either A = ∅ or A = X.

A subset A of a topological space X is said to be connected if A is a connected space
when considered as a topological space with the induced (or subspace) topology. In the
case of metric space (X, d), this amounts to saying that (A, δ) is connected, where δ is the
restriction of the metric d on X to A.

Therefore, if a topological space X is not connected, there will be a proper non-empty
sub set A of X which is both open and closed in X. If A is a proper non-empty sub set of
X and both open and closed, then B = Ac, its complement is also a proper non-empty sub
set of X which is both open and closed in X. In other words a topological space X is not
connected iff there exist two disjoint proper non-empty sub sets A and B such that A and B
are both open and closed in X and X = A∪B. In such case we also say that the pair (A,B)
is a disconnection of X.

Example 2. Let X be a set such that | X |≥ 2 with discrete topology (or discrete metric).
Then X is not connected.

Example 3. The subset {±1} ⊂ R with the subspace topology is not connected. (Why?) In
the sequel, we consider {±1} as a subset of R.

Now we prove a single most important theorem in connectedness which supplies us an
abundance of examples of connected and non-connected spaces.

Theorem 4. A topological space X is connected iff every continuous function f : X → {±1}
is a constant function.
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Proof. Let X be a connected space and f : X → {±1} a continuous function. We want to
show that f is a constant function. If f is non-constant, then it is on-to. Let A = f−1(1)
and B = f−1(−1). Then A and B are disjoint non-empty subsets of X such that A and
B are both open and closed subsets of X and X = A ∪ B.(Why?). This is a contradiction.
Therefore f is constant.

Conversely, let us assume that X is not connected. Therefore there exist two disjoint
proper non-empty subsets A and B in X such that A and B are both open and closed in X
and X = A ∪B. Now we define a map f : X → {±1} as

f(x) =

{

1 if x ∈ A

−1 if x ∈ B

Then f : X → {±1} is a continuous non-constant function. (Why?). This completes the
proof.

We shall now use this theorem to get examples of connected spaces.

Example 5. A set J ⊆ R is connected iff J is an interval.

Proof. Let J be a connected sub set of R. Let us assume that J is not an interval. This
means that there exist points a < b in J and c ∈ R such that a < c < b but c /∈ J . Now we
define a map f : J → {±1} as

f(x) =

{

1 if x < c

−1 if x > c

Now we claim that f is a continuous function. We need only to check that f−1(1) and f−1(−1)
are open in J . By our definition f−1(1) = J ∩ (−∞, c) and f−1(−1) = J ∩ (c,∞) which are
open, proper and nonempty subsets in J . (Why?) This is a contradiction to the fact that J
is connected. Therefore for every pair of points a and b in J such that a < b, all the points c
such that a < c < b are also in J . This means that J is an interval in R.

Conversely, let us assume that J is an interval in R. Let f : J → {±1} be a continuous
function. We need to show that f is constant. If not, then there exist a, b ∈ J such that
f(a) = 1 and f(b) = −1. Since a, b ∈ J and J is an interval, [a, b] ⊂ J . Hence, by applying
the intermediate value theorem to the restriction f to [a, b], there exists c ∈ (a, b) ⊂ J such
that f(c) = 0. This is a contradiction, since the codomain is {±1}.

Example 6. Let M(2,R) denote the set of all 2×2 matrices of real numbers. and GL(2,R) :=
{A ∈ M(2,R) : det(A) 6= 0} is not connected.

Proof. Here we identify M(2,R) with R
4 via the map

(

a b
c d

)

7→ (a, b, c, d) ∈ R
4. Let

f : GL(2,R) → R be defined by f(A) := det(A). Complete the proof.

Example 7. O(2,R) := {A ∈ GL(2,R) : AAt = Id} is not connected.

Proof. The equation AAt = Id shows that det(A) = ±1 for every A ∈ O(2,R). This suggests
us that we define the map f : O(2,R) → {±1} by f(A) := det(A). Complete the proof.
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Proposition 8. Let X be a topological space. Let A and B be two connected subsets of X
such that A ∩B 6= ∅. Then A ∪B is connected.

Proof. Let f : A ∪B → {±1} be a continuous function. We have to show that f is constant.
Let c ∈ A ∩ B. Since A is connected, the function f |A : A → {±1} is constant so that
f(a) = f(c) for all a ∈ A. Similarly, f(b) = f(c) = 1 for all b ∈ B. Thus f(x) = f(c) for all
x ∈ A ∪B. i.e., f is a constant.

Proposition 9. Let A be a connected subset of a space X. Let A ⊂ B ⊂ A. Then B is

connected.

Proof. Let f : B → {±1} be a continuous function. Without loss of generality, let us assume
that f = 1 on A. Let x ∈ B. Since {f(x)} is open in {±1}, the set U := f−1(f(x)) is an
open containing x. Hence, there exists a point a ∈ A∩U . Since a, x ∈ U and f = f(x) on U ,
it follows that f(x) = f(a) = 1. Thus f = 1 on B.

Proposition 10. Let {Ai : i ∈ I} be a collection of connected subsets of a space X with the

property that for all i, j ∈ I we have Ai ∩Aj 6= ∅. Then A := ∪iAi is connected.

Proof. Fix Ai. Let f : ∪Aj → {±1} be continuous. Since Ai is connected, f is a constant on
it, say, f = 1 on Ai. Let x ∈ A. Then x ∈ Aj for some j. Let y ∈ Ai ∩Aj . Then f(x) = f(y)
since Aj is connected and x, y ∈ Aj . Since y ∈ Ai, we have f(y) = 1. Hence for all x ∈ A, we
conclude f(x) = 1. Hence A is connected.

Proposition 11. Let X be a connected topological space and g : X → Y be a continuous map.

Then g(X) is connected.

Proof. We will show that any continuous map f : g(X) → {±1} is constant.

Let f : g(X) → {±1} be a continuous map. Then the map f ◦g : X → {±1} is continuous.
(Why?). Since X is connected, it follows that g ◦ f is constant. Hence f is constant. For,
otherwise, there exist y1, y2 ∈ g(X) such that f(y1) 6= f(y2). Since yj ∈ g(X), this implies
the existence of xj ∈ X such that g ◦ f(x1) 6= g ◦ f(x2). In particular, g ◦ f is not a constant.
Hence we are forced to conclude that f is constant. Thus g(X) is connected.

Corollary 12. In the above proposition, if the map g is onto then Y is connected.

Ex. 13. Show that the set GL(2,R) is not connected.

Ex. 14. Show that the circle {(x, y) ∈ R
2 : x2 + y2 = 1} is connected.

Ex. 15. Show that the set SO(2,R) := {A ∈ O(2,R) : detA = 1} is connected. Hint: Write
down all elements of SO(2,R) explicitly.

Proposition 16. Let X and Y be connected spaces. Then the product space X × Y is

connected.
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Proof. Let f : X ×Y → {±1} be a continuous map. Let (x0, y0) ∈ X × Y be fixed. Let (x, y)
be an arbitrary point in X × Y . If we show that f((x, y)) = f((x0, y0)), we are through.

To prove the above claim, let us first observe that for every point y ∈ Y , the map
iy : X → X × Y defined by iy(x) := (x, y) is continuous; similarly the map ix : Y → X × Y
defined by ix(y) := (x, y) is continuous for every point x in X. Therefore for every point y
in Y , the subset X × {y} := {(x, y) : x ∈ X} is a connected subset of X × Y ; similarly, the
subset {x} × Y := {(x, y) : y ∈ Y } is a connected subset of X × Y for every point x in X.

X

Y

X × {y0}

{x} × Y

(x0, y0)

(x, y)

(x, y0)

Figure 1: Connectedness of the product

Now the point (x, y0) lies in both sets X × {y0} and {x} × Y . The restrictions of f to
either of these sets are continuous and hence constants. We see that f(x0, y0) = f(x, y0)) for
all x ∈ X and similarly, f(x, y) = f(x, y0) for all y ∈ Y . In particular, f(x, y) = f(x, y0) =
f(x0, y0). (See Figure 1.)

The following is a typical way in which connectedness hypothesis is used.

Theorem 17. Let X be connected. Let f : X → R be a locally constant function, i.e., for

each x ∈ X, there exists an open set Ux containing x with the property that f is a constant

on Ux. Then f is a constant on X.

Proof. First of all note that any locally constant function is necessarily continuous.

Fix x0 ∈ X. We show that f(x) = f(x0) for all x ∈ X. Consider the set E := {x ∈
X | f(x) = f(x0)}. As x0 ∈ E, we see that E is nonempty. Since E = f−1(f(x0)), E is the
inverse image of a closed set under the continuous map f and hence is closed.

If x ∈ E, since f is locally constant, there exists an open set Ux with x ∈ Ux and f
is constant on Ux. Thus for each y ∈ Ux, we have f(y) = f(x). Since x ∈ E, we have
f(x) = f(x0). Hence it follows that f(x) = f(x0) for all x ∈ Ux. In other words, Ux ⊂ E.
Hence E is open. Thus E is nonempty, open and closed subset of the connected space X.
Hence we must have E = X.
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As an immediate corollary we have

Theorem 18. Let U be an open connected subset of Rn and f : U → R be a differentiable

function such that Df(p) = 0 for all p ∈ U . Then f is a constant function.

Proof. To prove this theorem we will only use only the following fact which follows from
mean value theorem. Let U be an open convex subset of Rn and f : U → R be a differentiable

function such that Df(p) = 0 for all p ∈ U . Then f is constant on U .

Now let f be as in the theorem. Then for each x ∈ U , since U is open, there exists an
open ball B(x, rx) ⊂ U . It is easy to see that any ball in R

n is convex. Thus an application
of the calculus result quoted above shows us that f locally constant.

2 Path Connected spaces

Definition 19. 1. Let X be a topological space. A continuous map γ : [0, 1] → X is called
a path in X. If γ(0) = x and γ(1) = y, then γ is also called a path joining the points x
and y or simply a path from x to y.

2. A topological space X is said to be path connected if for all points x and y in X, there
exists a path γ : [0, 1] → X such that γ(0) = x and γ(1) = y.

2.1 Examples & Exercises

Example 20. The space R
n is path connected. Any two points can be joined by a line

segment: γ(t) := x+ t(y − x), for 0 ≤ t ≤ 1. We call this path γ a linear path.

Example 21. For every r > 0, the circle Cr := {(x, y) ∈ R
2 : x2 + y2 = r2} is path

connected.(Why?)

Example 22. The set {(x, y) ∈ R
2 : x ≥ 0 & x2 − y2 = 1} is path connected. Draw the

picture and see that it is the “right” hand of the hyperbola x2 − y2 = 1. Similarly the left
hand of a hyperbola is also path connected. However the hyperbola is not path connected.
(Why?)

Example 23. The parabola {(x, y) ∈ R
2 : y2 = x} is path connected.

Example 24. The union of the two parabolas {(x, y) ∈ R
2 : y2 = x} and {(x, y) ∈ R

2 : y =
x2} is path connected.

Example 25. The union of the parabolas {(x, y) ∈ R
2 : y2 = x} and {(x, y) ∈ R

2 : y2 = −x}
is path connected.

Example 26. The set S2 := {(x1, x2, x3) ∈ R
3 : x21 + x22 + x23 = 1} is path connected. Let X

and Y be two points in S2. Then define γ : [0, 1] → S2 by γ(t) := X+t(Y−X)
‖X+t(Y−X)‖ . Then check

that this gives us a path from X to Y . (Does it?).

Proposition 27. Let X be a topological space. Let γ1 : [0, 1] → X and γ2 : [0, 1] → X be two

paths such that γ1(1) = γ2(0). Then there exists a path γ3 : [0, 1] → X such that γ3(0) = γ1(0)
and γ3(1) = γ2(1).
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Proof. Define the map γ3 : [0, 1] → X such that

γ3(t) : =

{

γ1(2t) if t ≤ 1
2

γ2(2t− 1) if t ≥ 1
2

Now we leave it as an exercise to verify that γ3 is a path in X meeting our requirements.
(Draw pictures and see geometrically).

Proposition 28. Let X be path connected. Then X is connected.

Proof. Let f : X → {±1} be a continuous function. We need to show that f is constant.

Let x 6= y be two points in X. Since X is path connected, there exists a continuous
map γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Now, the map f ◦ γ : [0, 1] → {±1}
is continuous. Since [0, 1] is connected, the map f ◦ γ is constant. Therefore f is constant.
(Why?). This proves that X is connected.

The converse is not always true. However, in the case of open subsets of Rn, the converse
is also true and we prove this in

Theorem 29. Let U be an open connected subset of Rn. Then U is path connected.

Proof. Let x0 be a point in U and let

E := {x ∈ U : there exists a path γ such that γ(0) = x & γ(1) = x0}.

We will show that the set E is non-empty, both open and closed in U . Then since U is
connected, it will follow that E = U and this will prove the theorem. (Why?)

First we note that the set E is non-empty. The map γ : [0, 1] → X defined by γ(t) = x0
for all t is a path in X. Therefore x0 is in E. Let x be a point in E. Since U is open there
exists r > 0 such that B(x, r) ⊆ U . Let y be a point in B(x, r). Since B(x, r) is convex, there
exists a linear path, say, γ1, joining the points y and x. Since x is in E there exists a path γ2
from x to the point x0. From Proposition 27, it follows that there exists a path γ3 from y to
x0. This means that B(x, r) ⊆ E. Hence E is open.

We will now show that E is also closed in U . Let x ∈ U be a limit point of E. Therefore
there exists a sequence xn of points in E such that the sequence xn converge to the point x.
Since U is open there exists an r > 0 such that the open ball B(x, r) ⊆ U . Since the sequence
xn converges to the point x, there exists N in N such that the points xn ∈ B(x, r) for all
n ≥ N . Let γ1 be the linear path from x to the point xN and γ2 be a path from xN to x0.
From Proposition 27, there exists a path γ3 from x to x0. This means that the point x is in
E. Hence E is closed and therefore E = U .
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