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Definition 1. Let Q be the set of all rational numbers. A sequence (xn), x ∈ Q is said to be
Cauchy if for every ε ∈ Q, there exists a positive integer n0 such that |xn − xm| < ε for all
n,m ≥ n0.

Examples: ( 1
n
), (1 + 1

n
), ( 2

n2 ) etc.

Definition 2. A sequence (xn) in Q is said to be convergent in Q to a rational number a if
for every ε+ ∈ Q there exists a n0 ∈ N such that |xn − a| < ε for all n ≥ n0. In this case we
write limxn = a.

Notations: Let C be the set of all Cauchy sequences in Q and N be the set of all (xn) ∈ C
such that limxn = 0. Elements of N are called null sequences.

We define addition and multiplication of two Cauchy sequences (xn) and (yn) in C as
follows: (xn) + (yn) := (xn + yn) and (xn) · (yn) := (xnyn).

Ex. 3. Prove that if (xn), (yn) ∈ C then (xn + yn) and (xnyn) are also in C.

Lemma 4. C is a commutative ring under the addition and multiplication defined above.

Proof. Proof of this lemma is a routine checking. Note that (0) = (0, 0, . . .) and (1) = (1, 1, . . .)
are the zero and the identity elements in C.

Definition 5. If R is a ring then a non empty subset I ⊆ R is said to be an ideal of R if for
all x, y ∈ I and r ∈ R, x+ y ∈ I and rx ∈ I.

Lemma 6. N is an ideal of C.

Proof. Let (xn), (yn) ∈ N and (rn) ∈ C. To prove that (xn + yn) and (rnxn) ∈ N . Using
algebra of limits, lim (xn + yn) = lim xn + lim yn = 0 + 0 = 0. Hence (xn + yn) ∈ N . Next
we prove that (rnxn) ∈ N . Since (rn) is a Cauchy sequence, (rn) is bounded.(why?) That
is, there exists M ∈ Q+ such that |rn| ≤ M , for all n. On the other hand (xn) ∈ N ,
therefore, for ε ∈ Q+, there exists n0 ∈ N such that |xn| < ε

M
, for all n ≥ n0. Thus,

|rnxn| = |rn||xn| ≤ M |xn| < M ε
M

= ε, for all n ≥ n0. Hence rnxn ∈ N .

Definition 7. We define a relation ∼ on C as follows: for (xn), (yn) ∈ C, we say that
(xn) ∼ (yn) iff (xn) − (yn) = (xn − yn) ∈ N . (Check that this is an equivalence relation on
C.) We define equivalence classes C/N = {(xn) + N | (xn) ∈ C} as the set of real numbers
denoted by R. Note that C/N is the quotient set in C w.r.t. the equivalence relation ∼.
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We now make C/N into a ring. This is a very common result in algebra if R is a ring and
I is an ideal of R, then R/I can be made into a ring. For those who is not familiar with this
result we define addition and multiplication in C/N as follows: for (xn)+N , (yn)+N ∈ C/N ,

((xn) +N ) + ((yn) +N ) := (xn + yn) +N and ((xn) +N ) · ((yn) +N ) := (xnyn) +N .

First of all we must check that these are well defined. This follows from the following
general result from algebra.

Lemma 8. Let R be a commutative ring and I be an ideal in R. Let R/I, the quotient of R
w.r.t. the equivalence relation ∼ on R as: x ∼ y iff x − y ∈ I. If x ∼ x1 and y ∼ y1 then
x+ y + I = x1 + y1 + I and xy + I = x1y1 + I.

Proof. Since x ∼ x1, x−x1 ∈ I. Similarly y−y1 ∈ I. Hence x−x1+y−y1 = (x+y)−(x1+y1) ∈
I. This implies that x + y + I = x1 + y1 + I. Next, xy − x1y1 = xy − xy1 + xy1 − x1y1 =
x(y− y1) + (x− x1)y1 = x(y− y1) + y1(x− x1) ∈ I. This implies that xy+ I = x1y1 + I.

Lemma 9. Let (xn) ∈ C \ N . There exists ε > 0 and n0 ∈ N such that |xn| > ε, for all
n ≥ n0. In fact, there exists ε > 0 and n0 ∈ N such that only one of the following is true.

1. Either xn ≥ ε, for all n ≥ n0, or

2. xn ≤ −ε, for all n ≥ n0.

Proof. Since (xn) ∈ C \ N , (xn) 6∈ N . Therefore there exists ε > 0 in Q such that for
each k ∈ N, there exists xnk

such that |xnk
| > 2ε. That is, either xnk

≥ 2ε, or xnk
≤ −2ε.

But (xn) ∈ C, therefore, for the above ε there exists N ∈ N such that |xn − xm| < ε, for all
n,m ≥ N . Fix k ∈ N such that nk ≥ N . Then, for all n,m ≥ N , |xn − xm| < ε. Or, in
otherwords xn ∈ (xnk

− ε, xnk
+ ε), for all n ≥ nk ≥ N .

If xnk
≤ −2ε. Then xnk

+ ε ≤ −ε, hence xn ≤ xnk
+ ε ≤ −ε, for all n ≥ nk ≥ N .

If xnk
≥ 2ε, then xnk

− ε ≥ ε. Hence xn ≥ xnk
− ε ≥ ε, for all n ≥ nk ≥ N . If we take

n0 = N , the result follows.

Theorem 10. R = C/N is a field.

Proof. It is easy to show that R is a commutative ring with the zero element N and the
identity element 1+N . We need to check that if x+N ∈ C/N and x 6∈ N then it is invertible.
That is, there exists y +N such that (x+N ) · (y +N ) = 1 +N .

Let x + N ∈ C/N and x 6∈ N . By Lemma 4 there exists ε > 0 and N ∈ N such that
xn > ε, for all n ≥ N . Define y = (y1, y2, . . . , yN , 0, . . .) such that xi + yi 6= 0, for 1 ≤ i ≤ N .
Note that x+N = (x+ y) +N . Define (x+ y)−1 = ( 1

x1+y1
, . . . , 1

xN+yN
, . . .). We claim that

(x+ y)−1 ∈ C. Let δ ∈ Q+ be given. For all n,m ≥ N

|
1

xn
−

1

xm
| =

|xm − xn|

|xn||xm|
<

|xm − xn|

ε2
.

Since (xn) ∈ C, for the above δ there exists n1 ∈ N such that |xm−xn| < δε2, for all n,m ≥ n1.

Choose n0 = max (N,n1), then | 1

xn
− 1

xm
| < δε2

ε2
= δ, for all n,m ≥ n0. Hence (x+ y)−1 ∈ C.

Since x+N = (x+y)+N , (x+N ) ·((x+y)−1+N ) = ((x+y)+N ) ·((x+y)−1+N ) = 1+N .
Hence x+N is invertible.
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Definition 11. An ideal I of a ring R is said to be a maximal ideal if J is an ideal containing
I properly, then J = R.

Remark 12. In fact we have proved that N is a maximal ideal of C.

Proof. Let I be an ideal of C such that N is properly contained in I. Let x ∈ I \ N . By
Theorem 2 there exists y such that (x + N ) · (y + N ) = 1 + N . Hence xy + N = 1 + N .
That is, 1− yx ∈ N ⊆ I. Since x ∈ I, yx ∈ I. This implies that 1 = 1− yx+ yx ∈ I. Hence
I = C.

Definition 13. A Cauchy sequence (xn) in Q is said to be positive if there exists ε ∈ Q+

and N ∈ N such that xn > ε, for all n ≥ N .

Definition 14. A real number α ∈ R is said to be positive, if (xn) ∈ α, then (xn) is a positive
sequence in Q.

We need to check that this definition is well defined, that is, if (xn), (yn) ∈ α such that
(xn) is a positive sequence in Q, then (yn) is also a positive sequence in Q.

Proof. Since (xn) is a positive sequence in Q, there exists ε ∈ Q+ and n1 ∈ N such that
xn > 2ε, for all n ≥ n1. Also (xn − yn) ∈ N , so for the above ε there exists n2 ∈ N such that
|xn − yn| < ε, for all n ≥ n2. Choose n0 = max (n1, n2). So, yn = (yn − xn) + xn > ε, for all
n ≥ n0. Hence (yn) is also a positive sequence in Q.

Theorem 15. (1) If (xn) is a positive sequence in C and (zn) ∈ N , then (xn + zn) is a
positive sequence in C.
(2) If (xn) and (yn) are positive sequences is C then (xn+yn) and (xnyn) are positive sequences
in C.

Proof. Proof of 1 is essentially the proof given for the well definedness of the above definition.
So we leave this for the reader to complete.

Since (xn) and (yn) are positive sequences in C, there exist positive rationals ε1, ε2 and
n1, n2 ∈ N such that xn > ε1 for all n ≥ n1 and ym > ε2 for all m ≥ n2. Choose N =
max(n1, n2). Then for all n ≥ N , xn + yn > ε1 + ε2. This proves that (xn + yn) is a positive
sequence in C. Proof of other part is similar and we leave it for the reader to complete.

We denote the set of all positive sequences in C/N by R+.

Definition 16. Let F be a field. By an order on F we mean a subset F+ of F with the
following properties:

1. Any x ∈ F lies in exactly one of the sets F+, {0}, and F− := −F+.

2. For any x, y ∈ F+ their sum x+ y and the product xy again lie in F+.

Theorem 17. R is an ordered field with an order R+.

Proof. Follows directly from Theorem 2.

Definition 18. Let x̄, ȳ ∈ R. We say that x̄ > ȳ if x̄− ȳ ∈ R+.
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Theorem 19. R has the Archimedian property, that is, if x̄ ∈ R+ and ȳ ∈ R, then there
exists n ∈ N such that nx̄ > ȳ.

Proof. Since x̄ ∈ R+, there exists ε ∈ Q and n0 ∈ N such that xn > ε, for all n ≥ n0.
Since y ∈ C, there exists M ∈ Q+ such that |yn| ≤ M , for all n ∈ N. It follows from the
Archimedian property in Q that for the above ε and M in Q there exists N in N such that
Nε > M + ε. Hence, for all n ≥ n0, Nxn > Nε > M + ε > yn + ε. That is, Nxn − yn > ε,
for all n ≥ n0. Thus (Nxn − yn) ∈ R+ and hence Nx̄ > ȳ.

Corollary 20. N is not bounded in R.

Theorem 21. R = C/N has the l.u.b. property, that is, if S is a non empty subset of R
which is bounded above, then there exists a real number which is the least upper bound for S.

Proof. Let S ⊆ R be non empty and bounded above. Let M ∈ R be such that x ≤ M , for
all x ∈ S. Without loss of generality we can assume that M ∈ Z. (Use the above corollary.)
Fix x ∈ S. We claim that there exists m ∈ Z such that m ≤ x. For, otherwise m > x, for all
m ∈ Z, which implies that −m < −x, for all m ∈ Z. This implies that N is bounded, which
is a contradiction. Hence, m ≤ x ≤ M , for some m,M ∈ Z. Since S is bounded above by M ,
if at all the lub exists, it has to lie in [m,M ]. For each n ∈ N, consider the set

Bn = {
c

2n
| m ≤

c

2n
≤ M, c ∈ Z}.

Note that, since M = M ·2n

2n
, M ∈ Bn. Hence Bn is non empty. Also if c

2m
, then 2c

2n+1 ∈ Bn+1.
Hence Bn ⊆ Bn+1 for all n ∈ N. Since there are only finietly many integers between m2n

and M2n, Bn is finite. Hence there are only finitely many upper bounds for S in Bn. Let an
be the smallest such upper bound for S in Bn. Since, for n ≥ m, Bm ⊆ Bn, it follows that
am ∈ Bn and hence an ≤ am for all n ≥ m.

Now we claim that for each n ∈ N, an −
1

2n
is not an upper bound for S. If m ≤ an − 1

2n
,

then we are through; since an is the least upper bound for S in Bn, an − 1

2n
< an cannot be

an upper bound.

Suppose m > an−
1

2n
. Since m ≤ x, for x ∈ S, an−

1

2n
< m ≤ x. Hence an−

1

2n
cannot be

an upper bound for S. Since am − 1

2m
≤ x ≤ an, it follows that am − an < 1

2m
. Hence (an) is

a Cauchy sequence. Define α := (an)+N . First of all we claim that an−
1

2n
< α < an, where

an = (an, an, . . .) and an − 1

2n
= (an − 1

2n
, an − 1

2n
, . . .). Since ak is a decreasing sequence

an ≥ ak, for all k ≥ n. Hence an−ak > 0, for all k ≥ n. This shows that (an−α) is a positive
sequence in C and hence α < an. Next α − (an − 1

2n
) = (a1 − an + 1

2n
, . . .). Since ak − 1

2k

is not an upper bound for S, ak > (an − 1

2n
), for all k, ak − (an − 1

2n
) > 0, for all k. Hence

α− (an − 1

2n
) is a positive sequence and hence α > an − 1

2n
.

Finally we claim that α is the least upper bound for S. First of all we have to show that
α is an upper bound for S. Suppose not. Then there exists x ∈ S such that x > α, hence
x − α > 0. Using the Archimedian property there exists N ∈ N such that N(x − α) > 1.
Hence x − α > 1

N
> 1

2N
. Thus we see that x > α + 1

2N
> aN − 1

2N
+ 1

2N
= aN . This is a

contradiction, since aN is the least upper bound for S in BN .

Next to show that α is the least upper bound. Suppose not. Then there exists b ∈ R such
that b is an upper bound for S and b < α. By the Archimedian property there exists N ∈ N
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such that N(α − b) > 1. Hence α − b > 1

N
> 1

2N
. This implies that α − b > 1

2N
and hence

α − 1

2N
> b, or, b < α − 1

2N
< aN − 1

2N
, as α < an, for all n. But aN − 1

2N
is not an upper

bound for S. Hence anything less than this cannot be an upper bound for S. In particular, b
is not an upper bound for S, which is a contradiction. This proves that α is the least upper
bound for S.

Remark 22. This is based on a set of notes prepared by my student Ajit Kumar based on
my lectures. I thank him for the notes.
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