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The aim of this article is to introduce the readers to an easier way of working with con-
nectedness concept. If the reader’s background does not include general (abstract) topological
spaces, he may assume that the spaces are metric spaces.

1 Connectedness

Definition 1. A topological space X is said to be connected, if the only subsets of X which
are both open and closed are the empty set () and X. In other words, a topological space is
connected whenever a subset A is both open and closed in X, then either A =0 or A = X.

A subset A of a topological space X is said to be connected if A is a connected space
when considered as a topological space with the induced (or subspace) topology. In the
case of metric space (X,d), this amounts to saying that (A,d) is connected, where § is the
restriction of the metric d on X to A.

Therefore, if a topological space X is not connected, there will be a proper non-empty
sub set A of X which is both open and closed in X. If A is a proper non-empty sub set of
X and both open and closed, then B = A€, its complement is also a proper non-empty sub
set of X which is both open and closed in X. In other words a topological space X is not
connected iff there exist two disjoint proper non-empty sub sets A and B such that A and B
are both open and closed in X and X = AU B. In such case we also say that the pair (4, B)
is a disconnection of X.

Example 2. Let X be a set such that | X |> 2 with discrete topology (or discrete metric).
Then X is not connected.

Example 3. The subset {+1} C R with the subspace topology is not connected. (Why?) In
the sequel, we consider {£1} as a subset of R.
Now we prove a single most important theorem in connectedness which supplies us an

abundance of examples of connected and non-connected spaces.

Theorem 4. A topological space X is connected iff every continuous function f: X — {£1}
s a constant function.



Proof. Let X be a connected space and f: X — {41} a continuous function. We want to
show that f is a constant function. If f is non-constant, then it is on-to. Let A = f~1(1)
and B = f~!(—1). Then A and B are disjoint non-empty subsets of X such that A and
B are both open and closed subsets of X and X = AU B.(Why?). This is a contradiction.
Therefore f is constant.

Conversely, let us assume that X is not connected. Therefore there exist two disjoint
proper non-empty subsets A and B in X such that A and B are both open and closed in X
and X = AU B. Now we define a map f: X — {£1} as

1 fze A
f(x)_{—1 ifreB

Then f: X — {£1} is a continuous non-constant function. (Why?). This completes the
proof. O

We shall now use this theorem to get examples of connected spaces.

Example 5. A set J C R is connected iff J is an interval.

Proof. Let J be a connected sub set of R. Let us assume that J is not an interval. This
means that there exist points a < b in J and ¢ € R such that a < ¢ < b but ¢ ¢ J. Now we

define a map f: J — {£1} as
1 ife<ec
-]

-1 ifz>c

Now we claim that f is a continuous function. We need only to check that f~1(1) and f~1(—1)
are open in J. By our definition f~1(1) = J N (—o0,¢) and f~(—=1) = J N (¢, 00) which are
open, proper and nonempty subsets in J. (Why?) This is a contradiction to the fact that .J
is connected. Therefore for every pair of points a and b in J such that a < b, all the points ¢
such that a < ¢ < b are also in J. This means that J is an interval in R.

Conversely, let us assume that J is an interval in R. Let f: J — {£1} be a continuous
function. We need to show that f is constant. If not, then there exist a,b € J such that
f(a) =1 and f(b) = —1. Since a,b € J and J is an interval, [a,b] C J. Hence, by applying
the intermediate value theorem to the restriction f to [a,b], there exists ¢ € (a,b) C J such
that f(c) = 0. This is a contradiction, since the codomain is {£1}. O

Example 6. Let M(2,R) denote the set of all 2x 2 matrices of real numbers. and GL(2,R) :=
{A € M(2,R) : det(A) # 0} is not connected.

Proof. Here we identify M (2,R) with R* via the map Z) — (a,b,c,d) € RY  Let
f: GL(2,R) — R be defined by f(A) := det(A). Complete the proof. O
Example 7. O(2,R) := {A € GL(2,R) : AA" = Id} is not connected.

Proof. The equation AA! = Id shows that det(A) = 41 for every A € O(2,R). This suggests
us that we define the map f: O(2,R) — {£1} by f(A) := det(A). Complete the proof. [



Proposition 8. Let X be a topological space. Let A and B be two connected subsets of X
such that AN B # (). Then AU B is connected.

Proof. Let f: AUB — {£1} be a continuous function. We have to show that f is constant.
Let ¢ € AN B. Since A is connected, the function f |4: A — {%1} is constant so that
f(a) = f(c) for all @ € A. Similarly, f(b) = f(c) =1 for all b € B. Thus f(x) = f(c) for all
xr € AUB. i.e., fis a constant. O

Proposition 9. Let A be a connected subset of a space X. Let A C B C A. Then B is
connected.

Proof. Let f: B — {%1} be a continuous function. Without loss of generality, let us assume
that f = 1 on A. Let x € B. Since {f(z)} is open in {£1}, the set U := f~!(f(x)) is an
open containing x. Hence, there exists a point a € ANU. Since a,x € U and f = f(x) on U,
it follows that f(z) = f(a) = 1. Thus f =1 on B. O

Proposition 10. Let {A; : i € I} be a collection of connected subsets of a space X with the
property that for all i,j € I we have A; N A; #0. Then A :=U;A; is connected.

Proof. Fix A;. Let f: UA; — {£1} be continuous. Since A; is connected, f is a constant on
it, say, f =1 on A;. Let z € A. Then x € A; for some j. Let y € A;NA;. Then f(z) = f(y)
since A; is connected and z,y € A;. Since y € A;, we have f(y) = 1. Hence for all z € A, we
conclude f(z) = 1. Hence A is connected. O

Proposition 11. Let X be a connected topological space and g: X — 'Y be a continuous map.
Then g(X) is connected.

Proof. We will show that any continuous map f: g(X) — {£1} is constant.

Let f: g(X) — {£1} be a continuous map. Then the map fog: X — {£1} is continuous.
(Why?). Since X is connected, it follows that g o f is constant. Hence f is constant. For,
otherwise, there exist yi,y2 € g(X) such that f(y1) # f(y2). Since y; € g(X), this implies
the existence of z; € X such that go f(x1) # go f(x2). In particular, go f is not a constant.
Hence we are forced to conclude that f is constant. Thus ¢g(X) is connected. O

Corollary 12. In the above proposition, if the map g is onto then Y is connected.
Ex. 13. Show that the set GL(2,R) is not connected.
Ex. 14. Show that the circle {(z,y) € R? : 22 + y? = 1} is connected.

Ex. 15. Show that the set SO(2,R) := {A € O(2,R) : det A = 1} is connected. Hint: Write
down all elements of SO(2,R) explicitly.

Proposition 16. Let X and Y be connected spaces. Then the product space X X Y is
connected.



Proof. Let f: X xY — {£1} be a continuous map. Let (zg,y0) € X XY be fixed. Let (z,y)
be an arbitrary point in X x Y. If we show that f((x,y)) = f((z0,%0)), we are through.

To prove the above claim, let us first observe that for every point y € Y, the map
iy: X — X x Y defined by iy,(x) := (z,y) is continuous; similarly the map i,: Y = X x Y
defined by i,(y) := (z,y) is continuous for every point x in X. Therefore for every point y
in Y, the subset X x {y} := {(z,y) : © € X} is a connected subset of X x Y’; similarly, the
subset {z} x Y :={(x,y) : y € Y} is a connected subset of X x Y for every point z in X.
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Figure 1: Connectedness of the product

Now the point (z,y0) lies in both sets X x {yo} and {x} x Y. The restrictions of f to
either of these sets are continuous and hence constants. We see that f(zo,v0) = f(z,v0)) for
all x € X and similarly, f(z,y) = f(x,yo) for all y € Y. In particular, f(z,y) = f(z,y0) =
f(zo,y0). (See Figure 1.) O

The following is a typical way in which connectedness hypothesis is used.

Theorem 17. Let X be connected. Let f: X — R be a locally constant function, i.e., for
each x € X, there exists an open set U, containing x with the property that f is a constant
on U,. Then f is a constant on X.

Proof. First of all note that any locally constant function is necessarily continuous.

Fix zp € X. We show that f(x) = f(z¢) for all x € X. Consider the set E := {x €
X | f(z) = f(z0)}. As 29 € E, we see that E is nonempty. Since E = f~1(f(z¢)), E is the
inverse image of a closed set under the continuous map f and hence is closed.

If x € E, since f is locally constant, there exists an open set U, with z € U, and f
is constant on U,. Thus for each y € U,, we have f(y) = f(x). Since x € E, we have
f(x) = f(zp). Hence it follows that f(z) = f(xg) for all z € U,. In other words, U, C E.
Hence F is open. Thus F is nonempty, open and closed subset of the connected space X.
Hence we must have £ = X. O



As an immediate corollary we have

Theorem 18. Let U be an open connected subset of R™ and f: U — R be a differentiable
function such that Df(p) =0 for allp € U. Then f is a constant function.

Proof. To prove this theorem we will only use only the following fact which follows from
mean value theorem. Let U be an open convex subset of R™ and f: U — R be a differentiable
function such that D f(p) =0 for allp € U. Then f is constant on U.

Now let f be as in the theorem. Then for each = € U, since U is open, there exists an
open ball B(z,r,) C U. It is easy to see that any ball in R" is convex. Thus an application
of the calculus result quoted above shows us that f locally constant. U

2 Path Connected spaces

Definition 19. 1. Let X be a topological space. A continuous map v: [0,1] — X is called
a path in X. If v(0) = z and (1) = y, then ~ is also called a path joining the points z
and y or simply a path from x to y.

2. A topological space X is said to be path connected if for all points z and y in X, there
exists a path y: [0,1] — X such that y(0) = z and (1) = y.

2.1 Examples & Exercises

Example 20. The space R™ is path connected. Any two points can be joined by a line
segment: y(t) ==z +t(y — x), for 0 <t < 1. We call this path ~ a linear path.

Example 21. For every r > 0, the circle C, := {(z,y) € R? : 22 + y?> = r2} is path
connected.(Why?)

Example 22. The set {(z,y) € R?: 2 >0 & 22— y? =1} is path connected. Draw the
picture and see that it is the “right” hand of the hyperbola z? — 4> = 1. Similarly the left
hand of a hyperbola is also path connected. However the hyperbola is not path connected.

(Why?)
Example 23. The parabola {(x,y) € R?: 32 = x} is path connected.

Example 24. The union of the two parabolas {(z,y) € R? : > = x} and {(z,y) € R? : y =
22} is path connected.

Example 25. The union of the parabolas {(z,y) € R? : y?> = 2} and {(z,y) € R? : y> = —x}
is path connected.

Example 26. The set S? := {(z1,22,73) € R? : 22 + 23 + 2% = 1} is path connected. Let X
and Y be two points in S?. Then define ~: [0,1] — S? by ~(t) := % Then check
that this gives us a path from X to Y. (Does it?).

Proposition 27. Let X be a topological space. Let vy : [0,1] — X and ~y,: [0,1] = X be two
paths such that v1(1) = v2(0). Then there exists a path v3: [0,1] — X such that v3(0) = ~v1(0)

and y3(1) = y2(1).



Proof. Define the map vs3: [0,1] — X such that

2t if t<41
Y3(t): = m(20) L2
Y2t —1) if t>

1
2
Now we leave it as an exercise to verify that 3 is a path in X meeting our requirements.
(Draw pictures and see geometrically). O

Proposition 28. Let X be path connected. Then X is connected.

Proof. Let f: X — {£1} be a continuous function. We need to show that f is constant.

Let © # y be two points in X. Since X is path connected, there exists a continuous
map 7: [0,1] — X such that v(0) = z and (1) = y. Now, the map fo~:[0,1] — {£1}
is continuous. Since [0, 1] is connected, the map f o~y is constant. Therefore f is constant.
(Why?). This proves that X is connected. O

The converse is not always true. However, in the case of open subsets of R™, the converse
is also true and we prove this in

Theorem 29. Let U be an open connected subset of R™. Then U is path connected.

Proof. Let xg be a point in U and let
E :={x € U : there exists a path 7 such that v(0) =z & ~(1) = z¢}.

We will show that the set E is non-empty, both open and closed in U. Then since U is
connected, it will follow that £ = U and this will prove the theorem. (Why?)

First we note that the set F is non-empty. The map 7: [0,1] — X defined by ~(t) =
for all ¢ is a path in X. Therefore zq is in E. Let x be a point in E. Since U is open there
exists r > 0 such that B(z,r) C U. Let y be a point in B(x,r). Since B(z, ) is convex, there
exists a linear path, say, v, joining the points y and x. Since x is in F there exists a path 7o
from x to the point xg. From Proposition 27, it follows that there exists a path 3 from y to
xo. This means that B(z,r) C E. Hence F is open.

We will now show that F is also closed in U. Let x € U be a limit point of E. Therefore
there exists a sequence x,, of points in E such that the sequence x,, converge to the point x.
Since U is open there exists an r > 0 such that the open ball B(z,r) C U. Since the sequence
x, converges to the point x, there exists N in N such that the points z,, € B(x,r) for all
n > N. Let 41 be the linear path from z to the point z and 5 be a path from xn to xp.
From Proposition 27, there exists a path v3 from z to x¢. This means that the point x is in
E. Hence F is closed and therefore £ = U. U



