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Throughout this section we let X stand for a metric space (X, d) unless specified otherwise.

Definition 1. Let X and Y be metric spaces. A map T : X → Y is said to be a contraction
if there exists a constant c, 0 < c < 1 such that

d(T (x), T (x′)) ≤ cd(x, x′), for all x, x′ ∈ X.

Notice that any contraction is Lipschitz continuous so that it is uniformly continuous.

Ex. 2. Let f : [a, b] → [a, b] be differentiable and |f ′(x)| ≤ c with 0 < c < 1. Then f is a
contraction of [a, b].

Theorem 3. Let (X, d) be a complete metric space. Assume that T : X → X is a contraction.
Then f has a unique fixed point — a point x ∈ X such that f(x) = x.

In fact, if we take any x0 ∈ X and let xn := T (xn−1) be defined recursively for n ≥ 1,
then (xn) converges to an x ∈ X. Furthermore we have

d(Tnx0, x) ≤ cn

1− c
d(x0, Tx0). (1)

Proof. For m < n observe that

d(xm, xn) ≤ cm(x0, T
n−m(x0))

≤ cm [d(x0, x1) + · · ·+ d(xn−m−1, xn−m)]

≤ cmd(x0, x1)
[
1 + c+ · · ·+ cn−m−1

]
≤ cm

d(x0, x1)

1− c
.

Thus (xn) is Cauchy. let x := limxn. Using continuity of T we see that x = limn T (Tnx) =
Tx. Uniqueness is easy.

We offer another simple proof of the contraction lemma.

Theorem 4. Let (X, d) be a complete metric space. Assume that T : X → X is a contraction,
say, d(Tx, Ty) ≤ λd(x, y) for a fixed 0 < λ < 1. Then f has a unique fixed point, a point
x ∈ X such that T (x) = x.
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Proof. It is easy to see by induction that for any n ∈ N, we have d(Tnx, Tny) ≤ λnd(x, y).
Observe that for any x, y ∈ X, we have the following inequalities:

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

d(x, y) ≤ d(x, TX) + λd(x, y) + d(y, Ty)

(1− λ)d(x, y) ≤ d(x, Tx) + d(y, Ty)

d(x, y) ≤ 1

1− λ
(d(x, Tx) + d(y, Ty)) . (2)

Fix x ∈ X. For m,n ∈ N, substitute Tmx and Tmx for x and y respectively in (2) and get

d(Tnx, Tmx) ≤ 1

1− λ
(
d(Tnx, Tn+1x) + d(Tmx, Tm+1x)

)
≤ 1

1− λ
(λnd(x, Tx) + λmd(x, Tx))

=
d(x, Tx)

1− λ
(λn + λm) . (3)

Since 0 < λ < 1, (3) shows that the sequence (Tnx) is Cauchy. Since X is complete, it is
convergent, say, to p ∈ X. Since Tnx → p, by continuity, T (Tnx) → Tx. But T (Tnx) =
Tn+1x→ p. By the uniqueness of the limit, we deduce Tp = p.

The fixed point p is unique. For if Tp = p and Tq = q with p 6= q, then

d(p, q) = d(Tp, Tq) < λd(p, q) < d(p, q),

a contradiction.

Ex. 5. Let X be complete. Let T : X → X be continuous. Assume that Tn is a contraction
for some n ≥ 1. Then T has a unique fixed point.

Ex. 6. Show that the conclusion in Theorem 4 is false if we assume the simpler condition
d(Tx, Ty) < d(x, y) for all x 6= y. Hint: Consider f : R→ R given by

f(x) =

{
x+ 1

x , x ≥ 1

x− 1
s−2 , x < 1.

Ex. 7. Let X be compact. Let T : X → X be such that d(T (x), T (y)) < d(x, y) if x 6= y.
Then T has a unique fixed point.

Ex. 8. Find a compact metric space X, T : X → X be such that d(T (x), T (y)) ≤ d(x, y) for
all x, y ∈ X while T has no fixed point. Find also X and T satisfying this condition such that
T has more then one fixed point.

Ex. 9. Let f : [a, b] → R be differentiable with f(a) < 0 < f(b) and 0 < m1 ≤ f ′(x) ≤ m2

for x ∈ [a, b]. Then f has a unique zero in [a, b]. Hint: Consider g(x) := x− 1
mf(x). Then x

is a zero of f iff x is a fixed point of g. Choose m appropriately so that g is a contraction of
[a, b] into itself. If m > m2 then take c := 1− m1

m . If 0 < m2 < 2m1 then let m ∈ (m2/2,m1]
and c := m2

m − 1.
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Ex. 10. Let A be an n× n-matrix with real entries, x, y ∈ Rn. Consider Ax = y or

n∑
j=1

aijx
j = yi, 1 ≤ i ≤ n.

Then if either λ∞ := maxi
∑n

j=1 |δij−aij | < 1 or if λ1 := maxj
∑n

i=1 |δij−aij | < 1, the equation
Ax = y has a unique solution. Hint: Consider T := Ty where Tx := (I − A)x + y. If
xr := (x1r , . . . , x

n
r ) for r = 1, 2 and yr := T (xr) then d∞(y1, y2) ≤ λ∞d∞(x1, x2) etc.

ODE and Integral Equations

We shall define the notion of integrals of vector valued functions of a real variable. We
wish to assign a meaning for the integral of a vector valued function in such a way that
the “natural” results such as the fundamental theorem of calculus and the inequality that∥∥∥∫ ba f(t) dt

∥∥∥ ≤ ∫ ba ‖f(t)‖ dt is true.

Definition 11. Let f : [a, b] → Rn be a continuous function. We write f = (f1, . . . , fn) and
set ∫ b

a
f(t) dt := (

∫ b

a
f1(t) dt, . . . ,

∫ b

a
fn(t) dt).

Ex. 12. Keep the notation in the definition. Show that the map w 7→
∫ b
a 〈f(t), w〉 dt is a

linear functional on Rn and hence by Riesz there exists a unique vector v such that this map
is w 7→ 〈w, v〉. Show that v =

∫ b
a f(t) dt. Hence

∫ b
a f(t) dt is that vector v ∈ Rn such that〈∫ b

a
f(t) dt, w

〉
=

∫ b

a
〈f(t), w〉 dt, for all w ∈ Rn. (4)

Ex. 13. Prove the following versions of the fundamental theorems of calculus:
1. Let f : [a, b] → Rn be continuous. Define g(t) :=

∫ t
a f(s) ds. Then g is continuously

differentiable and g′(t) = f(t).

2. Let g : [a, b]→ Rn be continuously differentiable. Then
∫ b
a g
′(t) dt = g(b)− g(a).

Ex. 14. With appropriate hypothesis, show that
∥∥∥∫ ba f(t) dt

∥∥∥ ≤ ∫ b
a ‖f(t)‖ dt. Hint: In

Eq. nint take w :=
∫ b
a f(t) dt and use Cauchy-Schwarz.

Consider the vector differential equation

x′(t) = f(t, x(t)), with the initial condition x(0) = x0. (5)

This is equivalent to the system of n first order DE’s in n unknowns with the initial conditions
(IC’s):

x′i(t) = f i(t, x1(t), . . . , xn(t)), xi(0) = (x0)i, 1 ≤ i ≤ n.

Ex. 15. The above DE with IC is equivalent to the following integral equations

x(t) = x0 +

∫ t

0
f(s, x(s)) ds.
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Theorem 16. Let f : [a, b]×Rn → Rn be continuous. Assume that there exists a constant L
such that

‖f(t, x)− f(t, y)‖ ≤ L ‖x− y‖ , x, y ∈ Rn, t ∈ [a, b].

Then the integral equation x(t) = x0 +
∫ t
0 f(s, x(s)) ds has a unique solution on [a, b].

Proof. Let X := C([a, b],Rn) be the vector space on which we define a norm ‖x‖α :=
sup{e−α(t−a) ‖x(t)‖ : t ∈ [a, b]}. It is easily seen that there exist constants Ci such that
C1 ‖x‖ ≤ ‖x‖α ≤ C2 ‖x‖ where ‖x‖ := sup{‖x(t)‖ : t ∈ [a, b]} and that (X, ‖·‖α) is con-

tinuous iff (X, ‖·‖) is complete. Let T : X → X be given by Tx(t) := x0 +
∫ t
a f(s, x(s)) ds.

Show that for α very large, T is a contraction on (X, ‖·‖α).

Ex. 17. Let the notation be as in Theorem 16. Then the differential equation x′(t) =
f(t, x(t)) with the initial condition x(a) = x0 has a unique solution.

Ex. 18. Let the notation be as in Theorem 16. If we use the norm ‖·‖ on X we can solve
Eq. 5 on (−ε, ε) for some ε > 0.

Definition 19. A nonlinear Volterra integral equation of the 2nd kind is of the form

x(t) = g(t) + λ

∫ t

0
f(t, s, x(s)) ds. (6)

Theorem 20. Let g : R→ Rn be Lipschitz: ‖g(s)− g(t)‖ ≤ L|s− t| in an interval J around
0. Assume that g(0) = 0. Let f : R × R × Rn → Rn be continuous and satisfy a Lipschitz
condition in the last n variables uniformly in the first two variables:

‖f(t, s, v)− f(t, s, w)‖ ≤M ‖v − w‖

in a neighbourhood U of (0, 0, g(0)). Then for every ε > 0 such that I := [−ε, ε] ⊂ J and
V := I × I ×B(0, r) ⊂ U the equation Eq. 6 has a unique solution on I for each λ ∈ R.

Proof. Let X := {x : I → B[0, r] : x is continuous}. Consider the following metric on X:

d(x, y)α := sup{‖x(t)− y(t)‖ e−α|t| : t ∈ I},

for α > 0. One shows that this metric is uniformly equivalent to d0 in the sense that there exist
constants C1 and C2 such that C1d0(x, y) ≤ dα(x, y) ≤ C2d0(x, y). It is easily seen that (X, d0)
is complete and hence so is (X, dα). Let T be defined by Tx(t) := g(t) + λ

∫ t
0 f(t, s, x(s)) ds.

We choose α sufficiently large so that i) T maps X into itself and ii) T is a contraction.

Corollary 21. Let J be an interval around 0 ∈ R and U be the open ball B(x0, r) ⊂ Rn. Let
f : J × Rn → Rn be continuous and satisfy the Lipschitz condition

‖f(t, v)− f(t, w)‖ ≤ L ‖v − w‖

in J × U . Then for each a > 0 such that

S := {(t, v) : |t| ≤ a, ‖v − x0‖ ≤ b} ⊂ J × U,

there exists a unique solution of Eq. 5 on [−a, a].
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In many problems (such as dependence of the solutions of ODE on the initial data) one
wants to know the dependence of the fixed points on the parameters of a parameterized family
of maps. The following result is in this direction.

Theorem 22. Let X be a complete metric space and Λ be a metric space. Let c, 0 < c <
1 be fixed. Let F : Λ × X → X be continuous. We let fλ(x) := F (λ, x). Assume that
d(fλ(x), fλ(y)) ≤ cd(x, y) for a all x, y ∈ X and λ ∈ Λ. Then

1. For each λ ∈ Λ there exists a unique fixed point xλ of fλ.
2. The map λ→ xλ is continuous.

Proof. To prove 2), in Eq. 1 we take n = 0, T = fµ, x = xµ and x0 = xλ. Then

d(xλ, xµ) ≤ 1

1− c
d(xλ, fµ(xλ)). (7)

As µ → λ, fµ(xλ) = F (µ, xλ) → F (λ, xλ) = fλ(xλ) = xλ. Hence the RHS of Eq. 7 goes to
0.

Ex. 23. Formulate and prove a theorem to the effect that the solution of initial value problem
Eq. ODE depends continuously on the initial data x0.

Remark 24. See also the section on ODE for proofs of Corollary 21 and this exercise.

Definition 25. An integral equation of the form

x(t) = g(t) + λ

∫ b

a
K(t, s, )x(s) ds. (8)

is called the Fredholm integral equation of the second kind. K is called the kernel.

Theorem 26. Let g : I := [a, b]→ Rn be continuous. Let K : I× I → R be continuous. Then
the integral equation Eq. 8 has a unique solution x on the interval [a, b] for each λ such that
|λ| < 1

M(b−a) , where M is a bound for K on I2.

Proof. Let X := {x : [a, b]→ Rn : x is continuous} with the sup norm. Define T : X → X by

Tx(t) := g(t) + λ
∫ b
a K(t, s)x(s) ds. Then T is a contraction.
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