Banach Contraction Principle

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Throughout this section we let X stand for a metric space (X, d) unless specified otherwise.

Definition 1. Let X and Y be metric spaces. A map $T: X \to Y$ is said to be a *contraction* if there exists a constant c, 0 < c < 1 such that

$$d(T(x), T(x')) \le cd(x, x'), \quad \text{for all } x, x' \in X.$$

Notice that any contraction is Lipschitz continuous so that it is uniformly continuous.

Ex. 2. Let $f: [a,b] \to [a,b]$ be differentiable and $|f'(x)| \le c$ with 0 < c < 1. Then f is a contraction of [a,b].

Theorem 3. Let (X, d) be a complete metric space. Assume that $T: X \to X$ is a contraction. Then f has a unique fixed point — a point $x \in X$ such that f(x) = x.

In fact, if we take any $x_0 \in X$ and let $x_n := T(x_{n-1})$ be defined recursively for $n \ge 1$, then (x_n) converges to an $x \in X$. Furthermore we have

$$d(T^{n}x_{0},x) \leq \frac{c^{n}}{1-c}d(x_{0},Tx_{0}).$$
(1)

Proof. For m < n observe that

$$d(x_m, x_n) \leq c^m(x_0, T^{n-m}(x_0))$$

$$\leq c^m [d(x_0, x_1) + \dots + d(x_{n-m-1}, x_{n-m})]$$

$$\leq c^m d(x_0, x_1) [1 + c + \dots + c^{n-m-1}]$$

$$\leq c^m \frac{d(x_0, x_1)}{1 - c}.$$

Thus (x_n) is Cauchy. let $x := \lim x_n$. Using continuity of T we see that $x = \lim_n T(T^n x) = Tx$. Uniqueness is easy.

We offer another simple proof of the contraction lemma.

Theorem 4. Let (X, d) be a complete metric space. Assume that $T: X \to X$ is a contraction, say, $d(Tx, Ty) \leq \lambda d(x, y)$ for a fixed $0 < \lambda < 1$. Then f has a unique fixed point, a point $x \in X$ such that T(x) = x.

Proof. It is easy to see by induction that for any $n \in \mathbb{N}$, we have $d(T^n x, T^n y) \leq \lambda^n d(x, y)$. Observe that for any $x, y \in X$, we have the following inequalities:

$$d(x,y) \leq d(x,Tx) + d(Tx,Ty) + d(Ty,y)$$

$$d(x,y) \leq d(x,TX) + \lambda d(x,y) + d(y,Ty)$$

$$(1-\lambda)d(x,y) \leq d(x,Tx) + d(y,Ty)$$

$$d(x,y) \leq \frac{1}{1-\lambda} \left(d(x,Tx) + d(y,Ty) \right).$$
(2)

Fix $x \in X$. For $m, n \in \mathbb{N}$, substitute $T^m x$ and $T^m x$ for x and y respectively in (2) and get

$$d(T^{n}x, T^{m}x) \leq \frac{1}{1-\lambda} \left(d(T^{n}x, T^{n+1}x) + d(T^{m}x, T^{m+1}x) \right)$$

$$\leq \frac{1}{1-\lambda} \left(\lambda^{n} d(x, Tx) + \lambda^{m} d(x, Tx) \right)$$

$$= \frac{d(x, Tx)}{1-\lambda} \left(\lambda^{n} + \lambda^{m} \right).$$
(3)

Since $0 < \lambda < 1$, (3) shows that the sequence $(T^n x)$ is Cauchy. Since X is complete, it is convergent, say, to $p \in X$. Since $T^n x \to p$, by continuity, $T(T^n x) \to Tx$. But $T(T^n x) = T^{n+1}x \to p$. By the uniqueness of the limit, we deduce Tp = p.

The fixed point p is unique. For if Tp = p and Tq = q with $p \neq q$, then

$$d(p,q) = d(Tp,Tq) < \lambda d(p,q) < d(p,q),$$

a contradiction.

Ex. 5. Let X be complete. Let $T: X \to X$ be continuous. Assume that T^n is a contraction for some $n \ge 1$. Then T has a unique fixed point.

Ex. 6. Show that the conclusion in Theorem 4 is false if we assume the simpler condition d(Tx, Ty) < d(x, y) for all $x \neq y$. *Hint:* Consider $f \colon \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x + \frac{1}{x}, & x \ge 1\\ x - \frac{1}{s-2}, & x < 1. \end{cases}$$

Ex. 7. Let X be compact. Let $T: X \to X$ be such that d(T(x), T(y)) < d(x, y) if $x \neq y$. Then T has a unique fixed point.

Ex. 8. Find a compact metric space $X, T: X \to X$ be such that $d(T(x), T(y)) \leq d(x, y)$ for all $x, y \in X$ while T has no fixed point. Find also X and T satisfying this condition such that T has more then one fixed point.

Ex. 9. Let $f: [a, b] \to \mathbb{R}$ be differentiable with f(a) < 0 < f(b) and $0 < m_1 \le f'(x) \le m_2$ for $x \in [a, b]$. Then f has a unique zero in [a, b]. *Hint:* Consider $g(x) := x - \frac{1}{m}f(x)$. Then x is a zero of f iff x is a fixed point of g. Choose m appropriately so that g is a contraction of [a, b] into itself. If $m > m_2$ then take $c := 1 - \frac{m_1}{m}$. If $0 < m_2 < 2m_1$ then let $m \in (m_2/2, m_1]$ and $c := \frac{m_2}{m} - 1$.

Ex. 10. Let A be an $n \times n$ -matrix with real entries, $x, y \in \mathbb{R}^n$. Consider Ax = y or

$$\sum_{j=1}^{n} a_j^i x^j = y^i, \qquad 1 \le i \le n.$$

Then if either $\lambda_{\infty} := \max_i \sum_{j=1}^n |\delta_j^i - a_j^i| < 1$ or if $\lambda_1 := \max_j \sum_{i=1}^n |\delta_j^i - a_j^i| < 1$, the equation Ax = y has a unique solution. *Hint:* Consider $T := T_y$ where Tx := (I - A)x + y. If $x_r := (x_r^1, \ldots, x_r^n)$ for r = 1, 2 and $y_r := T(x_r)$ then $d_{\infty}(y_1, y_2) \leq \lambda_{\infty} d_{\infty}(x_1, x_2)$ etc.

ODE and Integral Equations

We shall define the notion of integrals of vector valued functions of a real variable. We wish to assign a meaning for the integral of a vector valued function in such a way that the "natural" results such as the fundamental theorem of calculus and the inequality that $\left\|\int_{a}^{b} f(t) dt\right\| \leq \int_{a}^{b} \|f(t)\| dt$ is true.

Definition 11. Let $f: [a,b] \to \mathbb{R}^n$ be a continuous function. We write $f = (f_1, \ldots, f_n)$ and set

$$\int_{a}^{b} f(t) dt := (\int_{a}^{b} f_{1}(t) dt, \dots, \int_{a}^{b} f_{n}(t) dt).$$

Ex. 12. Keep the notation in the definition. Show that the map $w \mapsto \int_a^b \langle f(t), w \rangle dt$ is a linear functional on \mathbb{R}^n and hence by Riesz there exists a unique vector v such that this map is $w \mapsto \langle w, v \rangle$. Show that $v = \int_a^b f(t) dt$. Hence $\int_a^b f(t) dt$ is that vector $v \in \mathbb{R}^n$ such that

$$\left\langle \int_{a}^{b} f(t) \, dt, w \right\rangle = \int_{a}^{b} \left\langle f(t), w \right\rangle \, dt, \qquad \text{for all } w \in \mathbb{R}^{n}. \tag{4}$$

Ex. 13. Prove the following versions of the fundamental theorems of calculus:

1. Let $f: [a, b] \to \mathbb{R}^n$ be continuous. Define $g(t) := \int_a^t f(s) \, ds$. Then g is continuously differentiable and g'(t) = f(t).

2. Let $g: [a,b] \to \mathbb{R}^n$ be continuously differentiable. Then $\int_a^b g'(t) dt = g(b) - g(a)$.

Ex. 14. With appropriate hypothesis, show that $\left\|\int_{a}^{b} f(t) dt\right\| \leq \int_{a}^{b} \|f(t)\| dt$. *Hint:* In Eq. nint take $w := \int_{a}^{b} f(t) dt$ and use Cauchy-Schwarz.

Consider the vector differential equation

$$x'(t) = f(t, x(t)),$$
 with the initial condition $x(0) = x_0.$ (5)

This is equivalent to the system of n first order DE's in n unknowns with the initial conditions (IC's):

$$x'_i(t) = f^i(t, x_1(t), \dots, x_n(t)), \qquad x_i(0) = (x_0)_i, 1 \le i \le n.$$

Ex. 15. The above DE with IC is equivalent to the following integral equations

$$x(t) = x_0 + \int_0^t f(s, x(s)) \, ds.$$

Theorem 16. Let $f: [a,b] \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous. Assume that there exists a constant L such that

$$|f(t,x) - f(t,y)|| \le L ||x - y||, \qquad x, y \in \mathbb{R}^n, t \in [a,b].$$

Then the integral equation $x(t) = x_0 + \int_0^t f(s, x(s)) ds$ has a unique solution on [a, b].

Proof. Let $X := C([a, b], \mathbb{R}^n)$ be the vector space on which we define a norm $||x||_{\alpha} := \sup\{e^{-\alpha(t-a)} ||x(t)|| : t \in [a, b]\}$. It is easily seen that there exist constants C_i such that $C_1 ||x|| \le ||x||_{\alpha} \le C_2 ||x||$ where $||x|| := \sup\{||x(t)|| : t \in [a, b]\}$ and that $(X, ||\cdot||_{\alpha})$ is continuous iff $(X, ||\cdot||)$ is complete. Let $T : X \to X$ be given by $Tx(t) := x_0 + \int_a^t f(s, x(s)) ds$. Show that for α very large, T is a contraction on $(X, ||\cdot||_{\alpha})$.

Ex. 17. Let the notation be as in Theorem 16. Then the differential equation x'(t) = f(t, x(t)) with the initial condition $x(a) = x_0$ has a unique solution.

Ex. 18. Let the notation be as in Theorem 16. If we use the norm $\|\cdot\|$ on X we can solve Eq. 5 on $(-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

Definition 19. A nonlinear Volterra integral equation of the 2nd kind is of the form

$$x(t) = g(t) + \lambda \int_0^t f(t, s, x(s)) \, ds.$$
(6)

Theorem 20. Let $g: \mathbb{R} \to \mathbb{R}^n$ be Lipschitz: $||g(s) - g(t)|| \le L|s - t|$ in an interval J around 0. Assume that g(0) = 0. Let $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous and satisfy a Lipschitz condition in the last n variables uniformly in the first two variables:

$$||f(t,s,v) - f(t,s,w)|| \le M ||v - w||$$

in a neighbourhood U of (0, 0, g(0)). Then for every $\varepsilon > 0$ such that $I := [-\varepsilon, \varepsilon] \subset J$ and $V := I \times I \times B(0, r) \subset U$ the equation Eq. 6 has a unique solution on I for each $\lambda \in \mathbb{R}$.

Proof. Let $X := \{x \colon I \to B[0, r] : x \text{ is continuous}\}$. Consider the following metric on X:

$$d(x,y)_{\alpha} := \sup\{\|x(t) - y(t)\| e^{-\alpha|t|} : t \in I\},\$$

for $\alpha > 0$. One shows that this metric is uniformly equivalent to d_0 in the sense that there exist constants C_1 and C_2 such that $C_1d_0(x,y) \le d_\alpha(x,y) \le C_2d_0(x,y)$. It is easily seen that (X, d_0) is complete and hence so is (X, d_α) . Let T be defined by $Tx(t) := g(t) + \lambda \int_0^t f(t, s, x(s)) ds$. We choose α sufficiently large so that i) T maps X into itself and ii) T is a contraction. \Box

Corollary 21. Let J be an interval around $0 \in \mathbb{R}$ and U be the open ball $B(x_0, r) \subset \mathbb{R}^n$. Let $f: J \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous and satisfy the Lipschitz condition

$$||f(t,v) - f(t,w)|| \le L ||v - w|$$

in $J \times U$. Then for each a > 0 such that

 $S := \{(t, v) : |t| \le a, ||v - x_0|| \le b\} \subset J \times U,$

there exists a unique solution of Eq. 5 on [-a, a].

In many problems (such as dependence of the solutions of ODE on the initial data) one wants to know the dependence of the fixed points on the parameters of a parameterized family of maps. The following result is in this direction.

Theorem 22. Let X be a complete metric space and Λ be a metric space. Let c, 0 < c < 1 be fixed. Let $F \colon \Lambda \times X \to X$ be continuous. We let $f_{\lambda}(x) := F(\lambda, x)$. Assume that $d(f_{\lambda}(x), f_{\lambda}(y)) \leq cd(x, y)$ for a all $x, y \in X$ and $\lambda \in \Lambda$. Then

1. For each $\lambda \in \Lambda$ there exists a unique fixed point x_{λ} of f_{λ} .

2. The map $\lambda \to x_{\lambda}$ is continuous.

Proof. To prove 2), in Eq. 1 we take n = 0, $T = f_{\mu}$, $x = x_{\mu}$ and $x_0 = x_{\lambda}$. Then

$$d(x_{\lambda}, x_{\mu}) \le \frac{1}{1-c} d(x_{\lambda}, f_{\mu}(x_{\lambda})).$$
(7)

As $\mu \to \lambda$, $f_{\mu}(x_{\lambda}) = F(\mu, x_{\lambda}) \to F(\lambda, x_{\lambda}) = f_{\lambda}(x_{\lambda}) = x_{\lambda}$. Hence the RHS of Eq. 7 goes to 0.

Ex. 23. Formulate and prove a theorem to the effect that the solution of initial value problem Eq. ODE depends continuously on the initial data x_0 .

Remark 24. See also the section on ODE for proofs of Corollary 21 and this exercise.

Definition 25. An integral equation of the form

$$x(t) = g(t) + \lambda \int_{a}^{b} K(t,s,)x(s) \, ds.$$
(8)

is called the Fredholm integral equation of the second kind. K is called the kernel.

Theorem 26. Let $g: I := [a, b] \to \mathbb{R}^n$ be continuous. Let $K: I \times I \to \mathbb{R}$ be continuous. Then the integral equation Eq. 8 has a unique solution x on the interval [a, b] for each λ such that $|\lambda| < \frac{1}{M(b-a)}$, where M is a bound for K on I^2 .

Proof. Let $X := \{x : [a,b] \to \mathbb{R}^n : x \text{ is continuous}\}$ with the sup norm. Define $T : X \to X$ by $Tx(t) := g(t) + \lambda \int_a^b K(t,s)x(s) \, ds$. Then T is a contraction.